• : ' Computing Challenges in .: • Coded Mask Imaging .:

Total Page:16

File Type:pdf, Size:1020Kb

• : ' Computing Challenges in .: • Coded Mask Imaging .: .... ... ... ... .. ........ .. ....... ... The EXIST HET Imaging Technical Working Group .. .... .. .. Gerry Skinner (working group leader) NASA- GSFC / CRESST/ Univ Md Scott Barthelmy NASA-GSFC • : ' Computing challenges in Steve Sturner NASA-GSFC / CRESST/ Univ Md .: • Coded Mask Imaging .: Mark Finger NASA-MSFC / NSSTC Huntsville Garrett Jernigan Univ California, Berkeley .... Gerry Skinner ' . ' • ' JaeSub Hong Harvard-Smithsonian CfA Brandon Allen Harvard-Smithsonian CfA . .. ... .. .. Josh Grindlay (Exist PI) Harvard-Smithsonian CfA G.K.Skinner High Performace Computing i n Observational Astronomy, IUCAA, Pune, Oct 2009 •1 What is a coded mask The Coded Mask Technique telescope? is the worst possible way of making a telescope open/opaque Ô i l Õ Except when you can Õt do anything better ! Each detector pixel records the sum of the ¥ Wide fields of view signals from a different combination of incident ¥ Energies too high for focussing, or too low directions or Ôsky pixels’ for Compton/Tracking detector techniques (plus background) Very good angular resolution ¥ Spatially resolving detector, physically or logically divided into Ô pixelsÕ 1) The simplist Õs approach to weighing 3 objects 2) Weighing of 3 objects by a member of the Club of the Difficult Approach A B A B A C ac wa t wb t wab t w t t 0.85 8 C B C A= ( wab+wac- w bc )/2 t 0.85 8 B= ( wab-wac+w bc )/2 t 0.85 C= (-wab+wac-w bc)/2 wc t wbc t Mask In general:- Patterns N objects (unknowns) - Hexagonal or rectangular N measures of selected combinations - Cylclic or non-cyclic Uncertainty reduced by factor ~ N 1/2/2 - Random, URA, MURA, É Only works because we have supposed that the uncertainty Construction is independent of the quantity being measured - the equivalent of a Low energies (e.g. 10-20 keV) background limited observation - etched metal foil (often gold-plated to increase absorbtion) - usually self supporting (grid or bars connect isolated elements) - Additional ‘ Spider’ or supporting bars part of the mask pattern High energies (e.g. 1 MeV) Blocks of Tungsten a few cm thick - can have a ‘ substrate’ (e.g. Carbon fibre honeycomb) Position sensitive detectors for coded mask telescopes Detector Technology Approx Examples Notes Energy Range (keV) CCD 0.5-10 HETE-2 SXC 1-d 33 arc sec resolution ! 6as-filled Proportional 2-50 Spacelab-2 Space Shuttle Counter TTM, Mir-Kvant Space Station SAX-WFC RXTE ASM 1-d HETE-2 WXM 1-d Integral : JEM-X Arrays of semiconductor 5-100 Legri (CZT) MiniSat-01 detectors Integral : ISRI (CdTe) Anger Camera 50-1000 Sigma On 6ranat Exite-2 Balloon Array of Scintillator 100-10000 New Hampshire D6T Balloon detectors Integral : PIXIT Energy: 20-8000 keV SPI 770 mm dia Aray of 6ermanium 20-10000 SA6E Balloon 3 cm thick Tungsten detectors Integral : SPI 60 mm pitch Resolution ~ 2.5¡ Point Source The Point Source Response Function Response 3 Function Blurring can always be removed by image processing But 1) Deblurring is always done at the expense of noise tR ',If 2) For a coded mask telescope, every point in the image is affected by the noise from the whole A coded mask telescope has the worst PSF imaginable detector plane The response to a point source isn’t just ‘a bit blurred’, it fills the whole detector plane ! r ’Optimum coded ’ designs How to recover an image or ’URAs’ Basic method : Ô Correlation with the Mask PatternÕ (Uniformly Redundant Arrays) ^'- Certain patterns have the properties: ^i i) Their DISCRETE, CYCLIC Recorded pattern is Convolution of source distribution 1I I autocorrelation function is indeed a Delta function, and the mask pattern, plus some background B r PLUS A FLAT LEVEL. D = S M + B 1) ii) For uniform background, M B is not zero, but it is Suppose we form an image as t at least FLAT. I = M D = M S M + MB = M M S + MB If you can: Arrange that coding is cyclic = ACF(M) S + M B Use Binned (discrete) arrays where ACF indicated the Autocorrellation function. Be prepared to subtract a DC level If ACF(M) were a Delta function and if M B were zero Then this is just what is needed ’Optimum coded ’ designs or ’URAs’ Some aspects of real systems ¥ Non cyclic ¥ Mask Closed element absorbtion Mask ¥ Mask Open element transparency ¥ Mask Element Thickness ¥ Obstructions in Mask Plane ¥ Detector finite position resolution ¥ Detector efficiency non-uniformities Detector ¥ Detector response dependent on off-axis angle ¥ Detector background non-uniform ¥ Gaps in the detector plane ¥ Dead/inactive pixels in the detector plane Other ¥ Shielding (collimation) imperfect ¥ Obstructions between detector and mask ¥ Leaks onto detector from far outside the fov Correlation with the Mask Pattern used with Real (Imperfect) Coded Mask Telescopes Correlation methods are often used even for real, imperfect, non-optimum, systems based. ' It is can be fast, taking advantage of Fast Fourier Transforms ' It always gives some sort of an image, even for non-ideal systems ' For a single point source it yields the best possible sensitivity (smallest uncertainty on the intensity estimate) Detected count rate versus source / detector-pixel transmission factor ce . Strong Sour ^^ Weak Source c UO N O 0 0.5 P 1 i1 Peak height in Correlation map Slope of line Source strength Intercept Background per pixel Data points with P ij ~ 0.5 (Õ grey` mask elements) are of little value in defining the slope Patching-up the Correlation approach The realities lead to PSF ' Ghosts/Sidelobes Handle non-cyclic systems by extending arrays Substitute estimates based on means for missing data (simple approach to reconstruction) Correct for background variations i Correct for sensitivity variations etc, etc ' Additional noise Y (more sophisticated reconstruction) ' Interpixel correlations J Iterative removal of sources (IROS) Assume all sources are pointlike Fortunately coded mask telescopes are not very sensitive ! Identify the brightest one using a correlation map Fit the source position and subtract the data predicted for that source taking into account all the effects in the REAL system ' 100 detection, 5% ghosts - important Form a correlation map from the residuals ' 5 detection , 10% ghosts - who cares? Coded Mask Telescopes - Matrix Approach Matrix approach - the case of M=N One wants to obtain the intensity of the sky in each of M ‘pixels’ ; number of unknowns = number of measurements S , S , S , S , ... S e 1 2 3 M-1, S , One measures N linear combinations of the j 1 Starting from Di= h S (i=0,N-1) G o j [D ] = [H ][S ] Objective - given the D, deduce the S If M= N, in principle, it Õs easy. Using matrices we can write one can obtain the intensities S of the sky pixels utilising the inverse matrix 1 [ S ] = [H ] [D] D h h ... h S 0 00 0 0 0 h D, = 0 S, ¥ For an imaginary (ideal, URA/optimum) cyclic system, this is (almost) D h h S , N , N -,,0 N-, _ exactly equivalent to the correlation method [D ] = [H ][S ] • For a real system, in principle it allows you to get rid of ALL ghosts/sidelobes. Matrix approach - 1st problem: M>N Matrix approach 2 nd problem: Noise Amplification i.e. fewer measurements than Sky pixels Starting from This is the usual situation if you make a simple staring observation [D ] = [H] [S] (More sky pixels than independent detector positions + unknowns associated with detector background) one can obtain the intensities S of the sky pixels utilising = theinversem S [HT• [ An under-determined problem D] Solution - fit different masks and make an observation through each BUT, in fact 05 }btpins . "+UF. p with uncertainties added y or (more practicable) make more observations with offset pointing directions where [n] is JSJ16 Ô1ji"I CQo"1ntRje has a OVER determined problem a Use Moore-Penrose Generalised Inverse and if there are large values in H-1 the noise can become enormous Minimising Noise Amplification Other approaches to image reconstruction ¥ In good signal-to-noise data a (generalised) inverse matrix approach ¥ Maximum Entropy allows for all instrumental effects and removes ghosts Allows all instrumental effects to be taken - but it adds noise into account and finds image which is consistent ¥ In low signal-to-noise cases, a matrix method equivalent to the correlation with the data which has no information which is approach minimises the effects of noise not Ô required Õ by the data but it adds noise Iterative - each iteration uses a correlation to find ¥ Minimum Error Matrix Methods how image should be modified provide the optimum compromise between the two ¥ Back Projection If all exposure and coding efficiency effects are taken int account Equivalent to correlation methods Fast for few The scale of the problem Extracting Spectra SPI-like IBIS-like Measurements So far haven Õt considered spectra Detector pixels per pointing 19 1 100 104 1 104 Pointings 25 200 1 25 6 Can divide events into Ô pulse height Õ bins and do Total N 475 105 105 2.5 10 Unknowns all of the above for each bin Sky pixels 400 500 2 104 2 104 Backrounds 19 500 10 10 Total M 419 1000 2 104 2 104 Or identify sources, then solve best fit intensity in Number of operations ME Matrix Approach each pulse height bin 4 16 21 To invert matrix (brute force) N 6.1010 2 10 17 10 4 10 To invert matrix (iterative) M N 2 108 4 10 11 2 1012 10 15 9 In either case, end up with a spectrum in a new To multiply by the matrix M.N 105 5 108 2 108 5 10 observation space.
Recommended publications
  • European Organisation for Astronomical Research in the Southern Hemisphere ESO
    European Organisation for Astronomical Research in the Southern Hemisphere ESO Description The ESO (European Organisation for Astronomical Research in the Southern Hemisphere) is a globally recognised intergovernmental body that builds and operates Earth-based astronomy research facilities and involves the majo- rity of the European States. Currently, the ESO has 14 Member States: Austria, Belgium, the Czech Republic, Den- mark, Finland, France, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United King- dom. It was established in 1962 and its headquarters are in Garching, Germany. The German offices are responsible for managing and carrying out most of the administrative, scientific and tech- nological tasks of the Organisation. Garching has laboratories which are used to develop technologies applied to the 94 sophisticated scientific observation instruments used in the telescopes, as well as integration rooms for them. It is also home to the ESO scientific archive which contains all astronomical observation data obtained at the observa- tories, which can be accessed on the Internet. e (ESO) ESO observation programme: instrumental equipment n Hemispher her The ESO selected Chile to build the first observatory, primarily due to the exceptional atmospheric conditions for astronomy and the possibility of accessing the sky in the Southern Hemisphere. The telescopes are set up in three he Sout locations: La Silla, Cerro Paranal and El Llano de Chajnantor. Although the ESO identifies its operational facilities in h in t Chile as a single observatory for functional purposes, they should be considered separately for description purpo- esearc ses. onomical R tr La Silla or As La Silla, located 600 km north of Santiago de Chile at an altitude of 2,400 m, was the site chosen by the ESO to set up its first facilities.
    [Show full text]
  • Legri Operations. Detectors and Detector Stability
    LEGRI OPERATIONS. DETECTORS AND DETECTOR STABILITY V. REGLERO1, F. BALLESTEROS3,P.BLAY1, E. PORRAS2, F. SÁNCHEZ2 and J. SUSO1 1 GACE, Instituto de Ciencias de los Materiales, Universidad de Valencia, P.O. Box 2085, 46071 Valencia, Spain 2 Instituto de Fisica Corpuscular, Spanish Council of Scientific Research - University of Valencia, Edificio de Institutos de Paterna, P.0. Box 2085, E-4 6071 Valencia, Spain 3 Centro de Astrobiología (CAB), Instituto Nacional de Técnica aeorespacial (INTA), Ctra. de Ajalvir Km. 14, Torrejón de Ardoz, Madrid, Spain Abstract. Two years after launch (04.21.97), LEGRI is operating on Minisat-01 in a LEO orbit. The LEGRI detector plane is formed by two type of gamma-ray solid state detectors: HgI2 and CdZnTe. Detectors are embedded in a box containing the FEE and DFE electronics. This box provides an effective detector passive shielding. Detector plane is multiplexed by a Coded Aperture System ◦ ◦ located at 54 cm and a Ta Collimator with a FCFOV of 22 and 2 angular resolution. The aim of this paper is to summarize the detector behaviour in three different time scales: before launch, during the in-orbit check-out period (IOC), and after two years of routine operation in space. Main results can be summarized as follows: A large fraction of the HgI2 detectors presented during LEGRI IOC very high count ratios from their first switch-on (May 1997). Therefore, they induced saturation in the on-board mass memory. After some unsuccessful attempts to reduce the count ratios by setting up different thresholds during LEGRI IOC, all of them were switched off except nine detectors in column 4, with a higher degree of stability.
    [Show full text]
  • Astronomy and Astrophysics in Comunidad De Madrid: Research and Technology
    Astronomy and Astrophysics in Comunidad de Madrid: Research and Technology Prepared by the AstroMadrid Steering Committee v 1.0 October 2013 AstroMadrid: Astrophysics and technology development in Comunidad de Madrid is funded by Consejería de Juventud, Educación y Deportes at Comunidad de Madrid, with reference S2009/ESP-1496 INDEX - Introduction - Research groups Universidad Complutense de Madrid. Department of Earth Physics, Astronomy and Astrophysics II. Extragalactic Astrophysics. Universidad Complutense de Madrid. Department of Earth Physics, Astronomy and Astrophysics II. Stellar Astrophysics. Universidad Complutense de Madrid. Department of Earth Physics, Astronomy and Astrophysics II. Instrumentation. Universidad Complutense de Madrid. Department of Atomic, Molecular and Nuclear Physics. Astroparticle Physics. Universidad Complutense de Madrid. Department of Earth Physics, Astronomy and Astrophysics I. Astronomy and Geodesy. AEGORA (Astronomía Espacial y Gestión Óptima de Recursos Astronómicos). Universidad Autónoma de Madrid. Department of Theoretical Physics. Astrophysics Group Universidad de Alcalá. Space Plasmas & Astroparticle Group. Universidad de Alcalá. Space Research Group (SRG-UAH). Universidad Politécnica de Madrid. Faculty of Computing Sciences. Collaborative Learning Group Ciclope. Centro de Astrobiología (CSIC-INTA). Department of Astrophysics. Centro de Astrobiología (CSIC-INTA). Department of Astrophysics. Virtual Observatory. Centro de Astrobiología (CSIC-INTA). Department of Instrumentation. Instituto Nacional
    [Show full text]
  • Unified View of Stellar Winds in Massive X-Ray Binaries
    Unified View of Stellar Winds in Massive X-ray Binaries Team Leader: S. Mart´ınez Nu´ nez,˜ University of Alicante, Spain. Abstract We propose to bring together specialists for winds from massive stars and observers of High-Mass X-ray Binary (HMXB) systems for two meetings at ISSI in order to review the state-of-the-art in observations and modeling and to develop a unified view on the physics of the stellar winds in these systems. The aim of the meetings is to define a general strategy on what can be learned from each other and also to explicitly advance towards a unified picture of massive star outflows in single stars and X-ray binaries. 1 Scientific rationale, goals and timeliness of the project The birth, life, and death of massive stars (Minitial > 10 M ) are deeply interwoven with the evolution ⊙ of star clusters and galaxies. Massive stars generate most of the ultraviolet radiation of galaxies – the whole Universe was re-ionized with the help of the first (super)massive stars – and power their infrared luminosities. Massive star winds and final explosions as supernovae provide a significant input of me- chanical and radiative energy into the interstellar medium, and play a crucial role in the evolution of star clusters and galaxies (Kudritzki 2002). Thus, massive stars are among the most important cosmic en- gines: they trigger the star formation and, together with low-mass stars, enrich the interstellar medium with the heavy elements but on short time scales, ultimately leading to formation of Earth-like plan- ets and development of life.
    [Show full text]
  • The EM Imaging Reconstruction Method in C-Ray Astronomy
    Nuclear Instruments and Methods in Physics Research B 145 (1998) 469±481 The EM imaging reconstruction method in c-ray astronomy Fernando Jesus Ballesteros Rosello a,*, Filomeno Sanchez Martõnez a, Võctor Reglero Velasco b a Instituto de Fõsica Corpuscular, University of Valencia ± CSIC, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain b Department of Astronomy and Astrophysics, University of Valencia, Dr. Moliner 50, E-46100 Burjassot, Valencia, Spain Received 11 May 1998; received in revised form 14 July 1998 Abstract The simpler imaging reconstruction methods used for c-ray coded mask telescopes are based on correlation methods, very fast and simple-to-use but with limitations in the reconstructed image. To improve these results, other recon- struction methods have been developed, such as the maximum entropy methods or the Iterative Removal Of Sources (IROS). However, such kind of methods are slower and can be impracticable for very complex telescopes. In this paper we present an alternative image reconstruction method, based on an iterative maximum likelihood algorithm called the EM algorithm, easy to implement and that can be successfully used for not very complex coded mask systems, as is the case of the LEGRI telescope. This is the ®rst time this algorithm has been applied in c-ray astronomy. Ó 1998 Elsevier Science B.V. All rights reserved. 1. Introduction incidence angles with regard to the arriving pho- tons, bigger than the critical angle of the re¯ecting When trying to obtain an image of a celestial surface material, de¯ecting the radiation towards a source emitting X or c radiation, classical tele- focus where the detecting surface is.
    [Show full text]
  • The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station
    Space Sci Rev (2019) 215:23 https://doi.org/10.1007/s11214-018-0573-7 The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station Nikolai Østgaard1 · Jan E. Balling2 · Thomas Bjørnsen1 · Peter Brauer2 · Carl Budtz-Jørgensen2 · Waldemar Bujwan3 · Brant Carlson1 · Freddy Christiansen2 · Paul Connell4 · Chris Eyles4 · Dominik Fehlker1 · Georgi Genov1 · Pawel Grudzinski´ 3 · Pavlo Kochkin1 · Anja Kohfeldt1 · Irfan Kuvvetli2 · Per Lundahl Thomsen2 · Søren Møller Pedersen2 · Javier Navarro-Gonzalez4 · Torsten Neubert2 · Kåre Njøten1 · Piotr Orleanski3 · Bilal Hasan Qureshi1 · Linga Reddy Cenkeramaddi1 · Victor Reglero4 · Manuel Reina5 · Juan Manuel Rodrigo4 · Maja Rostad1 · Maria D. Sabau5 · Steen Savstrup Kristensen2 · Yngve Skogseide1 · Arne Solberg1 · Johan Stadsnes1 · Kjetil Ullaland1 · Shiming Yang1 Received: 31 August 2018 / Accepted: 18 December 2018 © The Author(s) 2019 Abstract The Modular X- and Gamma-ray Sensor (MXGS) is an imaging and spectral X- and Gamma-ray instrument mounted on the starboard side of the Columbus module on the International Space Station. Together with the Modular Multi-Spectral Imaging Assembly (MMIA) (Chanrion et al. this issue) MXGS constitutes the instruments of the Atmosphere-Space Interactions Monitor (ASIM) (Neubert et al. this issue). The main ob- jectives of MXGS are to image and measure the spectrum of X- and γ -rays from lightning discharges, known as Terrestrial Gamma-ray Flashes (TGFs), and for MMIA to image and perform high speed photometry of Transient Luminous Events (TLEs) and lightning dis- charges. With these two instruments specifically designed to explore the relation between electrical discharges, TLEs and TGFs, ASIM is the first mission of its kind. With an imag- ing system and a large detector area MXGS will, for the first time, allow estimation of the location of the source region and characterization of the energy spectrum of individual events.
    [Show full text]
  • 100 Conceptos Básicos De Astronomía
    100 Conceptos básicos de Astronomía 100 Conceptos básicos de Astronomía Coordinado por: Julia Alfonso Garzón LAEX, CAB (INTA/CSIC) David Galadí Enríquez Centro Astronómico Hispano-Alemán (Observatorio de Calar Alto) Carmen Morales Durán LAEX, CAB (INTA/CSIC) Instituto Nacional de Técnica Aeroespacial «Esteban Terradas» 1 2 3 4 5 8 6 7 1. Galaxia M51 tomada por el instrumento OSIRIS en el GTC. Créditos: Daniel López (Instituto de Astrofísica de Canarias). 2. Eclipse de Luna en noviembre de 2003. Créditos: Fernando Comerón (Observatorio Europeo Austral). 3. Imagen infrarroja que muestra en falso color la huella dejada por un reciente impacto, posiblemente cometario, en la atmósfera de Júpiter. En azul se ven las regiones más altas: el propio impacto, la Gran Mancha Roja y las nieblas polares. Créditos: Santiago Pérez Hoyos (Universidad del País Vasco). 4. Antena DSS63 de la estación de Robledo de Chavela. Créditos: F. Rojo (MDSCC), Juan Ángel Vaquerizo (Centro de Astrobiología). 5. Nebulosa N44 en la Gran Nube de Magallanes. Créditos: Fernando Comerón (Observatorio Europeo Austral). 6. Nebulosa planetaria NGC 6309. Créditos: Martín A. Guerrero (Instituto de Astrofísica de Andalucía). 7. Trazas de estrellas y telescopio 3,5m del Observatorio de Calar Alto. Créditos: Felix Hormuth (Observatorio de Calar Alto). 8. Ilustración de las instalaciones del Centro Europeo de Astronomía Espacial (ESAC) en Villafranca del Castillo (Madrid). Créditos: Manuel Morales. 100 Conceptos básicos de Astronomía Emilio Alfaro Navarro Mariana Lanzara Julia Alfonso Garzón (coord.) Javier Licandro Goldaracena David Barrado Navascués Javier López Santiago Amelia Bayo Arán Mercedes Mollá Lorente Javier Bussons Gordo Benjamín Montesinos Comino José Antonio Caballero Hernández Carmen Morales Durán (coord.) José R.
    [Show full text]
  • Long-Term X-Ray Variability of Active Galactic Nuclei and X-Ray Binaries
    Long-term X-ray variability of Active Galactic Nuclei and X-ray Binaries Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Mathematik und Physik der Eberhard-Karls-Universität Tübingen vorgelegt von Sara Benlloch García aus Madrid 2004 Selbstverlegt von: S. Benlloch García Tag der mündlichen Prüfung: 28. Oktober 2003 Dekan: Prof. Dr. H. Müther 1. Berichterstatter: Prof. Dr. K. Werner 2. Berichterstatter: PD. Dr. J. Wilms Erweiterte deutsche Zusammenfassung Sara Benlloch García Langzeitvariabilität im Röntgenbereich von Aktiven Galaxienkernen und Röntgendoppelsternen In dieser Dissertation beschäftige ich mich mit der Langzeitvariabilität von zwei Klassen von Röntgenobjekten: Aktiven Galaxiekernen (engl. Active Galac- tic Nuclei, AGN) und Röntgendoppelsternen (engl. X-ray Binaries, XRBs). Variabilität im Röntgenbereich ist ein allgemeines Phänomen in vielen astrono- mischen Quellen. Variabilität ist eine lange bekannte Eigenschaft von AGN, die in allen Wellenlängen und auf Zeitskalen (von Dekaden zu Tagen/Stunden) auf- tritt. Die Veränderungen scheinen aperiodisch zu sein und variable Amplituden zu haben. Es gib einige Berichte über das periodische Verhalten auf Zeitskalen von einigen Kilosekunden in Form sogenannter quasiperiodischer Oszillationen (QPO). Die Bestätigung einiger dieser Modulationen ist jedoch noch unklar (z.B. Priedhorsky & Holt, 1987; Schwarzenberg-Czerny, 1992; Wijers & Pringle, 1999; Ogilvie & Dubus, 2001). In einer kleinen aber wachsenden Zahl von hellen XRBs ist eine dritte (oder “superorbitale”) Periode zusätzlich zu den üblichen Periodizi- täten zu beobachten. Solche langfristigen Veränderungen helfen, Fragen über die Struktur der Akretionsscheiben von Röntgendoppelsternen, das Vorhandenseinei- nes dritten Objektes in solchen Systemen, die intrinsische Variationen aufgrund von Änderung der Massenakretionsrate oder der Opazität im nahe gelegenen be- deckenden Material und über die Natur der nicht immer beobachtbaren transien- ten Quellen zu beantworten (Smale & Lochner, 1992).
    [Show full text]
  • Assembly of Western European Union
    *$$(* Assembly of Western European Union DOCUMENT 1434 9th November 1994 FORTIETH ORDINARY SESSION (Second Part) Co-operation between European space resea.rch institutes REPORT submitted on behalf of the Technological and Aerospace Committee by Mr. Galley, Rapporteur ASSEMBLY OF WESTERN EUROPEAN UNION 4dl, avenue du Pr6sident-Wilson, 75715 Paris Cedex 16 - Tel. 47 .23.54.32 Document 1434 fth November 1994 Co-operatbn between European space research inscintes REPORT ' sabmiaed on behalf of the Tbchnological and Aerospace Commi.free 2 by Mn Galley, Rapporteur TABLEOFCONIENTS DmrrREsoltmoN on co-operation between European space research institutes E;<pr-axarony Mruonarouu submi$ed by Mr.Galley, Rapponeur I. Introduction tr. What is at stake in space research? Itr. National frameworlcs (a) Germany (, DARA (Deutsche Agentur fiir Raumfahrangelegenheiten) (rr) DLR (Deusche Forschunganstalt ftir Luft-Und Raumfahrt e.V.) (D) Spain (, N"fA (Instituto Nacional de T6cnica Aerospacial) (c) France (,) CNES (Cenhe National d'Etudes Spatiales) (r, ONERA (Office National d'Etudes et de Recherches Adrospatiales) @ ltzly (, ASI (Agenzia Spaziale ltaliana) (r, CIRA (CenEo Italiano di Ricerche Aerospaziali) (e) Netherlands ," en Ruimre- ffi.[ffi3:,1,H3:H]x]HJ::ff"*'ffiHff"$g (rr) SRON (Stichting Ruimtenonderzoek Nederland/Space Research Organisation Netherlands) (rD NLR (National Luchten Ruimtevaartlaboratorium/1.{ational Aeros- pace Laboratory (, United Kingdom (, BNSC @ritish National Space Cenne) IV. The European Space Agency (ESA) V. The state of European co-operation VL The future of European space research (forms of research and interaction) VlI. Conclusions Appmtox Glossary 1. Adopted slanimorgsly by the committee. 2. Members of the comnrittee: Ml lapez Herures (Chairman); MM. Lenzer, Bordems (Alternate for Mr.
    [Show full text]
  • Copyrighted Material
    Index A3E system 235--6 Amplitude modulation 231--40 ABL system 760--1 Different forms 235--40 Accelerometer 659 Frequency spectrum 232 ACeS (Asia cellular satellite) 512 Noise 233--4 Access track scanner, see optical mechanical Power 233 scanner Amplitude phase shift keying 268 Active altitude control 200 Analogue pulse communication systems Active remote sensing 526 259--61 Active sensors (Remote sensing satellites) Pulse amplitude modulation 259--60 540--2 Pulse position modulation 260--1 Non-scanning sensors 540 Pulse width modulation 260 Scanning sensors 540--2 Anatomy (Launch vehicles) 104--6 Active thermal control 187--8 Liquid fuelled engine 105 Adaptive delta modulator 265 Solid fuelled engine 105 Adjacent channel interference 361--2 Stages 104 Advanced microwave sounding unit Anik-A 17 (AMSU) 585 Anik-B 17 Aerial remote sensing 525 Anik-C 17 Aerostat system 781--3 Anik-D 17 Airship 783 Anik-E 17 Applications 783 Anik-F 17 Components of 782 Anik-G 17 Free balloon 782 Antenna gain-to-noise temperature (G/T) ratio Helikite 782 365 Moored balloon 782 Antenna noise temperature 346--50 PAGEOS 782 Ground noise 347 Tethered balloon 782 Sky noise 348--9 Types of 782 Antenna parameters 207--10 Vega-1/2 782 COPYRIGHTEDAperture MATERIAL 209--10 Akatsuki orbiter 688 Bandwidth 208 Almaz commercial programme Beam width 208 800 EIRP 208 ALOHA 501 Gain 207--8 Slotted ALOHA 501 Polarization 209 Satellite Technology: Principles and Applications, Third Edition. Anil K. Maini and Varsha Agrawal. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd. Companion Website: www.wiley.com/go/maini3 808 Index Antennas 205--20 Snow and ice studies 598--9 Parameters 207--10 Wind speed and direction 595--6 Types 210--20 Arabsat-5 18, 512 Antenna types 201--20 ARCJET thruster 181--2 Helical antenna 215--7 Argument of perigee 50, 81 Horn antenna 214--5 Arthur C.
    [Show full text]
  • (MXGS) of the ASIM Payload on the International Space Station
    Space Sci Rev (2019) 215:23 https://doi.org/10.1007/s11214-018-0573-7 The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station Nikolai Østgaard1 Jan E. Balling2 Thomas Bjørnsen1 Peter Brauer2 Carl Budtz-Jørgensen· 2 Waldemar· Bujwan3 Brant Carlson· 1 Freddy Christiansen· 2 Paul Connell4 Chris Eyles· 4 Dominik Fehlker· 1 Georgi Genov· 1 Pawel Grudzinski´ 3 · Pavlo Kochkin·1 Anja Kohfeldt· 1 Irfan Kuvvetli·2 Per Lundahl Thomsen· 2 · Søren Møller Pedersen· 2 Javier Navarro-Gonzalez· ·4 Torsten Neubert 2 · Kåre Njøten1 Piotr Orleanski· 3 Bilal Hasan Qureshi· 1 · Linga Reddy Cenkeramaddi· 1 Victor· Reglero4 Manuel· Reina5 Juan Manuel Rodrigo4 Maja· Rostad1 Maria D.· Sabau5 · Steen Savstrup Kristensen· 2 Yngve Skogseide· 1 Arne Solberg· 1 Johan Stadsnes1 Kjetil Ullaland1 Shiming Yang· 1 · · · · Received: 31 August 2018 / Accepted: 18 December 2018 ©TheAuthor(s)2019 Abstract The Modular X- and Gamma-ray Sensor (MXGS) is an imaging and spectral X- and Gamma-ray instrument mounted on the starboard side of the Columbus module on the International Space Station. Together with the Modular Multi-Spectral Imaging Assembly (MMIA) (Chanrion et al. this issue) MXGS constitutes the instruments of the Atmosphere-Space Interactions Monitor (ASIM) (Neubert et al. this issue). The main ob- jectives of MXGS are to image and measure the spectrum of X- and γ -rays from lightning discharges, known as Terrestrial Gamma-ray Flashes (TGFs), and for MMIA to image and perform high speed photometry of Transient Luminous Events (TLEs) and lightning dis- charges. With these two instruments specifically designed to explore the relation between electrical discharges, TLEs and TGFs, ASIM is the first mission of its kind.
    [Show full text]
  • Article Monoterpenes (MT) and Sesquiterpenes
    Atmos. Chem. Phys., 17, 12509–12531, 2017 https://doi.org/10.5194/acp-17-12509-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Modelling organic aerosol concentrations and properties during ChArMEx summer campaigns of 2012 and 2013 in the western Mediterranean region Mounir Chrit1, Karine Sartelet1, Jean Sciare2,7, Jorge Pey3,a, Nicolas Marchand3, Florian Couvidat4, Karine Sellegri5, and Matthias Beekmann6 1CEREA, Joint Laboratory École des Ponts ParisTech – EDF R&D, Université Paris-Est, 77455 Champs-sur-Marne, France 2LSCE, CNRS-CEA-UVSQ, IPSL, Université Paris-Saclay, Gif-sur-Yvette, France 3Aix-Marseille University, CNRS, LCE UMR 7376, Marseille, France 4INERIS, Verneuil-en-Halatte, France 5Laboratoire de Météorologie Physique (LaMP), UMR 6016 CNRS/UBP, of the Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Aubière, France 6LISA, UMR CNRS 7583, IPSL, Université Paris-Est Créteil and Université Paris Diderot, France 7EEWRC, The Cyprus Institute, Nicosia, Cyprus anow at: The Geological Survey of Spain, IGME, 50006 Zaragoza, Spain Correspondence to: Mounir Chrit ([email protected]) Received: 4 April 2017 – Discussion started: 29 May 2017 Revised: 25 August 2017 – Accepted: 15 September 2017 – Published: 23 October 2017 Abstract. In the framework of the Chemistry-Aerosol simulated water-soluble organic carbon (WSOC) concentra- Mediterranean Experiment, a measurement site was set up tions show that even at a remote site next to the sea, about at a remote site (Ersa) on Corsica Island in the northwest- 64 % of the organic carbon is soluble. The concentrations of ern Mediterranean Sea. Measurement campaigns performed WSOC vary with the origins of the air masses and the com- during the summers of 2012 and 2013 showed high or- position of organic aerosols.
    [Show full text]