Role of Green Fluorescent Proteins and Their Variants in Development Of

Total Page:16

File Type:pdf, Size:1020Kb

Role of Green Fluorescent Proteins and Their Variants in Development Of J Biosci Vol. 43, No. 4, September 2018, pp. 763–784 Ó Indian Academy of Sciences DOI: 10.1007/s12038-018-9783-0 Review Role of green fluorescent proteins and their variants in development of FRET-based sensors 1 1 2 3 1 NEHA SOLEJA ,OVAIS MANZOOR ,IMRAN KHAN ,ALTAF AHMAD and MOHD.MOHSIN * 1Department of Biosciences, Jamia Millia Islamia, New Delhi 110 025, India 2Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110 025, India 3Department of Botany, Aligarh Muslim University, Aligarh, India *Corresponding author (Email, [email protected]) MS received 17 November 2017; accepted 11 May 2018; published online 3 August 2018 Since the last decade, a lot of advancement has been made to understand biological processes involving complex intra- cellular pathways. The major challenge faced was monitoring and trafficking of metabolites in real time. Although a range of quantitative and imaging techniques have been developed so far, the discovery of green fluorescent proteins (GFPs) has revolutionized the advancement in the field of metabolomics. GFPs and their variants have enabled researchers to ‘paint’ a wide range of biological molecules. Fluorescence resonance energy transfer (FRET)-based genetically encoded sensors is a promising technology to decipher the real-time monitoring of the cellular events inside living cells. GFPs and their variants, due to their intrinsic fluorescence properties, are extensively being used nowadays in cell-based assays. This review focuses on structure and function of GFP and its derivatives, mechanism emission and their use in the development of FRET-based sensors for metabolites. Keywords. FRET; green fluorescent proteins; metabolite; mutants; sensors 1. Introduction genetic tags has brought about advancement in the field of microscopy, particularly fluorescent microscopy (Kremers Atomic absorption spectroscopy, nuclear magnetic reso- et al. 2011;Cranfillet al. 2016). The strategy is to tag the nance, X-ray crystallography and other traditional electro- molecules with FPs and utilize fluorescence technology to chemical methods were used to obtain structural and explore biological systems. FPs can be used as probes to functional information about metabolites. Although these follow a molecular event, track the pathway of particular techniques provided an insight into the structural aspect, at metabolite and can also be incorporated into a sensor to thesametimetheysufferedfromchallengeslikelesssen- translate a cellular event into a biological signal (Van sitivity, poor resolution, invasive and non-selective nature Roessel and Brand 2002; Zhang et al. 2002). (Shimomura 2005; Mohsin et al. 2015). Progress in cellular FPs and novel imaging techniques together helped in biology required detailed, accurate and well-defined account revealing minute and crucial details of the dynamic beha- of the various metabolic processes and cellular pathways viour of a cell. Understanding biological systems involve inside the living cell with high-throughput screening of the elucidating details like quantification, cellular and sub-cel- various events. Later, sensors proved to be a promising tool lular compartmentalization, gene expression, molecular flux, to monitor, identify, quantify and track a biological event crowding, physiological activities, toxic effects and various within a living cell (Lippincott-Schwartz et al. 2001). Flu- intracellular/intercellular interactions (Tsien 1998; Ando orescent dyes have been used to fabricate sensors but their et al. 2002; Patterson and Lippincott-Schwartz 2002; Chu- toxic nature proved to be a loophole. Scientists started to dakov et al. 2003; Lippincott-Schwartz and Patterson 2003). look for other fluorescent alternatives and their search came FPs are being used extensively in imaging studies due to to an end with the discovery of fluorescent proteins (FPs). the following characteristics: The advantage of FPs is that they show bright fluorescence in theentireelectromagneticspectrum(Okumoto2010). They 1. They are not toxic to the living cells and therefore, can have simplified the task of imaging live cells, deep tissue and be expressed very efficiently. whole-body in vivo (Kremers et al. 2011). The use of FPs as 2. When co-expressed, FPs do not oligomerize. http://www.ias.ac.in/jbiosci 763 764 Neha Soleja et al. Figure 2. Calcium binding to aequorin releases blue light which was then absorbed by GFP to give green light. light to the bright green fluorescence (Patterson and Lippincott- Figure 1. Image of the jellyfish Aequorea victoria, which Schwartz 2002). Douglas Prasher isolated the GFP gene and produces the green fluorescent protein (GFP). later reported the 238 amino acid residues of the protein. Chalfie obtained the cloned GFP gene from Prasher and 3. They are photostable for extended time at physiological expressed it in Escherichia coli and Caenorhabditis elegans parameters. that glowed green on irradiation with UV light. He concluded that it can be used as a tracer molecule to follow the fate of any The 2008 Nobel Prize in chemistry was awarded to Osamu protein of interest. Roger Tsien explained the chemical reaction Shimomura, Martin Chalfie and Roger Y Tsien. They got of the synthesis of GFP which required oxygen. Tsien and his recognition for their efforts in making people realize how group created mutants with shorter life times compared to the important and beneficial are FPs for studying biological events. wild-type GFP which was brighter and also emitted a range of The end of the 20th century marked the discovery of green different colours (Chudakov et al. 2003). fluorescent protein (GFP) that called for a scientific revolution catching the interest of researchers. Shimomura was credited with the discovery of GFP. He was working on a project that 2. GFP as a protein tag required him to study a jellyfish, Aequorea victoria (figure 1) to understand the mechanism behind its bioluminescence. He The last decade of the 20th century has marked the begin- extracted a protein from the green glowing rings of the jellyfish ning of revolution in cellular biology. In 1990, various that was supposed to emit green light. But surprisingly it improvements were made by using mutagenesis to colour emitted blue light in the presence of calcium ions (figure 2). He shift the variants from blue to yellow. It is to be noted that named the protein as aequorin. This blue light was absorbed by GFP does not require any additional components other than another protein, GFP that was actually converting this blue oxygen to show green fluorescence confirming its ab O O Tyr 66 ) β-pleated sheet N Gly 67 N HO NH HO α-helix Ser 65 O Beta- (40 Barrel Figure 3. (a) Chromophore location within an a-helix inside the 11-b barrel of GFP. (b) The wtGFP chromophore, consisting of a cyclized tripeptide made of Ser65, Tyr66 and Gly67 (Cormack et al. 1996). Role of green fluorescent proteins in development of FRET-based sensors 765 O O O Tyr 66 Tyr 66 Cyclizaon and N Gly 67 Gly 67 H Dehydraon N O O NH N OH OH Nucleophilic aack of the amide HN HN of Glycine on the carbonyl Ser 65 O Ser 65 group of Serine OH HO O O O Imidazolinone ring formaon N NH HO OH HN OH Dehydrogenaon [O] O O O Tyr 66 N Gly 67 N OH HN Ser 65 O HO Mature GFP chromophore Figure 4. Sequential reactions resulting in the formation of a mature chromophore. autofluorescent characteristic (Prasher et al. 1992; Chalfie trans (Zimmer 2002). The two rings may be parallel or et al. 1994; Tsien 1998). perpendicular to each other. Due to the chromophore con- figuration and planarity, they are forced by the surrounding protein matrix to form hydrogen bonds and hydrophobic side 3. GFP as a chromophore chains which comprise the shape of an enclosing cavity. The importance of the closed cavity was discovered when Crystallography details reveal that GFP consists of an mutants at Tyr66 was analysed and shown to reduce 11-stranded b-can structure enclosing a central a-helix that brightness. contains the chromophore within itself (figure 3). The pri- There are two charged side chains that are conserved in all mary structure of the chromophore consists of a tripeptide, GFPs, namely Glu222 and Arg96 and these are present at the Ser-Tyr-Gly at positions 65–67 (Cody et al. 1993). Folding edges of the chromophore (Zimmer 2002). of the GFP molecule favours a cyclization reaction resulting in the formation of an amide bond between Ser and Gly. The presence of molecular oxygen breaks the a–b bond of Tyr66 5. Mechanism of fluorescence giving it a fully folded structure that enables the GFP molecule to show fluorescence (Ormo et al. 1996; Yang A photoisomerization model suggests that there are three et al. 1996; Zimmer 2002; Bishop et al. 2013) (figure 4). forms of the GFP chromophore: neutral, anionic and an intermediate state that explains the absorbance and emission spectra of wtGFP (wild type GFP) giving rise to two sepa- 4. Chromophore structure rate but coincident peaks. The neutral or the protonated form of the chromophore absorbs at 395 nm whereas the anionic The chromophore consists of two rings linked by a double or the deprotonated form absorbs at 475 nm. The emission bond. Due to restriction of groups around the double bond, peak observed at 510 nm on excitation of the chromophore the chromophore may exist in two configurations: cis and at 395 nm is caused by a process called excited-state proton 766 Neha Soleja et al. a b A Tyr 66 Gly 67 B Fluorescence Emission Intensity Ser 65 395 510 Wavelength (nm) c d A A* I B* (Intermediate state) 510 nm 5nm 395 nm 47 B - A B (Neutral or (Anionic or Protonated Deprotonated state) state) Figure 5. (a) Ball and stick demonstration of the GFP. Nitrogen atoms are blue and oxygen atoms are red in colour. (b) The absorbance spectrum of wild-type GFP, together with the chromophore forms (c) giving rise to the two peaks (Gu et al.
Recommended publications
  • Monitoring of Switches in Heterochromatin-Induced Silencing Shows Incomplete Establishment and Developmental Instabilities
    Monitoring of switches in heterochromatin-induced silencing shows incomplete establishment and developmental instabilities Farah Bughioa, Gary R. Huckellb,1, and Keith A. Maggerta,2 aDepartment of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724; and bPrivate address, San Diego, CA 92120 Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved August 28, 2019 (received for review June 6, 2019) Position effect variegation (PEV) in Drosophila results from new While the natural factors that influence establishment have juxtapositions of euchromatic and heterochromatic chromosomal only recently begun to be explored (34, 35), multiple models for regions, and manifests as striking bimodal patterns of gene ex- maintenance have been proposed, including DNA cytosine pression. The semirandom patterns of PEV, reflecting clonal rela- methylation and histone modifications stably inherited through tionships between cells, have been interpreted as gene-expression S-phase (36–39). The former does not exist in the common yeast states that are set in development and thereafter maintained model systems, in Caenorhabditis elegans or in Drosophila (40, 41; without change through subsequent cell divisions. The rate of in- cf. refs. 42 and 43), and so it is widely accepted that epigenetic stability of PEV is almost entirely unexplored beyond the final gene-regulatory (e.g., heterochromatin-induced silencing) infor- expression of the modified gene; thus the origin of the expressiv- mation must be encoded by the histone modifications in these ity and patterns of PEV remain unexplained. Many properties of model systems. Histone modifications (and DNA methylation) PEV are not predicted from currently accepted biochemical and are part of the mechanisms of activation or repression, although theoretical models.
    [Show full text]
  • KDM7 Is a Dual Demethylase for Histone H3 Lys 9 and Lys 27 and Functions in Brain Development
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION elegans to humans and is characterized by the presence of KDM7 is a dual demethylase a PHD-type zinc finger motif in addition to the JmjC do- for histone H3 Lys 9 and Lys main (Supplemental Fig. S1A). Whereas the human genes for PHF8 and PHF2 are associated with X-linked mental 27 and functions in brain retardation and hereditary sensory neuropathy type I, respectively (Hasenpusch-Theil et al. 1999; Laumonnier development et al. 2005; Abidi et al. 2007; Koivisto et al. 2007), little is Yu-ichi Tsukada,1,2,3 Tohru Ishitani,4 known about KIAA1718. Bioinformatic analysis of the 1,2,5 JmjC domains of KIAA1718, PHF8, and PHF2 indicated and Keiichi I. Nakayama that predicted Fe(II)- and a-ketoglutarate (a-KG)-binding 1Division of Cell Biology, Medical Institute of Bioregulation, sites are conserved, with the exception of the former in Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; PHF2, and that they share extensive similarity with the 2CREST, Japan Science and Technology Agency (JST), JmjC domain of JHDM1/KDM2 (Supplemental Fig. S1B). Kawaguchi, Saitama 332-0012, Japan; 3PRESTO, Japan Science Conservation of residues within the putative cofactor- and Technology Agency (JST), Kawaguchi, Saitama 332-0012, binding sites of KIAA1718 suggested that this protein Japan; 4Division of Cell Regulation Systems, Medical Institute might possess histone demethylase activity, and there- of Bioregulation, Kyushu University, Higashi-ku, Fukuoka fore might also contribute to transcriptional regulation of 812-8582, Japan genes in the nervous system.
    [Show full text]
  • Desmoplakin Assembly Dynamics in Four Dimensions
    JCB: ARTICLE Desmoplakin assembly dynamics in four dimensions: multiple phases differentially regulated by intermediate filaments and actin Lisa M. Godsel,1 Sherry N. Hsieh,1 Evangeline V. Amargo,1 Amanda E. Bass,1 Lauren T. Pascoe-McGillicuddy,1,4 Arthur C. Huen,1 Meghan E. Thorne,1 Claire A. Gaudry,1 Jung K. Park,1 Kyunghee Myung,3 Robert D. Goldman,3,4 Teng-Leong Chew,3 and Kathleen J. Green1,2 1Department of Pathology, 2Department of Dermatology, 3Department of Cell and Molecular Biology, and 4The R.H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 he intermediate filament (IF)–binding protein des- sensitive translocation of cytoplasmic particles to matur- moplakin (DP) is essential for desmosome function ing borders, with kinetics ranging from 0.002 to 0.04 T and tissue integrity, but its role in junction assembly ␮m/s. DP mutants that abrogate or enhance association Downloaded from is poorly understood. Using time-lapse imaging, we show with IFs exhibit delayed incorporation into junctions, al- that cell–cell contact triggers three temporally overlap- tering particle trajectory or increasing particle pause ping phases of DP-GFP dynamics: (1) the de novo ap- times, respectively. Our data are consistent with the idea pearance of punctate fluorescence at new contact zones that DP assembles into nascent junctions from both diffus- after as little as 3 min; (2) the coalescence of DP and the ible and particulate pools in a temporally overlapping jcb.rupress.org armadillo protein plakophilin 2 into discrete cytoplasmic series of events triggered by cell–cell contact and regu- particles after as little as 15 min; and (3) the cytochalasin- lated by actin and DP–IF interactions.
    [Show full text]
  • And G- Actin Regulates Cell Migration Pavan Vedula1, Satoshi Kurosaka2, Brittany Mactaggart1, Qin Ni3, Garegin Papoian4, Yi Jiang5, Dawei W Dong1,6, Anna Kashina1*
    RESEARCH ARTICLE Different translation dynamics of b- and g- actin regulates cell migration Pavan Vedula1, Satoshi Kurosaka2, Brittany MacTaggart1, Qin Ni3, Garegin Papoian4, Yi Jiang5, Dawei W Dong1,6, Anna Kashina1* 1Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States; 2Institute of Advanced Technology, Kindai University, Kainan, Wakayama, Japan; 3Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, United States; 4Department of Chemistry, University of Maryland, College Park, United States; 5Department of Mathematics and Statistics, Georgia State University, Atlanta, United States; 6Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States Abstract b- and g-cytoplasmic actins are ubiquitously expressed in every cell type and are nearly identical at the amino acid level but play vastly different roles in vivo. Their essential roles in embryogenesis and mesenchymal cell migration critically depend on the nucleotide sequences of their genes, rather than their amino acid sequences; however, it is unclear which gene elements underlie this effect. Here we address the specific role of the coding sequence in b- and g- cytoplasmic actins’ intracellular functions, using stable polyclonal populations of immortalized mouse embryonic fibroblasts with exogenously expressed actin isoforms and their ‘codon- switched’ variants. When targeted to the cell periphery using b-actin 30UTR; b-actin and g-actin have differential effects on cell migration. These effects directly depend on the coding sequence. Single- molecule measurements of actin isoform translation, combined with fluorescence recovery after photobleaching, demonstrate a pronounced difference in b- and g-actins’ translation elongation rates in cells, leading to changes in their dynamics at focal adhesions, impairments in actin bundle *For correspondence: formation, and reduced cell anchoring to the substrate during migration.
    [Show full text]
  • Apkc-Mediated Displacement and Actomyosin-Mediated Retention
    RESEARCH ARTICLE aPKC-mediated displacement and actomyosin-mediated retention polarize Miranda in Drosophila neuroblasts Matthew Robert Hannaford, Anne Ramat, Nicolas Loyer, Jens Januschke* Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom Abstract Cell fate assignment in the nervous system of vertebrates and invertebrates often hinges on the unequal distribution of molecules during progenitor cell division. We address asymmetric fate determinant localization in the developing Drosophila nervous system, specifically the control of the polarized distribution of the cell fate adapter protein Miranda. We reveal a step- wise polarization of Miranda in larval neuroblasts and find that Miranda’s dynamics and cortical association are differently regulated between interphase and mitosis. In interphase, Miranda binds to the plasma membrane. Then, before nuclear envelope breakdown, Miranda is phosphorylated by aPKC and displaced into the cytoplasm. This clearance is necessary for the subsequent establishment of asymmetric Miranda localization. After nuclear envelope breakdown, actomyosin activity is required to maintain Miranda asymmetry. Therefore, phosphorylation by aPKC and differential binding to the actomyosin network are required at distinct phases of the cell cycle to polarize fate determinant localization in neuroblasts. DOI: https://doi.org/10.7554/eLife.29939.001 Introduction *For correspondence: The development of the central nervous system depends on asymmetric cell divisions for the bal- [email protected] anced production of progenitor and differentiating cells. During vertebrate and invertebrate neuro- Competing interests: The genesis, cell fates can be established through the asymmetric inheritance of cortical domains or fate authors declare that no determinants during asymmetric division of progenitor cells (Alexandre et al., 2010; Doe, 2008; competing interests exist.
    [Show full text]
  • GFP and GFP-Like Proteins
    REVIEW ARTICLE Evolving trends in biosciences: multi-purpose proteins – GFP and GFP-like proteins Mythili Krishna1 and Baban Ingole2,* 1Institute of Science and Technology, JNT University, Kukatpally, Hyderabad 500 072, India 2National Institute of Oceanography, Dona Paula, Goa 403 004, India (Figure 2). This pioneering work was conducted by Shimo- The sea is considered as holding a clue to many known and unknown biologically active compounds. A family mura and co-workers in the early 1960s. Later, in 1971 of protein named Green Fluorescent Proteins (GFP)- like proteins, initially isolated from marine organisms, started a trend in biotechnological research, which is expanding day-by-day. A gross review of the same is presented in this article dealing with their occurrence, chemistry, applications, phylogenic analysis and the Indian perspective. These proteins are present in a wide variety of marine organisms, from corals to jelly- fish. Chromophore in these proteins is composed of three amino acid residues, Ser65–Try66–Gly67, and requires molecular oxygen for its maturation. Its applications include use in in vivo imaging as well as in plant biology. Thus, the protein has become one of the most important tools used in contemporary biosci- ences. Though the very first protein identified was from the jellyfish Aequorea victoria in the 1960s, the list is ever-expanding with not only the fluorescent but also the non-fluorescent proteins being connected to the same superfamily. Hence, they also offer help in the phylogenetic analysis of different organisms, to know which period of evolution has diverted a parti- Figure 1. Jellyfish, Aequorea victoria. [Figure reprinted from ref.
    [Show full text]
  • Regulation of Keratin Filament Network Dynamics
    Regulation of keratin filament network dynamics Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom Biologe Marcin Maciej Moch aus Dzierżoniów (früher Reichenbach, NS), Polen Berichter: Universitätsprofessor Dr. med. Rudolf E. Leube Universitätsprofessor Dr. phil. nat. Gabriele Pradel Tag der mündlichen Prüfung: 19. Juni 2015 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. This work was performed at the Institute for Molecular and Cellular Anatomy at University Hospital RWTH Aachen by the mentorship of Prof. Dr. med. Rudolf E. Leube. It was exclusively performed by myself, unless otherwise stated in the text. 1. Reviewer: Univ.-Prof. Dr. med. Rudolf E. Leube 2. Reviewer: Univ.-Prof. Dr. phil. nat. Gabriele Pradel Ulm, 15.02.2015 2 Publications Publications Measuring the regulation of keratin filament network dynamics. Moch M, and Herberich G, Aach T, Leube RE, Windoffer R. 2013. Proc Natl Acad Sci U S A. 110:10664-10669. Intermediate filaments and the regulation of focal adhesion. Leube RE, Moch M, Windoffer R. 2015. Current Opinion in Cell Biology. 32:13–20. "Panta rhei": Perpetual cycling of the keratin cytoskeleton. Leube RE, Moch M, Kölsch A, Windoffer R. 2011. Bioarchitecture. 1:39-44. Intracellular motility of intermediate filaments. Leube RE, Moch M, Windoffer R. Under review in: The Cytoskeleton. Editors: Pollard T., Dutcher S., Goldman R. Cold Springer Harbor Laboratory Press, Cold Spring Harbor. Multidimensional monitoring of keratin filaments in cultured cells and in tissues. Schwarz N, and Moch M, Windoffer R, Leube RE.
    [Show full text]
  • Genetically Encoded Biosensors Based on Fluorescent Proteins
    sensors Review Genetically Encoded Biosensors Based on Fluorescent Proteins Hyunbin Kim 1,2,†, Jeongmin Ju 1,2,†, Hae Nim Lee 1,3,†, Hyeyeon Chun 1,† and Jihye Seong 1,2,3,* 1 Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; [email protected] (H.K.); [email protected] (J.J.); [email protected] (H.N.L.); [email protected] (H.C.) 2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea 3 Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea * Correspondence: [email protected]; Tel.: +82-2-958-5904 † These authors contributed equally to this work. Abstract: Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs. Keywords: fluorescent protein; genetically encoded biosensor; FRET; ddFP; BiFC; split FP; circular permutation; fluorescent timer Citation: Kim, H.; Ju, J.; Lee, H.N.; Chun, H.; Seong, J.
    [Show full text]
  • Phototransformable Fluorescent Proteins: Future Challenges. Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois
    Phototransformable fluorescent proteins: Future challenges. Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois To cite this version: Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois. Phototransformable fluores- cent proteins: Future challenges.. Current Opinion in Chemical Biology, Elsevier, 2014, 20, pp.92-102. hal-01093360 HAL Id: hal-01093360 https://hal.univ-grenoble-alpes.fr/hal-01093360 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Phototransformable fluorescent proteins 19/05/2014 Phototransformable fluorescent proteins: future challenges Virgile Adam*,1,2,3, Romain Berardozzi1,2,3, Martin Byrdin1,2,3 and Dominique Bourgeois*,1,2,3 1Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France ; 2CNRS, IBS, F-38000 Grenoble, France ; 3CEA, DSV, IBS, F-38000 Grenoble, France *Authors for correspondence: [email protected], Tel: +33 (0)4 57 42 85 67 [email protected], Tel: +33 (0)4 57 42 86 44
    [Show full text]
  • Advances in Engineering of Fluorescent Proteins And
    Author's personal copy Available online at www.sciencedirect.com Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission Kiryl D Piatkevich and Vladislav V Verkhusha Monomeric fluorescent proteins of different colors are widely energy transfer (FRET) approach to three and four colors used to study behavior and targeting of proteins in living cells. in a single cell [3]. Fluorescent proteins that irreversibly change their spectral properties in response to light irradiation of a specific The RFPs, whose chromophores are formed by induction wavelength, or photoactivate, have become increasingly with light, are known as the photoactivatable FPs (PA- popular to image intracellular dynamics and superresolution RFPs). Two different groups of PA-RFPs are presently protein localization. Until recently, however, no optimized being distinguished. Members of the first group exhibit monomeric red fluorescent proteins and red photoactivatable an irreversible photoconversion from the non-fluorescent proteins have been available. Furthermore, monomeric or green fluorescent state to the red fluorescent state. fluorescent proteins, which change emission from blue to red Members of the second group undergo reversible photo- simply with time, so-called fluorescent timers, were developed switching between the non-fluorescent and fluorescent to study protein age and turnover. Understanding of chemical states. Introduction of photoactivatable FPs into cell mechanisms of the chromophore maturation or biology greatly extended the spatio-temporal limits of photoactivation into a red form will further advance engineering in vivo biological dynamics [4] and have become useful of fluorescent timers and photoactivatable proteins with tools for the superresolution microscopy approaches such enhanced and novel properties.
    [Show full text]
  • A Coordinated Local Translational Control Point at the Synapse Involving Relief from Silencing and MOV10 Degradation
    Neuron Article A Coordinated Local Translational Control Point at the Synapse Involving Relief from Silencing and MOV10 Degradation Sourav Banerjee,1 Pierre Neveu,1,2 and Kenneth S. Kosik1,* 1Neuroscience Research Institute and Department of Cellular Molecular and Developmental Biology 2Kavli Institute for Theoretical Physics University of California, Santa Barbara, Santa Barbara, CA 93106, USA *Correspondence: [email protected] DOI 10.1016/j.neuron.2009.11.023 SUMMARY 2003; Yi and Ehlers, 2005). These observations suggest a link between localized protein degradation and synthesis in the Persistent changes in synaptic strength are locally regulation of synaptic plasticity. In support of this link, protea- regulated by both protein degradation and synthesis; some blockade can diminish late-phase LTP (L-LTP) induced however, the coordination of these opposing limbs at Schaffer collateral-CA1 synapses, like pharmacological inhibi- is poorly understood. Here, we found that the RISC tion of translation (Fonseca et al., 2006). Interestingly, coapplica- protein MOV10 was present at synapses and was tion of proteasome blockers with translation inhibitors largely rapidly degraded by the proteasome in an NMDA- restores L-LTP, suggesting the need for a crucial balance between protein degradation and synthesis for maintenance of receptor-mediated activity-dependent manner. We L-LTP (Fonseca et al., 2006). Furthermore, activity-dependent designed a translational trap to capture those mRNAs relocation of the proteasome from the dendritic shaft to the whose spatiotemporal translation is regulated by synaptic spine resulted in a spatially precise loss of a degradation MOV10. When MOV10 was suppressed, a set of reporter (Bingol and Schuman, 2006). The relocation of UPS mRNAs—including a-CaMKII, Limk1, and the depal- components is reminiscent of polyribosome redistribution in mitoylating enzyme lysophospholipase1 (Lypla1)— potentiated spines (Ostroff et al., 2002) and suggests local selectively entered the polysome compartment.
    [Show full text]
  • Individual and Combined Use of Ultraviolet (UV) Light with Hydrogen Peroxide, Peracetic Acid, and Ferrate(VI) for Wastewater Disinfection
    Individual and combined use of ultraviolet (UV) light with hydrogen peroxide, peracetic acid, and ferrate(VI) for wastewater disinfection by Natalie Linklater A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree Doctor of Philosophy in Environmental Engineering Carleton University Ottawa, Ontario © 2017 Natalie Linklater Abstract This work explores the use of chlorine-free chemicals hydrogen peroxide (HP), peracetic acid (PAA), and ferrate(VI) as well as physical disinfection method, ultraviolet light (UV), alone and combination for wastewater disinfection. To evaluate treatments the culturability of indicator-organism Escherichia coli was compared to that of spore- forming Bacillus subtilis and C. perfringens. Remaining culturable and viable E. coli were studied using a method combining propidium monoazide (PMA) and quantitative polymerase chain reaction (qPCR). Changes to culturability were monitored for up to 48 hours after treatment to evaluate regrowth, reactivation and resuscitation levels. In Chapter 4 culturable and viable E. coli were studied following disinfection with sodium hypochlorite (NaClO), HP, PAA, ferrate(VI), and ultraviolet light (UV). All methods reduced culturable E. coli to below 2 log CFU/mL but 3-6 log CCE/mL of E. coli remained viable following chemical treatments. The largest reduction of viable cells was achieved with Ferrate(VI) followed by PAA, NaClO, and HP. In Chapters 5 and 6 the use of UV and ferrate(VI) both alone and in combination was studied. The combination of 40 mJ/cm2 UV and 9 mg/L ferrate(VI) provided an additional 80% reduction in coliform bacteria compared to the use of UV alone.
    [Show full text]