The E3 Ligase PIAS1 Regulates P53 Sumoylation to Control Stress-Induced Apoptosis of Lens

Total Page:16

File Type:pdf, Size:1020Kb

The E3 Ligase PIAS1 Regulates P53 Sumoylation to Control Stress-Induced Apoptosis of Lens fcell-09-660494 June 14, 2021 Time: 13:5 # 1 ORIGINAL RESEARCH published: 14 June 2021 doi: 10.3389/fcell.2021.660494 The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Edited by: Wolfgang Knabe, Epithelial Cells Through the Universität Münster, Germany Proapoptotic Regulator Bax Reviewed by: Guillaume Bossis, † † † † † Centre National de la Recherche Qian Nie , Huimin Chen , Ming Zou , Ling Wang , Min Hou , Jia-Wen Xiang, Scientifique (CNRS), France Zhongwen Luo, Xiao-Dong Gong, Jia-Ling Fu, Yan Wang, Shu-Yu Zheng, Yuan Xiao, Stefan Müller, Yu-Wen Gan, Qian Gao, Yue-Yue Bai, Jing-Miao Wang, Lan Zhang, Xiang-Cheng Tang, Goethe University Frankfurt, Germany Xuebin Hu, Lili Gong, Yizhi Liu* and David Wan-Cheng Li*‡ Leena Latonen, University of Eastern Finland, Finland State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China *Correspondence: David Wan-Cheng Li Protein sumoylation is one of the most important post-translational modifications [email protected] Yizhi Liu regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. [email protected] 82:357–85). Our previous studies have shown that sumoylation plays a fundamental †These authors have contributed role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; equally to this work Gong et al., 2014. PNAS. 111(15):5574–9). Whether sumoylation is implicated in lens ‡ ORCID: David Wan-Cheng Li pathogenesis remains elusive. Here, we present evidence to show that the protein orcid.org/0000-0002-7398-7630 inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced Specialty section: cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein This article was submitted to Cell Death and Survival, levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances a section of the journal stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology Frontiers in Cell and Developmental attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 Biology has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Received: 29 January 2021 Accepted: 20 April 2021 Moreover, Bax upregulation is derived from the enhanced transcription activity of the Published: 14 June 2021 upstream transcription factor, p53. As revealed previously in other cells by different Citation: laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of Nie Q, Chen H, Zou M, Wang L, Hou M, Xiang J-W, Luo Z, Gong X-D, p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity Fu J-L, Wang Y, Zheng S-Y, Xiao Y, to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1- Gan Y-W, Gao Q, Bai Y-Y, Wang J-M, mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated Zhang L, Tang X-C, Hu X, Gong L, Liu Y and Li DW (2021) The E3 Ligase that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, PIAS1 Regulates p53 Sumoylation to which specifically upregulates expression of the downstream proapoptotic regulator Control Stress-Induced Apoptosis of Lens Epithelial Cells Through Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in the Proapoptotic Regulator Bax. lens pathogenesis. Front. Cell Dev. Biol. 9:660494. doi: 10.3389/fcell.2021.660494 Keywords: sumoylation, apoptosis, PIAS1, p53, Bax, lens, cataract, oxidative stress Frontiers in Cell and Developmental Biology| www.frontiersin.org 1 June 2021| Volume 9| Article 660494 fcell-09-660494 June 14, 2021 Time: 13:5 # 2 Nie et al. PIAS1 Regulates Apoptosis Through p53-Bax INTRODUCTION is implicated in ocular diseases, especially lens cataractogenesis, remains elusive. Sumoylation is a unique class of protein post-translational Cataract is an aging disease that, in most cases, is derived from modification, discovered in the past century (Boddy et al., aging process or stress induction such as oxidative stress (Spector, 1996; Matunis et al., 1996; Okura et al., 1996; Shen et al., 1995 and references therein). Mechanistically, we have previously 1996). The small ubiquitin-like modifier (SUMO) proteins can demonstrated that stress-induced apoptosis is a common cellular interact with over 6,000 proteins, regulating their activity, basis for non-congenital cataractogenesis (Li et al., 1995a,b; Li interactions, localization, or stability through a reversible and Spector, 1996). In lens epithelial cells (LECs), apoptosis covalent modification (Geiss-Friedlander and Melchior, 2007; is mainly mediated by endogenous and exogenous apoptotic Flotho and Melchior, 2013; Sheng et al., 2019). Three major pathways (Li, 1997; Li et al., 2001; Mao et al., 2001, 2004; Yao SUMO isoforms have been identified in vertebrates, which are et al., 2003; Kim and Koh, 2011). Bcl-2 family proteins play a known as SUMO1, SUMO2, and SUMO3 (Hay, 2005). crucial role in mediating endogenous apoptotic pathway, and Sumoylation is an enzymatic reaction catalyzed by the E1 among which Bax is one of the most important pro-apoptotic activating enzyme, the E2 conjugating enzyme, and several proteins (Mao et al., 2004; Czabotar et al., 2014; Singh et al., 2019; E3 ligases in the presence of ATP as energy supply, and Walensky, 2019; Moldoveanu and Czabotar, 2020). reversed by several SUMO isopeptidases known as SENPs In this study, we present evidence to show that during (Johnson, 2004; Hickey et al., 2012). Previous studies have oxidative stress-induced apoptosis, PIAS1 expression is shown that protein sumoylation plays an important role in significantly changed at the mRNA and protein levels. The regulating different biological processes including cell division, change in PIAS1 expression is closely related with apoptosis. autophagy, transformation, aging, and apoptosis (Johnson, PIAS1 knockout via CRISPR/Cas9 technology attenuates 2004; Hendriks and Vertegaal, 2016). Moreover, sumoylation oxidative stress-induced apoptosis. In contrast, expression of is also implicated in various human diseases caused by gene exogenous PIAS1 enhances oxidative stress-induced apoptosis mutation and stress response (Flotho and Melchior, 2013; of LECs. To define the underlying mechanism, we analyzed Seeler and Dejean, 2017; Yang et al., 2017; Sheng et al., 2019; the apoptosis-related factors in PIAS1 overexpression and Princz and Tavernarakis, 2020). knockout cells. Our results reveal that PIAS1 affects the During sumoylation reaction, E3 ligases have been reported expression level of the pro-apoptotic protein Bax. Furthermore, to stabilize the binding between the SUMO target proteins and we demonstrate that PIAS1 regulation of Bax occurs through the E2 conjugating enzyme, controlling the transfer of SUMO regulation of p53 sumoylation at the K386 residue in LECs. from E2 to substrate proteins (Hay, 2005; Hickey et al., 2012; The sumoylation-deficient p53 K386R mutant can protect cells Flotho and Melchior, 2013). Since the E1 activating enzyme against the stress-induced apoptosis. Finally, in Bax knockout (consisting of SAE1-UBA2 heterodimer) and the E2 conjugating cells, we found that absence of Bax significantly abrogates PIAS1- enzyme (UBC9) are the unique enzymes, the E3 ligases play a mediated apoptosis under oxidative stress induction. Taken key role in the selection of SUMO isoforms and target proteins together, our results demonstrate that PIAS1 is implicated in lens (Hay, 2005; Geiss-Friedlander and Melchior, 2007; Hendriks cataractogenesis. Mechanistically, PIAS1 sumoylates p53 at K386 and Vertegaal, 2016; Pichler et al., 2017). In mammals, the to upregulate Bax and thus promotes oxidative stress-induced protein inhibitor of activated STAT (PIAS) family of E3 ligases apoptosis through p53-Bax pathway. contain five subtypes, namely, PIAS1, PIAS2a, PIAS2b, PIAS3, and PIAS4, among which PIAS1 is known to promote cell apoptosis depending on its SUMO E3 ligase activity (Shuai and RESULTS Liu, 2005; Palvimo, 2007; Rytinki et al., 2009; Sudharsan and Azuma, 2012; Yang et al., 2013; Rabellino et al., 2017; Li et al., Oxidative Stress Induces PIAS1 2020). PIAS1 can regulate apoptosis by mediating sumoylation Alteration in Lens Epithelial Cells of both transcription factors and kinases (Liu and Shuai, 2001; It is well established that oxidative stress plays a causing role in Megidish et al., 2002; Shishido et al., 2008; Alm-Kristiansen cataractogenesis (Giblin et al., 1995; Li et al., 1995a,b; Spector, et al., 2011; Leitao et al., 2011; Sudharsan and Azuma, 2012; Li 1995; Li and Spector, 1996; Reddy et al., 2001; Raghavan et al., et al., 2013; Yang et al., 2013; Chiou et al., 2014; Wang et al., 2016; Rakete and Nagaraj, 2016; Barnes and Quinlan, 2017; Fan 2018) and thus becomes involved in various human diseases et al., 2017; Wang et al., 2017). In our glucose oxidase (GO) including cardiovascular diseases, neuronal disorder, and cancer treatment-induced cataract model (Supplementary Figure 1), we development (Fatkin et al., 1999; Sternsdorf et al., 1999; Li et al., found that GO also regulates PIAS1 expression. As shown in 2003; Steffan et al., 2004; Kim et al., 2006, 2007; Ballatore et al., Figure 1A, 40 mU GO induced time-dependent upregulation of 2007; Evdokimov et al., 2008; Subramaniam et al., 2009; Flotho PIAS1 mRNA in the first
Recommended publications
  • SUMO-1 Regulates the Conformational Dynamics of Thymine-DNA
    Smet-Nocca et al. BMC Biochemistry 2011, 12:4 http://www.biomedcentral.com/1471-2091/12/4 RESEARCHARTICLE Open Access SUMO-1 regulates the conformational dynamics of Thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity Caroline Smet-Nocca1, Jean-Michel Wieruszeski2, Hélène Léger1,3, Sebastian Eilebrecht1,3, Arndt Benecke1,3* Abstract Background: The human thymine-DNA glycosylase (TDG) plays a dual role in base excision repair of G:U/T mismatches and in transcription. Regulation of TDG activity by SUMO-1 conjugation was shown to act on both functions. Furthermore, TDG can interact with SUMO-1 in a non-covalent manner. Results: Using NMR spectroscopy we have determined distinct conformational changes in TDG upon either covalent sumoylation on lysine 330 or intermolecular SUMO-1 binding through a unique SUMO-binding motif (SBM) localized in the C-terminal region of TDG. The non-covalent SUMO-1 binding induces a conformational change of the TDG amino-terminal regulatory domain (RD). Such conformational dynamics do not exist with covalent SUMO-1 attachment and could potentially play a broader role in the regulation of TDG functions for instance during transcription. Both covalent and non-covalent processes activate TDG G:U repair similarly. Surprisingly, despite a dissociation of the SBM/SUMO-1 complex in presence of a DNA substrate, SUMO-1 preserves its ability to stimulate TDG activity indicating that the non-covalent interactions are not directly involved in the regulation of TDG activity. SUMO-1 instead acts, as demonstrated here, indirectly by competing with the regulatory domain of TDG for DNA binding.
    [Show full text]
  • T-Cell Receptor (TCR) Signaling Promotes the Assembly of Ranbp2
    RESEARCH ARTICLE T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1- SUMO1/Ubc9 nuclear pore subcomplex via PKC--mediated phosphorylation of RanGAP1 Yujiao He1, Zhiguo Yang1†, Chen-si Zhao1†, Zhihui Xiao1†, Yu Gong1, Yun-Yi Li1, Yiqi Chen1, Yunting Du1, Dianying Feng1, Amnon Altman2, Yingqiu Li1* 1MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; 2Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, United States Abstract The nuclear pore complex (NPC) is the sole and selective gateway for nuclear transport, and its dysfunction has been associated with many diseases. The metazoan NPC subcomplex RanBP2, which consists of RanBP2 (Nup358), RanGAP1-SUMO1, and Ubc9, regulates the assembly and function of the NPC. The roles of immune signaling in regulation of NPC remain poorly understood. Here, we show that in human and murine T cells, following T-cell receptor (TCR) stimulation, protein kinase C-q (PKC-q) directly phosphorylates RanGAP1 to facilitate RanBP2 subcomplex assembly and nuclear import and, thus, the nuclear translocation of AP-1 transcription *For correspondence: factor. Mechanistically, TCR stimulation induces the translocation of activated PKC-q to the NPC, 504 506 [email protected] where it interacts with and phosphorylates RanGAP1 on Ser and Ser . RanGAP1 phosphorylation increases its binding affinity for Ubc9, thereby promoting sumoylation of RanGAP1 †These authors contributed and, finally, assembly of the RanBP2 subcomplex. Our findings reveal an unexpected role of PKC-q equally to this work as a direct regulator of nuclear import and uncover a phosphorylation-dependent sumoylation of Competing interests: The RanGAP1, delineating a novel link between TCR signaling and assembly of the RanBP2 NPC authors declare that no subcomplex.
    [Show full text]
  • The Role of Sumoylation of DNA Topoisomerase Iiα C-Terminal Domain in the Regulation of Mitotic Kinases In
    SUMOylation at the centromere: The role of SUMOylation of DNA topoisomerase IIα C-terminal domain in the regulation of mitotic kinases in cell cycle progression. By Makoto Michael Yoshida Submitted to the graduate degree program in the Department of Molecular Biosciences and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________________ Chairperson: Yoshiaki Azuma, Ph.D. ________________________________________ Roberto De Guzman, Ph.D. ________________________________________ Kristi Neufeld, Ph.D. _________________________________________ Berl Oakley, Ph.D. _________________________________________ Blake Peterson, Ph.D. Date Defended: July 12, 2016 The Dissertation Committee for Makoto Michael Yoshida certifies that this is the approved version of the following dissertation: SUMOylation at the centromere: The role of SUMOylation of DNA topoisomerase IIα C-terminal domain in the regulation of mitotic kinases in cell cycle progression. ________________________________________ Chairperson: Yoshiaki Azuma, Ph.D. Date approved: July 12, 2016 ii ABSTRACT In many model systems, SUMOylation is required for proper mitosis; in particular, chromosome segregation during anaphase. It was previously shown that interruption of SUMOylation through the addition of the dominant negative E2 SUMO conjugating enzyme Ubc9 in mitosis causes abnormal chromosome segregation in Xenopus laevis egg extract (XEE) cell-free assays, and DNA topoisomerase IIα (TOP2A) was identified as a substrate for SUMOylation at the mitotic centromeres. TOP2A is SUMOylated at K660 and multiple sites in the C-terminal domain (CTD). We sought to understand the role of TOP2A SUMOylation at the mitotic centromeres by identifying specific binding proteins for SUMOylated TOP2A CTD. Through affinity isolation, we have identified Haspin, a histone H3 threonine 3 (H3T3) kinase, as a SUMOylated TOP2A CTD binding protein.
    [Show full text]
  • Quantitative SUMO Proteomics Reveals the Modulation of Several
    www.nature.com/scientificreports OPEN Quantitative SUMO proteomics reveals the modulation of several PML nuclear body associated Received: 10 October 2017 Accepted: 28 March 2018 proteins and an anti-senescence Published: xx xx xxxx function of UBC9 Francis P. McManus1, Véronique Bourdeau2, Mariana Acevedo2, Stéphane Lopes-Paciencia2, Lian Mignacca2, Frédéric Lamoliatte1,3, John W. Rojas Pino2, Gerardo Ferbeyre2 & Pierre Thibault1,3 Several regulators of SUMOylation have been previously linked to senescence but most targets of this modifcation in senescent cells remain unidentifed. Using a two-step purifcation of a modifed SUMO3, we profled the SUMO proteome of senescent cells in a site-specifc manner. We identifed 25 SUMO sites on 23 proteins that were signifcantly regulated during senescence. Of note, most of these proteins were PML nuclear body (PML-NB) associated, which correlates with the increased number and size of PML-NBs observed in senescent cells. Interestingly, the sole SUMO E2 enzyme, UBC9, was more SUMOylated during senescence on its Lys-49. Functional studies of a UBC9 mutant at Lys-49 showed a decreased association to PML-NBs and the loss of UBC9’s ability to delay senescence. We thus propose both pro- and anti-senescence functions of protein SUMOylation. Many cellular mechanisms of defense have evolved to reduce the onset of tumors and potential cancer develop- ment. One such mechanism is cellular senescence where cells undergo cell cycle arrest in response to various stressors1,2. Multiple triggers for the onset of senescence have been documented. While replicative senescence is primarily caused in response to telomere shortening3,4, senescence can also be triggered early by a number of exogenous factors including DNA damage, elevated levels of reactive oxygen species (ROS), high cytokine signa- ling, and constitutively-active oncogenes (such as H-RAS-G12V)5,6.
    [Show full text]
  • Proteomic Analysis of SUMO1-Sumoylome Changes During Defense 4 Elicitation in Arabidopsis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233544; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running Title: SUMO1-substrate identification in plant immunity 2 3 Proteomic analysis of SUMO1-SUMOylome changes during defense 4 elicitation in Arabidopsis 5 6 Kishor D. Ingole1,2 Shraddha K. Dahale1 and Saikat Bhattacharjee1* 7 8 1Laboratory of Signal Transduction and Plant Resistance, UNESCO-Regional Centre for Biotechnology 9 (RCB), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121 10 001, Haryana, India. 11 12 2Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar- 751 024, Odisha, India. 13 14 Author for Correspondence: 15 Saikat Bhattacharjee 16 Tel: (+91) 0129-2848837 17 email: [email protected] 18 19 ORCID 20 Saikat Bhattacharjee: https://orcid.org/0000-0003-1369-7700 21 Kishor D. Ingole: https://orcid.org/0000-0003-1946-6639 22 Shraddha K. Dahale: https://orcid.org/0000-0001-8458-3984 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.02.233544; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • TP53 9606.ENSP00000269305 Tumor Protein P53; Acts As a Tumor
    TP53 9606.ENSP00000269305 tumor protein p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. Implicated in Notch signaling cross-over TAF1 9606.ENSP00000276072 TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa; Largest component and core scaffold of the TFIID basal transcription factor complex. Contains novel N- and C-terminal Ser/Thr kinase domains which can autophosphorylate or transphosphorylate other transcription factors. Phosphorylates TP53 on 'Thr-55' which leads to MDM2-mediated degradation of TP53. Phosphorylates GTF2A1 and GTF2F1 on Ser residues. Possesses DNA- binding activity. Essential for progression of the G1 phase of the cell cycle SUMO2 9606.ENSP00000405965 SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae); Ubiquitin-like protein which can be covalently attached to target lysines either as a monomer or as a lysine-linked polymer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process. Plays a role in a number of cellular processes such as nuclear transport, DNA
    [Show full text]
  • SUMO and Transcriptional Regulation: the Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies
    molecules Review SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies Mathias Boulanger 1,2 , Mehuli Chakraborty 1,2, Denis Tempé 1,2, Marc Piechaczyk 1,2,* and Guillaume Bossis 1,2,* 1 Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; [email protected] (M.B.); [email protected] (M.C.); [email protected] (D.T.) 2 Equipe Labellisée Ligue Contre le Cancer, Paris, France * Correspondence: [email protected] (M.P.); [email protected] (G.B.) Abstract: One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent Citation: Boulanger, M.; transcriptional mechanisms that have been characterized thus far and how they impact our view of Chakraborty, M.; Tempé, D.; SUMO-dependent chromatin organization are also considered.
    [Show full text]
  • Elements in GC-Rich Region of TATA-Less Gene Promoter
    Transcriptional Protein Sp1 Regulates LEDGF Transcription by Directly Interacting with Its Cis- Elements in GC-Rich Region of TATA-Less Gene Promoter Dhirendra P. Singh1*, Biju Bhargavan1, Bhavana Chhunchha1, Eri Kubo2, Anil Kumar3, Nigar Fatma1 1 Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America, 2 Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan, 3 Department of Pharmacology, University of Missouri-Kansas City, Kansas City, Missouri, United States of America Abstract LEDGF/p75 interacts with DNA/protein to regulate gene expression and function. Despite the recognized diversity of function of LEDGF/p75, knowledge of its transregulation is in its infancy. Here we report that LEDGF/p75 gene is TATA-less, contains GC-rich cis elements and is transcriptionally regulated by Sp1 involving small ubiquitin-like modifier (Sumo1). Using different cell lines, we showed that Sp1 overexpression increased the level of LEDGF/p75 protein and mRNA expression in a concentration-dependent fashion. In contrast, RNA interference depletion of intrinsic Sp1 or treatment with artemisinin, a Sp1 inhibitor, reduced expression of LEDGF/p75, suggesting Sp1-mediated regulation of LEDGF/p75. In silico analysis disclosed three evolutionarily conserved, putative Sp1 sites within LEDGF/p75 proximal promoter (2170/+1 nt). DNA- binding and transactivation assays using deletion and point mutation constructs of LEDGF/p75 promoter-CAT revealed that all Sp1 sites (250/243, 2109/2102 and 2146/2139) differentially regulate LEDGF/p75. Cotransfection studies with Sp1 in Drosophila cells that were Sp1-deficient, showed increased LEDGF/p75 transcription, while in lens epithelial cells (LECs) promoter activity was inhibited by artemisinin.
    [Show full text]
  • How Does SUMO Participate in Spindle Organization?
    cells Review How Does SUMO Participate in Spindle Organization? Ariane Abrieu * and Dimitris Liakopoulos * CRBM, CNRS UMR5237, Université de Montpellier, 1919 route de Mende, 34090 Montpellier, France * Correspondence: [email protected] (A.A.); [email protected] (D.L.) Received: 5 July 2019; Accepted: 30 July 2019; Published: 31 July 2019 Abstract: The ubiquitin-like protein SUMO is a regulator involved in most cellular mechanisms. Recent studies have discovered new modes of function for this protein. Of particular interest is the ability of SUMO to organize proteins in larger assemblies, as well as the role of SUMO-dependent ubiquitylation in their disassembly. These mechanisms have been largely described in the context of DNA repair, transcriptional regulation, or signaling, while much less is known on how SUMO facilitates organization of microtubule-dependent processes during mitosis. Remarkably however, SUMO has been known for a long time to modify kinetochore proteins, while more recently, extensive proteomic screens have identified a large number of microtubule- and spindle-associated proteins that are SUMOylated. The aim of this review is to focus on the possible role of SUMOylation in organization of the spindle and kinetochore complexes. We summarize mitotic and microtubule/spindle-associated proteins that have been identified as SUMO conjugates and present examples regarding their regulation by SUMO. Moreover, we discuss the possible contribution of SUMOylation in organization of larger protein assemblies on the spindle, as well as the role of SUMO-targeted ubiquitylation in control of kinetochore assembly and function. Finally, we propose future directions regarding the study of SUMOylation in regulation of spindle organization and examine the potential of SUMO and SUMO-mediated degradation as target for antimitotic-based therapies.
    [Show full text]
  • Mapping of SUMO Sites and Analysis of Sumoylation Changes Induced by External Stimuli
    Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli Francis Impensa,b,c, Lilliana Radoshevicha,b,c, Pascale Cossarta,b,c,1, and David Ribeta,b,c,1 aUnité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France; bInstitut National de la Santé et de la Recherche Médicale, Unité 604, F-75015 Paris, France; and cInstitut National de la Recherche Agronomique, Unité sous-contrat 2020, F-75015 Paris, France Contributed by Pascale Cossart, July 22, 2014 (sent for review May 28, 2014) SUMOylation is an essential ubiquitin-like modification involved in Mapping the exact lysine residue to which SUMO is attached in important biological processes in eukaryotic cells. Identification of modified proteins is a critical step to get further insight into the small ubiquitin-related modifier (SUMO)-conjugatedresiduesinpro- function of SUMOylation. Indeed, the identification of SUMO teins is critical for understanding the role of SUMOylation but remains sites allows the generation of non-SUMOylatable mutants and the experimentally challenging. We have set up a powerful and high- study of associated phenotypes. Identification of SUMO sites by throughput method combining quantitative proteomics and peptide MS is not straightforward (8). Unlike ubiquitin, which leaves immunocapture to map SUMOylation sites and have analyzed changes a small diglycine (GG) signature tag on the modified lysine resi- in SUMOylation in response to stimuli. With this technique we iden- due after trypsin digestion, SUMO leaves
    [Show full text]
  • Genomic and Proteomic Analysis Reveals a Threshold Level of MYC Required for Tumor Maintenance
    Research Article Genomic and Proteomic Analysis Reveals a Threshold Level of MYC Required for Tumor Maintenance Catherine M. Shachaf,1,2,3 Andrew J. Gentles,4 Sailaja Elchuri,1 Debashis Sahoo,5 Yoav Soen,6 Orr Sharpe,7 Omar D. Perez,2,3 Maria Chang,1 Dennis Mitchel,2,3 William H. Robinson,7 David Dill,5 Garry P. Nolan,2,3 Sylvia K. Plevritis,4 and Dean W. Felsher1 1Division of Medical Oncology, Departments of Medicine and Pathology, 2Department of Microbiology and Immunology, 3The Baxter Laboratory for Genetic Pharmacology, 4Department of Radiology, 5Department of Computer Science, 6Department of Biochemistry, Howard Hughes Medical Institute, and 7Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California Abstract regression in different model systems (7–13). The consequences of MYC overexpression has been implicated in the pathogenesis MYC inactivation in different tumors have shared certain common of most types of human cancers. MYC is likely to contribute to features most notably that on MYC inactivation tumors variously tumorigenesisbyitseffectsonglobalgeneexpression. undergo proliferative arrest, differentiation, and apoptosis. Previously, we have shown that the loss of MYC overexpression MYC has been generally presumed to induce tumorigenesis is sufficient to reverse tumorigenesis. Here, we show that there through its effects as a transcription factor. We hypothesized that is a precise threshold level of MYC expression required for there may be a threshold level of MYC expression required to maintaining the tumor phenotype, whereupon there is a switch maintain a tumor phenotype. At this threshold, there would be from a gene expression program of proliferation to a state of specific changes in gene and protein expression that would define the ability of MYC to function as an oncogene.
    [Show full text]