Desmoplakin Assembly Dynamics in Four Dimensions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D
ORIGINAL ARTICLE Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D. Sabatini2, Eliane J. Mu¨ller3, Pamela Cowin2,4 and David L. Stokes1,2,5 Desmosomes are adhesive junctions that provide mechanical coupling between cells. Plakoglobin (PG) is a major component of the intracellular plaque that serves to connect transmembrane elements to the cytoskeleton. We have used electron tomography and immunolabeling to investigate the consequences of PG knockout on the molecular architecture of the intracellular plaque in cultured keratinocytes. Although knockout keratinocytes form substantial numbers of desmosome-like junctions and have a relatively normal intercellular distribution of desmosomal cadherins, their cytoplasmic plaques are sparse and anchoring of intermediate filaments is defective. In the knockout, b-catenin appears to substitute for PG in the clustering of cadherins, but is unable to recruit normal levels of plakophilin-1 and desmoplakin to the plaque. By comparing tomograms of wild type and knockout desmosomes, we have assigned particular densities to desmoplakin and described their interaction with intermediate filaments. Desmoplakin molecules are more extended in wild type than knockout desmosomes, as if intermediate filament connections produced tension within the plaque. On the basis of our observations, we propose a particular assembly sequence, beginning with cadherin clustering within the plasma membrane, followed by recruitment of plakophilin and desmoplakin to the plaque, and ending with anchoring of intermediate filaments, which represents the key to adhesive strength. Journal of Investigative Dermatology (2008) 128, 2665–2675; doi:10.1038/jid.2008.141; published online 22 May 2008 INTRODUCTION dense plaque that is further from the membrane and that Desmosomes are large macromolecular complexes that mediates the binding of intermediate filaments. -
And G- Actin Regulates Cell Migration Pavan Vedula1, Satoshi Kurosaka2, Brittany Mactaggart1, Qin Ni3, Garegin Papoian4, Yi Jiang5, Dawei W Dong1,6, Anna Kashina1*
RESEARCH ARTICLE Different translation dynamics of b- and g- actin regulates cell migration Pavan Vedula1, Satoshi Kurosaka2, Brittany MacTaggart1, Qin Ni3, Garegin Papoian4, Yi Jiang5, Dawei W Dong1,6, Anna Kashina1* 1Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States; 2Institute of Advanced Technology, Kindai University, Kainan, Wakayama, Japan; 3Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, United States; 4Department of Chemistry, University of Maryland, College Park, United States; 5Department of Mathematics and Statistics, Georgia State University, Atlanta, United States; 6Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States Abstract b- and g-cytoplasmic actins are ubiquitously expressed in every cell type and are nearly identical at the amino acid level but play vastly different roles in vivo. Their essential roles in embryogenesis and mesenchymal cell migration critically depend on the nucleotide sequences of their genes, rather than their amino acid sequences; however, it is unclear which gene elements underlie this effect. Here we address the specific role of the coding sequence in b- and g- cytoplasmic actins’ intracellular functions, using stable polyclonal populations of immortalized mouse embryonic fibroblasts with exogenously expressed actin isoforms and their ‘codon- switched’ variants. When targeted to the cell periphery using b-actin 30UTR; b-actin and g-actin have differential effects on cell migration. These effects directly depend on the coding sequence. Single- molecule measurements of actin isoform translation, combined with fluorescence recovery after photobleaching, demonstrate a pronounced difference in b- and g-actins’ translation elongation rates in cells, leading to changes in their dynamics at focal adhesions, impairments in actin bundle *For correspondence: formation, and reduced cell anchoring to the substrate during migration. -
Apkc-Mediated Displacement and Actomyosin-Mediated Retention
RESEARCH ARTICLE aPKC-mediated displacement and actomyosin-mediated retention polarize Miranda in Drosophila neuroblasts Matthew Robert Hannaford, Anne Ramat, Nicolas Loyer, Jens Januschke* Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom Abstract Cell fate assignment in the nervous system of vertebrates and invertebrates often hinges on the unequal distribution of molecules during progenitor cell division. We address asymmetric fate determinant localization in the developing Drosophila nervous system, specifically the control of the polarized distribution of the cell fate adapter protein Miranda. We reveal a step- wise polarization of Miranda in larval neuroblasts and find that Miranda’s dynamics and cortical association are differently regulated between interphase and mitosis. In interphase, Miranda binds to the plasma membrane. Then, before nuclear envelope breakdown, Miranda is phosphorylated by aPKC and displaced into the cytoplasm. This clearance is necessary for the subsequent establishment of asymmetric Miranda localization. After nuclear envelope breakdown, actomyosin activity is required to maintain Miranda asymmetry. Therefore, phosphorylation by aPKC and differential binding to the actomyosin network are required at distinct phases of the cell cycle to polarize fate determinant localization in neuroblasts. DOI: https://doi.org/10.7554/eLife.29939.001 Introduction *For correspondence: The development of the central nervous system depends on asymmetric cell divisions for the bal- [email protected] anced production of progenitor and differentiating cells. During vertebrate and invertebrate neuro- Competing interests: The genesis, cell fates can be established through the asymmetric inheritance of cortical domains or fate authors declare that no determinants during asymmetric division of progenitor cells (Alexandre et al., 2010; Doe, 2008; competing interests exist. -
Genetic Cardiomyopathies: the Lesson Learned from Hipscs
Journal of Clinical Medicine Review Genetic Cardiomyopathies: The Lesson Learned from hiPSCs Ilaria My 1,2 and Elisa Di Pasquale 2,3,* 1 Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy; [email protected] 2 Humanitas Clinical and Research Center—IRCCS, Rozzano, 20089 Milan, Italy 3 Institute of Genetic and Biomedical Research (IRGB)—UOS of Milan, National Research Council (CNR), 20138 Milan, Italy * Correspondence: [email protected] Abstract: Genetic cardiomyopathies represent a wide spectrum of inherited diseases and constitute an important cause of morbidity and mortality among young people, which can manifest with heart failure, arrhythmias, and/or sudden cardiac death. Multiple underlying genetic variants and molecular pathways have been discovered in recent years; however, assessing the pathogenicity of new variants often needs in-depth characterization in order to ascertain a causal role in the disease. The application of human induced pluripotent stem cells has greatly helped to advance our knowledge in this field and enabled to obtain numerous in vitro patient-specific cellular models useful to study the underlying molecular mechanisms and test new therapeutic strategies. A milestone in the research of genetically determined heart disease was the introduction of genomic technologies that provided unparalleled opportunities to explore the genetic architecture of cardiomyopathies, thanks to the generation of isogenic pairs. The aim of this review is to provide an overview of the main research that helped elucidate the pathophysiology of the most common genetic cardiomyopathies: hypertrophic, dilated, arrhythmogenic, and left ventricular noncompaction cardiomyopathies. A special focus is provided on the application of gene-editing techniques in understanding key disease characteristics and on the therapeutic approaches that have been tested. -
Regulation of Keratin Filament Network Dynamics
Regulation of keratin filament network dynamics Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom Biologe Marcin Maciej Moch aus Dzierżoniów (früher Reichenbach, NS), Polen Berichter: Universitätsprofessor Dr. med. Rudolf E. Leube Universitätsprofessor Dr. phil. nat. Gabriele Pradel Tag der mündlichen Prüfung: 19. Juni 2015 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. This work was performed at the Institute for Molecular and Cellular Anatomy at University Hospital RWTH Aachen by the mentorship of Prof. Dr. med. Rudolf E. Leube. It was exclusively performed by myself, unless otherwise stated in the text. 1. Reviewer: Univ.-Prof. Dr. med. Rudolf E. Leube 2. Reviewer: Univ.-Prof. Dr. phil. nat. Gabriele Pradel Ulm, 15.02.2015 2 Publications Publications Measuring the regulation of keratin filament network dynamics. Moch M, and Herberich G, Aach T, Leube RE, Windoffer R. 2013. Proc Natl Acad Sci U S A. 110:10664-10669. Intermediate filaments and the regulation of focal adhesion. Leube RE, Moch M, Windoffer R. 2015. Current Opinion in Cell Biology. 32:13–20. "Panta rhei": Perpetual cycling of the keratin cytoskeleton. Leube RE, Moch M, Kölsch A, Windoffer R. 2011. Bioarchitecture. 1:39-44. Intracellular motility of intermediate filaments. Leube RE, Moch M, Windoffer R. Under review in: The Cytoskeleton. Editors: Pollard T., Dutcher S., Goldman R. Cold Springer Harbor Laboratory Press, Cold Spring Harbor. Multidimensional monitoring of keratin filaments in cultured cells and in tissues. Schwarz N, and Moch M, Windoffer R, Leube RE. -
Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies
International Journal of Molecular Sciences Review Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies Ilaria Pecorari 1, Luisa Mestroni 2 and Orfeo Sbaizero 1,* 1 Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; [email protected] 2 University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-040-5583770 Received: 15 July 2020; Accepted: 10 August 2020; Published: 15 August 2020 Abstract: Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened. -
Genetically Encoded Biosensors Based on Fluorescent Proteins
sensors Review Genetically Encoded Biosensors Based on Fluorescent Proteins Hyunbin Kim 1,2,†, Jeongmin Ju 1,2,†, Hae Nim Lee 1,3,†, Hyeyeon Chun 1,† and Jihye Seong 1,2,3,* 1 Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; [email protected] (H.K.); [email protected] (J.J.); [email protected] (H.N.L.); [email protected] (H.C.) 2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea 3 Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Korea * Correspondence: [email protected]; Tel.: +82-2-958-5904 † These authors contributed equally to this work. Abstract: Genetically encoded biosensors based on fluorescent proteins (FPs) allow for the real-time monitoring of molecular dynamics in space and time, which are crucial for the proper functioning and regulation of complex cellular processes. Depending on the types of molecular events to be monitored, different sensing strategies need to be applied for the best design of FP-based biosensors. Here, we review genetically encoded biosensors based on FPs with various sensing strategies, for example, translocation, fluorescence resonance energy transfer (FRET), reconstitution of split FP, pH sensitivity, maturation speed, and so on. We introduce general principles of each sensing strategy and discuss critical factors to be considered if available, then provide representative examples of these FP-based biosensors. These will help in designing the best sensing strategy for the successful development of new genetically encoded biosensors based on FPs. Keywords: fluorescent protein; genetically encoded biosensor; FRET; ddFP; BiFC; split FP; circular permutation; fluorescent timer Citation: Kim, H.; Ju, J.; Lee, H.N.; Chun, H.; Seong, J. -
Phototransformable Fluorescent Proteins: Future Challenges. Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois
Phototransformable fluorescent proteins: Future challenges. Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois To cite this version: Virgile Adam, Romain Berardozzi, Martin Byrdin, Dominique Bourgeois. Phototransformable fluores- cent proteins: Future challenges.. Current Opinion in Chemical Biology, Elsevier, 2014, 20, pp.92-102. hal-01093360 HAL Id: hal-01093360 https://hal.univ-grenoble-alpes.fr/hal-01093360 Submitted on 19 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. *Manuscript Click here to view linked References Phototransformable fluorescent proteins 19/05/2014 Phototransformable fluorescent proteins: future challenges Virgile Adam*,1,2,3, Romain Berardozzi1,2,3, Martin Byrdin1,2,3 and Dominique Bourgeois*,1,2,3 1Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France ; 2CNRS, IBS, F-38000 Grenoble, France ; 3CEA, DSV, IBS, F-38000 Grenoble, France *Authors for correspondence: [email protected], Tel: +33 (0)4 57 42 85 67 [email protected], Tel: +33 (0)4 57 42 86 44 -
Desmosome Structure, Composition and Function ⁎ David Garrod A, Martyn Chidgey B
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Biochimica et Biophysica Acta 1778 (2008) 572–587 www.elsevier.com/locate/bbamem Review Desmosome structure, composition and function ⁎ David Garrod a, Martyn Chidgey b, a Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK b Division of Medical Sciences, University of Birmingham, Clinical Research Block, Queen Elizabeth Hospital, Birmingham B15 2TH, UK Received 24 May 2007; received in revised form 19 July 2007; accepted 20 July 2007 Available online 9 August 2007 Abstract Desmosomes are intercellular junctions of epithelia and cardiac muscle. They resist mechanical stress because they adopt a strongly adhesive state in which they are said to be hyper-adhesive and which distinguishes them from other intercellular junctions; desmosomes are specialised for strong adhesion and their failure can result in diseases of the skin and heart. They are also dynamic structures whose adhesiveness can switch between high and low affinity adhesive states during processes such as embryonic development and wound healing, the switching being signalled by protein kinase C. Desmosomes may also act as signalling centres, regulating the availability of signalling molecules and thereby participating in fundamental processes such as cell proliferation, differentiation and morphogenesis. Here we consider the structure, composition and function of desmosomes, and their role in embryonic development and disease. © 2007 Elsevier B.V. All rights reserved. Contents 1. Introduction .............................................................. 573 1.1. The strength of the desmosome–intermediate filament complex ................................ 573 1.2. Desmosomes resist mechanical stress because they are hyper-adhesive . -
Mutations in the Desmosomal Protein Plakophilin-2 Are Common In
BRIEF COMMUNICATIONS armadillo-repeat proteins and plakins7. The plakophilins, which are Mutations in the desmosomal armadillo-related proteins, contain ten 42–amino acid armadillo- repeat motifs and are located in the outer dense plaque of desmo- protein plakophilin-2 are somes linking desmosomal cadherins with desmoplakin and the intermediate filament system8. Like other armadillo-repeat proteins, common in arrhythmogenic right plakophilins are also found in the nucleus, where they may have a role ventricular cardiomyopathy in transcriptional regulation9. Plakophilin-2 exists in two alternatively spliced isoforms (2a and 2b), interacts with multiple other cell Brenda Gerull1,2,7, Arnd Heuser1,2,7, Thomas Wichter3, adhesion proteins and is the primary cardiac plakophilin8,10. Matthias Paul3, Craig T Basson4, Deborah A McDermott4, On the basis of findings of a lethal defect in cardiac morphogenesis Bruce B Lerman4, Steve M Markowitz4, Patrick T Ellinor5, at embryonic day 10.75 in mice homozygous with respect to a deletion Calum A MacRae5, Stefan Peters6, Katja S Grossmann1, mutation of Pkp2 (ref. 11), we hypothesized that mutations in human Beate Michely1,2, Sabine Sasse-Klaassen1, PKP2 may account for ARVC. A total of 120 unrelated probands of Walter Birchmeier1, Rainer Dietz2,Gu¨nter Breithardt3, western European descent (101 males and 19 females) were admitted http://www.nature.com/naturegenetics Eric Schulze-Bahr3 & Ludwig Thierfelder1,2 to tertiary referral centers and diagnosed with ARVC in accordance with clinical criteria proposed by a Task Force12. We directly Arrhythmogenic right ventricular cardiomyopathy (ARVC) is sequenced all 14 PKP2 exons, including flanking intronic splice associated with fibrofatty replacement of cardiac myocytes, sequences (Supplementary Methods online), and identified 25 ventricular tachyarrhythmias and sudden cardiac death. -
Desmoplakin Regulates Desmosome Hyperadhesion
RP Hobbs and KJ Green Desmoplakin Regulates Hyperadhesion Kallel Sellami M, Zitouni M, Tombari W et al. Peng Z, Rasic N, Liu Y et al. (2002) Mosquito REFERENCES (2007) Anti-desmoglein-1 antibodies are pre- saliva-specific IgE and IgG antibodies in Amagai M (2010) Autoimmune and infections skin valent in Tunisian patients with hydatidosis 1059 blood donors. J Allergy Clin Immunol diseases that target desmogleins. Proc Jpn and leishmaniasis. Br J Dermatol 156:591–3 110:816–7 Acad Ser B Phys Biol Sci 86:524–37 Kamhawi S (2000) The biological and immuno- Remoue F, Alix E, Cornelie S et al. (2007) IgE Aoki V, Millikan RC, Rivitti EA et al. (2004) modulatory properties of sand fly saliva and and IgG4 antibody responses to Aedes Environmental risk factors in endemic pem- its role in the establishment of Leishmania saliva in African children. Acta Trop 104: phigus foliaceus (fogo selvagem). J Investig infections. Microbes Infect 2:1765–73 108–15 Dermatol Symp Proc 9:34–40 Lombardi C, Borges PC, Chaul A et al. (1992) Reunala T, Brummer-Korvenkontio H, Palosuo K Bastuji-Garin S, Turki H, Mokhtar I et al. (2002) Environmental risk factors in endemic et al. (1994a) Frequent occurrence of IgE Possible relation of Tunisian pemphigus with pemphigus foliaceus (fogo selvagem). J Invest and IgG4 antibodies against saliva of traditional cosmetics: a multicenter case- Dermatol 98:847–50 Aedes communis and Aedes aegypti mosqui- control study. Am J Epidemiol 155:249–56 Marzouki S, Ben Ahmed M, Boussoffara T et al. toes in children. Int Arch Allergy Immunol Brummer-Korvenkontio H, Lappalainen P, Reunala (2011) Characterization of the antibody 104:366–71 T et al. -
Cytoskeletal Proteins in Neurological Disorders
cells Review Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders Diana C. Muñoz-Lasso 1 , Carlos Romá-Mateo 2,3,4, Federico V. Pallardó 2,3,4 and Pilar Gonzalez-Cabo 2,3,4,* 1 Department of Oncogenomics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, 46010 Valencia, Spain; [email protected] (C.R.-M.); [email protected] (F.V.P.) 3 CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain 4 Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-395-036 Received: 10 December 2019; Accepted: 29 January 2020; Published: 4 February 2020 Abstract: Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.