Proteolytic Regulation of Parathyroid Hormone- Related Protein: Functional Implications for Skeletal Malignancy

Total Page:16

File Type:pdf, Size:1020Kb

Proteolytic Regulation of Parathyroid Hormone- Related Protein: Functional Implications for Skeletal Malignancy Review Proteolytic Regulation of Parathyroid Hormone- Related Protein: Functional Implications for Skeletal Malignancy Jeremy S. Frieling and Conor C. Lynch * Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; [email protected] * Correspondence: [email protected]; Tel.:1-813-745-8094 Received: 25 April 2019; Accepted: 4 June 2019; Published: 8 June 2019 Abstract: Parathyroid hormone-related protein (PTHrP), with isoforms ranging from 139 to 173 amino acids, has long been implicated in the development and regulation of multiple tissues, including that of the skeleton, via paracrine and autocrine signaling. PTHrP is also known as a potent mediator of cancer-induced bone disease, contributing to a vicious cycle between tumor cells and the bone microenvironment that drives the formation and progression of metastatic lesions. The abundance of roles ascribed to PTHrP have largely been attributed to the N-terminal 1–36 amino acid region, however, activities for mid-region and C-terminal products as well as additional shorter N-terminal species have also been described. Studies of the protein sequence have indicated that PTHrP is susceptible to post-translational proteolytic cleavage by multiple classes of proteases with emerging evidence pointing to novel functional roles for these PTHrP products in regulating cell behavior in homeostatic and pathological contexts. As a consequence, PTHrP products are also being explored as potential biomarkers of disease. Taken together, our enhanced understanding of the post-translational regulation of PTHrP bioactivity could assist in developing new therapeutic approaches that can effectively treat skeletal malignancies. Keywords: PTHrP; proteases; bone; cancer; parathyroid hormone-related protein; metalloproteases; bone metastasis; osteoporosis 1. Introduction Thirty years have passed since the discovery of parathyroid hormone-related protein (PTHrP) as a tumor-derived hormone responsible for humoral hypercalcemia of malignancy (HHM) [1]. Subsequent to this discovery, several potent effects of PTHrP in bone biology and cancer-induced bone disease have been identified. Elegant in vivo studies using genetically engineered mice have exposed vital roles for PTHrP beginning during embryogenesis and extending into adult life, suggesting that PTHrP has potent, multi-functional effects. PTHrP is a member of the parathyroid family of hormones. The PTHrP gene, PTHLH, is located on the short arm of chromosome 12 whereas the gene for parathyroid hormone (PTH) itself is found on chromosome 11 [2,3]. The resulting protein is largely conserved among most species, however, alternative splicing produces three unique isoforms of human PTHrP (139, 141, or 173 amino acids) that are differentially expressed in specific tissues [3]. The precise purposes and characterization of these isoforms have not been elucidated at this juncture. However, the presence of varying instability motifs between the mRNA isoforms suggests that each possess distinct half-lives and that some may be more suitable to functioning as a paracrine or autocrine mediator as opposed to the more conventional endocrine activities associated with PTH [4]. As would be expected, the PTHrP protein shares homology with PTH, but this occurs primarily in the N-terminal region, where eight of the initial 13 amino acid residues (Val2, Ser3, Glx4, Gln6, Int. J. Mol. Sci. 2019, 20, 2814; doi:10.3390/ijms20112814 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, 2814 2 of 23 Leu7, His9, Gly12, and Lys13) are identical [5]. The remainder of the amino acid sequences show little homology [2]. These similarities contribute to PTHrP and PTH activating a common signaling receptor, the type I PTH receptor (PTH1R) [4]. Likewise, the differences in sequence, particularly His5, provide discrimination between receptors. This is observed in the case of PTH2R, which PTH activates whereas PTHrP does not [6]. PTH1R is a G-protein coupled receptor that predominantly signals through GS alpha subunit (GαS)/adenylyl cyclase/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and less robustly through GQ alpha subunit (GαQ)/phospholipase C (PLC)/protein kinase C (PKC) signaling cascades to mediate gene transcription and cell fate (Figure 1). Upon ligation, a series of conformational changes in PTH1R lead to a shift of transmembrane domain 3 away from transmembrane domain 6, permitting access to the cytoplasmic loops by G proteins that are associated with the adenylyl cyclase and PLC pathways [7]. Through these signaling pathways, PTHrP stimulates the accumulation of intracellular second messengers such as cAMP, diacylglycerol (DAG), and inositol triphosphate (IP3) which subsequently leads to activation of PKA, PKC, and release of intracellular Ca2+, respectively (Figure 1) [8]. This can have further downstream effects including cAMP response-element binding protein (CREB) and extracellular signal-regulated kinases (ERK1/2) phosphorylation [4,9,10]. PTHrP has also been shown to stimulate phospholipase D via a mechanism transduced by Gα12 and Gα13 through Ras homolog gene family, member A (RhoA) [11– 13]. Furthermore, studies have demonstrated that PTHrP can activate ERK1/2 following intracellular internalization of PTH1R, dependent on beta-arrestins [14–16]. PTHrP contains a leader sequence of 36 amino acids (-36 to -1 signal peptide) utilized for intracellular trafficking and secretion [17]. The leader sequence is typically removed as the nascent peptide enters the rough endoplasmic reticulum [18]. After removal of the leader sequence, the resulting product is considered “pro-PTHrP” and is subject to further post-translational modification and activation by proteolytic cleavage. Figure 1. Traditional parathyroid hormone-related protein (PTHrP) activities are mediated through a G-protein coupled receptor (GPCR) called PTHR1. In skeletal tissues, PTHR1 is expressed on the surface of osteoblasts, osteocytes, and chondrocytes. The downstream pathways consist of signaling arms capable of activating protein kinase A (PKA) or protein kinase C (PKC). 1.1. PTHrP in Development and Skeletal Biology Int. J. Mol. Sci. 2019, 20, 2814 3 of 23 Unlike PTH, whose expression is restricted to the parathyroid glands, PTHrP is ubiquitously expressed throughout many tissues, including heart, skin, bone marrow, fetal liver, gastric mucosa, adrenal, thyroid, breast, and parathyroid glands that can act in a paracrine, autocrine, and intracrine manner [19,20]. PTHLH is transcriptionally regulated via regulatory regions and response elements within its promoter. Vitamin D3/Vitamin D receptor, CREB, Ku antigen, Ets1, Tax1, and SP1 have all been identified as factors that may either increase or decrease PTHrP expression [4,21–25]. These factors themselves are controlled by several cytokines and hormones that have been directly linked to PTHLH regulation, including transforming growth factor beta (TGFβ), epidermal growth factor (EGF), and Vitamin D3 [26–31]. PTHrP can also be regulated post-transcriptionally by micro RNAs (miRNA) [32]. Gene ablation studies in vivo produce phenotypes that revealed a particular importance for PTHrP in skeletal and mammary gland development. Systemic deletion of PTHrP (Pthlh-/-) yielded a neonatal lethal phenotype, with newborns dying within 24 h of birth due to respiratory failure attributed to defective rib cage formation [33]. These mice also exhibited domed skulls, shortened snouts and mandibles, and short limbs, suggesting specific relevance for PTHrP in endochondral bone formation [33]. Due to neonatal lethality, mice in which PTHrP was delivered or overexpressed in specific tissues were generated, thereby allowing for the analysis of PTHrP in various cell types [34,35]. For example, rescue of PTHrP knockout mice from neonatal death via targeted transgenic expression of PTHrP in chondrocytes revealed a failure of early ductal development and provides evidence of a role for PTHrP in branching morphogenesis in mammary tissues [34]. Further, these mice also display dwarfing and failed tooth eruption [34–36]. Consistent with these findings, PTHrP haploinsufficiency produces mice that appear normal at birth but display low bone mass, decreased trabecular thickness and connectivity, and increased adiposity as they approach three months of age [37]. In accord with the mesenchymal phenotypes described by other studies, it has also been established that PTHrP is critical for regulating growth plate development by controlling the proliferation and differentiation of chondrocytes [38,39]. Throughout adult life, PTHrP remains an important mediator of skeletal remodeling. It is important to note that PTHrP has a bimodal effect on the skeleton, acting primarily on osteoblasts while indirectly influencing osteoclast activity via cytokines such as receptor activator of nuclear factor kappa beta ligand (RANKL) [40]. As a potent mediator of bone metabolism, PTHrP has been the focus for potential therapeutic agents for disorders such as osteoporosis [4]. These studies have shown that PTHrP dosing and level of exposure are critical for the balance between anabolic and catabolic activity, with intermittent dosing regiments being key to generating an osteogenic response [41–43]. Recently, an anabolic PTHrP analog called abaloparatide underwent clinical investigation and FDA approval for osteoporosis (NCT01343004, NCT0167462, NCT00542425). The results of phase III clinical trials showed that treatment of postmenopausal
Recommended publications
  • (GLP-1) in Transgenic Plants
    The Open Biotechnology Journal, 2009, 3, 57-66 57 Open Access A Proficient Approach to the Production of Therapeutic Glucagon-Like Peptide-1 (GLP-1) in Transgenic Plants M. Brandsma1, X. Wang1, H. Diao2,3, S.E. Kohalmi1, A.M. Jevnikar2,3 and S. Ma1,2,3,* 1Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada 2Transplantation Immunology Group, Lawson Health Research Institute, London, Ontario, N6A 4G5, Canada 3Plantigen Inc., 700 Collip Circle, London, Ontario, N6G 4X8, Canada Abstract: Glucagon-like peptide-1 (GLP-1) is a small peptide hormone with potent insulinotropic activity and represents a promising new therapeutic tool for the treatment of diabetes. Like many other therapeutic peptides, GLP-1 is commonly produced using chemical synthesis methods, but is limited by product quantity and cost. The advent of recombinant DNA technology offers the possibility of producing GLP-1 inexpensively and in vast quantities. In this study, transgenic plants were used as a recombinant expression platform for the production of GLP-1 as a large multimeric protein. A synthetic gene encoding ten sequential tandem repeats of GLP-1 sequence (GLP-1x10) was produced and introduced into tobacco plants. Transcriptional expression of the GLP1x10 gene in transgenic plants was confirmed by RT-PCR. Western blot analysis showed that the GLP-1x10 protein efficiently accumulated in transgenic plants, with an accumulation level as high as 0.15% of total soluble protein in leaves. Importantly, insulin secretion assays using a mouse pancreatic cell line (MIN6), showed that plant-derived GLP-1 in its synthetic decamer form, retained its ability to stimulate cellular insulin secretion, although with reduced efficacy.
    [Show full text]
  • 1 and ET-3 Inhibit Estrogen and Camp Production by Rat Granulosa Cells in Vitro
    209 Endothelin (ET)-1 and ET-3 inhibit estrogen and cAMP production by rat granulosa cells in vitro A E Calogero, N Burrello and A M Ossino Division of Andrology, Department of Internal Medicine, University of Catania, 95123 Catania, Italy (Requests for offprints should be addressed to A E Calogero at Istituto di Medicina Interna e Specialita` Internistiche, Ospedale Garibaldi, Piazza S.M. di Gesu`, 95123 Catania, Italy) Abstract Endothelin (ET)-1 and ET-3, two peptides with a potent and a maximally stimulatory (3 mIU/ml) concentration of vasoconstrictive property, produce a variety of biological FSH. ET-1 and ET-3 dose-dependently suppressed basal effects in different tissues by acting through two different and FSH (1 mIU/ml)-stimulated cAMP production. ET-3 receptors, the ET-1 selective ETA receptor and the non- and SFX-S6c were significantly more potent than ET-1 in selective ETB receptor. An increasing body of literature suppressing estrogen production, suggesting that this effect suggests that ET-1 acts as a paracrine/autocrine regulator was not mediated by the ETA receptor. Indeed, BQ-123, of ovarian function. Indeed, ETB receptors have been a selective ETA receptor antagonist, did not influence identified in rat granulosa cells and ET-1 is a potent the inhibitory effects of ET-1 and ET-3 on basal and inhibitor of progesterone production. In contrast, incon- FSH-stimulated estrogen release. To determine a possible sistent data have been reported about the role of ET-1 on involvement of prostanoids, we evaluated the effects of estrogen production and the effects of ET-3 are not maximally effective concentrations of ET-1 and ET-3 on known.
    [Show full text]
  • Cooperation of Endothelin-1 Signaling with Melanosomes Plays a Role In
    © 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 1213-1221 doi:10.1242/bio.011973 RESEARCH ARTICLE Cooperation of endothelin-1 signaling with melanosomes plays a role in developing and/or maintaining human skin hyperpigmentation Daiki Murase1,2,*, Akira Hachiya1,*,‡, Mamiko Kikuchi-Onoe1, Rachel Fullenkamp2, Atsushi Ohuchi1, Takashi Kitahara1, Shigeru Moriwaki1, Tadashi Hase1 and Yoshinori Takema3 ABSTRACT both long-term sun-exposure and chronological aging. Such Skin hyperpigmentation is characterized by increased melanin hyperpigmentation is also thought to be related to the existence of synthesis and deposition that can cause significant psychosocial and uneven skin tones often observed on sun-exposed areas. Regardless of psychological distress. Although several cytokine-receptor signaling the significant psychosocial distress associated with age spots, little is cascades contribute to the formation of ultraviolet B-induced cutaneous known about the detailed mechanisms responsible for them, except for hyperpigmentation, their possible involvement in other types of skin ultraviolet B (UVB)-induced pigmentation, despite the fact that many hyperpigmentation has never been clearly addressed. Since our researchers have tried to identify the melanogenic stimulatory factor(s) continuous studies using skin specimens from more than 30 subjects involved. with ethnic skin diversity emphasized a consistent augmentation in the In the course of UVB-induced pigmentation, three major steps in expression of endothelin-1 (ET-1) and its receptor (Endothelin B the epidermis, melanocyte proliferation, activation of melanin receptor, ET-B) in hyperpigmented lesions, including senile lentigos synthesis and melanosome transfer to keratinocytes, have been (SLs), the precise function of ET-1 signaling was investigated in the reported to be responsible for the increased melanogenesis (Okazaki .
    [Show full text]
  • Ectopic Expression of Glucagon-Like Peptide 1 for Gene Therapy of Type II Diabetes
    Gene Therapy (2007) 14, 38–48 & 2007 Nature Publishing Group All rights reserved 0969-7128/07 $30.00 www.nature.com/gt ORIGINAL ARTICLE Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes GB Parsons, DW Souza, H Wu, D Yu, SG Wadsworth, RJ Gregory and D Armentano Department of Molecular Biology, Genzyme Corporation, Framingham, MA, USA Glucagon-like peptide 1 (GLP-1) is a promising candidate for lowered both the fasting and random-fed hyperglycemia the treatment of type II diabetes. However, the short in vivo present in these animals. Because the insulinotropic actions half-life of GLP-1 has made peptide-based treatments of GLP-1 are glucose dependent, no evidence of hypogly- challenging. Gene therapy aimed at achieving continuous cemia was observed. Improved glucose homeostasis was GLP-1 expression presents one way to circumvent the rapid demonstrated by improvements in %HbA1c (glycated he- turnover of GLP-1. We have created a GLP-1 minigene that moglobin) and in glucose tolerance tests. GLP-1-treated can direct the secretion of active GLP-1 (amino acids 7–37). animals had higher circulating insulin levels and increased Plasmid and adenoviral expression vectors encoding the 31- insulin immunostaining of pancreatic sections. GLP-1-treated amino-acid peptide linked to leader sequences required for ZDF rats showed diminished food intake and, in the first few secretion of GLP-1 yielded sustained levels of active GLP-1 weeks following vector administration, a diminished weight that were significantly greater than endogenous levels. gain. These results demonstrate the feasibility of gene Systemic administration of expression vectors to animals therapy for type II diabetes using GLP-1 expression vectors.
    [Show full text]
  • Nitric Oxide As a Second Messenger in Parathyroid Hormone-Related Protein Signaling
    433 Nitric oxide as a second messenger in parathyroid hormone-related protein signaling L Kalinowski, L W Dobrucki and T Malinski Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, USA (Requests for offprints should be addressed to T Malinski, Department of Chemistry and Biochemistry, Ohio University, Biochemistry Research Laboratories 136, Athens, Ohio 45701–2979, USA; Email: [email protected]) (L Kalinowski was on sabbatical leave from the Department of Clinical Biochemistry, Medical University of Gdansk and Laboratory of Cellular and Molecular Nephrology, Medical Research Center of the Polish Academy of Science, Poland) Abstract Parathyroid hormone (PTH)-related protein (PTHrP) is competitive PTH/PTHrP receptor antagonists, 10 µmol/l produced in smooth muscles and endothelial cells and [Leu11,-Trp12]-hPTHrP(7–34)amide and 10 µmol/l is believed to participate in the local regulation of vascu- [Nle8,18,Tyr34]-bPTH(3–34)amide, were equipotent in lar tone. No direct evidence for the activation of antagonizing hPTH(1–34)-stimulated NO release; endothelium-derived nitric oxide (NO) signaling pathway [Leu11,-Trp12]-hPTHrP(7–34)amide was more potent by PTHrP has been found despite attempts to identify it. than [Nle8,18,Tyr34]-bPTH(3–34)amide in inhibiting Based on direct in situ measurements, it is reported here for hPTHrP(1–34)-stimulated NO release. The PKC inhibi- the first time that the human PTH/PTHrP receptor tor, H-7 (50 µmol/l), did not change hPTH(1–34)- and analogs, hPTH(1–34) and hPTHrP(1–34), stimulate NO hPTHrP(1–34)-stimulated NO release, whereas the release from a single endothelial cell.
    [Show full text]
  • Signaling Peptides in Plants
    lopmen ve ta e l B D io & l l o l g e y C Cell & Developmental Biology Ghorbani, et al., Cell Dev Biol 2014, 3:2 ISSN: 2168-9296 DOI: 10.4172/2168-9296.1000141 Review Article Open Access Signaling Peptides in Plants Sarieh Ghorbani1,2, Ana Fernandez1,2, Pierre Hilson3,4 and Tom Beeckman1,2* 1Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium 2Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium 3INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France 4AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France *Corresponding author: Tom Beeckman, Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium, Tel: 32-0-93313830; E-mail: [email protected] Rec date: May 03, 2014; Acc date: Jun 16, 2014; Pub date: Jun 18, 2014 Copyright: © 2014 Ghorbani S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In multicellular organisms, growth and development need to be precisely coordinated and are strongly relying on positional information. Positional control is achieved through exchanges of molecular messages between cells and tissues by means of cell-to-cell communication mechanisms. Especially in plants, accurate and well-controlled cell-to-cell communication networks are essential because of the complete absence of cell mobility and the presence of rigid cell walls. For many years, phytohormones were thought to be the main messengers exchanged between cells.
    [Show full text]
  • Glucagon-Like Peptide-1 and Its Class BG Protein–Coupled Receptors
    1521-0081/68/4/954–1013$25.00 http://dx.doi.org/10.1124/pr.115.011395 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:954–1013, October 2016 Copyright © 2016 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: RICHARD DEQUAN YE Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes Chris de Graaf, Dan Donnelly, Denise Wootten, Jesper Lau, Patrick M. Sexton, Laurence J. Miller, Jung-Mo Ahn, Jiayu Liao, Madeleine M. Fletcher, Dehua Yang, Alastair J. H. Brown, Caihong Zhou, Jiejie Deng, and Ming-Wei Wang Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.) Downloaded from Abstract.
    [Show full text]
  • A Focus on the Kisspeptin Receptor, Kiss1r
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 12-1-2014 12:00 AM Pathway-Specific Signaling and its Impact on erF tility: A Focus on the Kisspeptin Receptor, Kiss1r Maryse R. Ahow The University of Western Ontario Supervisor Dr. Andy Babwah The University of Western Ontario Graduate Program in Physiology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Maryse R. Ahow 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Molecular and Cellular Neuroscience Commons Recommended Citation Ahow, Maryse R., "Pathway-Specific Signaling and its Impact on erF tility: A Focus on the Kisspeptin Receptor, Kiss1r" (2014). Electronic Thesis and Dissertation Repository. 2537. https://ir.lib.uwo.ca/etd/2537 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. PATHWAY-SPECIFIC SIGNALING AND ITS IMPACT ON FERTILITY: A FOCUS ON THE KISSPEPTIN RECEPTOR, Kiss1r (Thesis format: Monograph) by Maryse R. Ahow Graduate Program in Physiology A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Maryse R. Ahow, 2014 Abstract Hypothalamic gonadotropin-releasing hormone (GnRH) is the master regulator of the neuroendocrine reproductive (HPG) axis and its secretion is regulated by various afferent inputs to the GnRH neuron.
    [Show full text]
  • Islet Amyloid Polypeptide (Amylin): No Evidence of an Abnormal Precursor Sequence in 25 Type 2 (Non-Insulin-Dependent) Diabetic Patients
    Diabetologia (1990) 33:628-630 Diabetologia Springer-Verlag1990 Islet amyloid polypeptide (amylin): no evidence of an abnormal precursor sequence in 25 Type 2 (non-insulin-dependent) diabetic patients M. Nishi 1, G. I. Bell 1'2'3 and D. E Steiner ~'2'3 Departments of Biochemistry and Molecular Biology and 2 Medicine, and 3 Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, USA Summary. Islet amyloid polypeptide is the major protein quenced. The nucleotide sequences of the amplified regions component of the islet amyloid of patients with Type 2 (non- of both alleles of the islet amyloid polypeptide gene of these insulin-dependent) diabetes mellitus. Since the synthesis of a 25 patients were identical to one another and to the sequence structurally abnormal or mutant protein may contribute to of an islet amyloid polypeptide allele isolated from a human the formation of amyloid deposits, we have examined the fetal liver genomic library. These findings suggest that a pri- possibility that a mutant form of islet amytoid polypeptide or mary structural abnormality of islet amyloid polypeptide or its precursor contributes to the formation of islet amyloid in its precursor is unlikely to play a significant role in the forma- Type 2 diabetic patients. We have sequenced the islet amy- tion of islet amyloid in Type 2 diabetic patients. loid polypeptide precursor coding regions of the gene of 25 patients with Type 2 diabetes. Genomic DNA fragments Key words: Islet amyloid polypeptide, Type 2 (non-insulin- corresponding to exon 2 and 3 of the islet amyloid polypep- dependent) diabetes mellitus, polymerase chain reaction, tide gene were amplified from patients' peripheral blood direct sequencing, maturity onset diabetes mellitus of the leucocyte DNAs using the polymerase chain reaction and young (MODY), Pima Indian.
    [Show full text]
  • The Anti-Apoptotic Role of Neurotensin
    Cells 2013, 2, 124-135; doi:10.3390/cells2010124 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review The Anti-Apoptotic Role of Neurotensin Christelle Devader, Sophie Béraud-Dufour, Thierry Coppola and Jean Mazella * Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université de Nice-Sophia Antipolis, 660 route des Lucioles, Valbonne 06560, France; E-Mails: [email protected] (C.D.); [email protected] (S.B.-D.); [email protected] (T.C.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-4-93-95-77-61; Fax: +33-4-93-95-77-08. Received: 24 January 2013; in revised form: 15 February 2013 / Accepted: 26 February 2013 / Published: 4 March 2013 Abstract: The neuropeptide, neurotensin, exerts numerous biological functions, including an efficient anti-apoptotic role, both in the central nervous system and in the periphery. This review summarizes studies that clearly evidenced the protective effect of neurotensin through its three known receptors. The pivotal involvement of the neurotensin receptor-3, also called sortilin, in the molecular mechanisms of the anti-apoptotic action of neurotensin has been analyzed in neuronal cell death, in cancer cell growth and in pancreatic beta cell protection. The relationships between the anti-apoptotic role of neurotensin and important physiological and pathological contexts are discussed in this review. Keywords: neurotensin; receptor; apoptosis; sortilin 1. Introduction The tridecapeptide neurotensin (NT) was isolated from bovine hypothalami on the basis of its ability to induce vasodilatation [1]. NT is synthesized from a precursor protein following excision by prohormone convertases [2].
    [Show full text]
  • Cloning and Characterization of Cdnas Encoding Human Gastrin-Releasing Peptide (Bombesin/Mrna/Neuropeptide) ELIOT R
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 5699-5703, September 1984 Biochemistry Cloning and characterization of cDNAs encoding human gastrin-releasing peptide (bombesin/mRNA/neuropeptide) ELIOT R. SPINDEL*, WILLIAM W. CHIN*, JANET PRICE+, LESLEY H. REESt, GORDON M. BESSERt, AND JOEL F. HABENER* *Laboratory of Molecular Endocrinology, Massachusetts General Hospital and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114, and Departments of tChemical Endocrinology and tEndocrinology, St. Bartholomew's Hospital, London, England Communicated by Herman M. Kalckar, June 6, 1984 ABSTRACT We have prepared and cloned cDNAs de- As is characteristic of many neuropeptides, mammalian rived from poly(A)+ RNA from a human pulmonary carcinoid bombesin-like peptides exist in multiple forms. Bombesin- tumpor rich in immunoreactivity to gastrin-releasing peptide, a related peptides of 10 and 27 amino acids have been isolated peptide closely related in structure to amphibian bombesin. from porcine (16) and canine (4) tissues. Analyses by high- Mixtures of synthetic oligodeoxyribonucleotides correspond- pressure liquid chromatography of fetal lung (17) and lung ing to amphibian bombesin were used as hybridization probes tumors (15, 18, 19) yield multiple peaks of immunoreactivity; to screen a cDNA library prepared from the tumor RNA. Se- one peak elutes near bombesin and one elutes near GRP. quencing of the recombinant plasmids shows that human gas- Multiple immunoreactive forms are also detected in gastroin- trin-releasing peptide (hGRP) mRNA encodes a precursor of testinal tissue (9, 20). In brain, immunohistochemistry re- 148 amino acids containing a typical signal sequence, hGRP veals some distinct regions that react to bombesin antisera consisting of 27 or 28 amino acids, and a carboxyl-terminal and other regions that react only with antisera to ranatensin extension peptide.
    [Show full text]
  • Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: the Rabbit Model
    animals Review Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model Massimo Zerani , Angela Polisca *, Cristiano Boiti and Margherita Maranesi Dipartimento di Medicina veterinaria, Università di Perugia, via San Costanzo 4, 06126 Perugia, Italy; [email protected] (M.Z.); [email protected] (C.B.); [email protected] (M.M.) * Correspondence: [email protected] Simple Summary: Corpora lutea (CL) are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. A variety of regulatory factors come into play in modulating the functional lifespan of CL, with luteotropic and luteolytic effects. Many aspects of luteal phase physiology have been clarified, yet many others have not yet been determined, including the molecular and/or cellular mechanisms that maintain the CL from the beginning of luteolysis during early CL development. This paper summarizes our current knowledge of the endocrine and cellular mechanisms involved in multifactorial CL lifespan regulation, using the pseudopregnant rabbit model. Abstract: Our research group studied the biological regulatory mechanisms of the corpora lutea (CL), paying particular attention to the pseudopregnant rabbit model, which has the advantage that the relative luteal age following ovulation is induced by the gonadotrophin-releasing hormone (GnRH). CL are temporary endocrine structures that secrete progesterone, which is essential for maintaining a healthy pregnancy. It is now clear that, besides the classical regulatory mechanism exerted by Citation: Zerani, M.; Polisca, A.; prostaglandin E2 (luteotropic) and prostaglandin F2α (luteolytic), a considerable number of other Boiti, C.; Maranesi, M. Current effectors assist in the regulation of CL. The aim of this paper is to summarize our current knowledge Knowledge on the Multifactorial of the multifactorial mechanisms regulating CL lifespan in rabbits.
    [Show full text]