New Methods of Removing Space Debris Alexander Bolonkin [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 5,716,029 Spitzer Et Al
I US005716029A United States Patent (19) 11 Patent Number: 5,716,029 Spitzer et al. 45 Date of Patent: Feb. 10, 1998 54 CONSTANTSUN ANGLE TRANSFER ORBIT Meserole, J., "Launch Costs to GEO Using Solar Powered SEQUENCE AND METHOD USING Orbit Transfer Vehicles". American Institute of Aeronautics ELECTRIC PROPULSION and Astronautic (AIAA) Paper 93-2219. AIAAJSAE (75) Inventors: Arnon Spitzer, Los Angeles, Calif.; ASME/ASEE 29th Joint Propulsion Conference and Solomon A. De Picciotto, Aurora, Colo. Exhibit. Jun. 28-30, 1993. 73 Assignee: Hughes Electronics, Los Angeles, Free, B. "High Altitude Orbit Raising With On-Board Calif. Electric Power", International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 558,572 Astronautics AIAA/AIDAVDGLA/JSASS 23rd International 22 Filed: Oct. 31, 1995 Electric Propulsion Conference. Sep. 13–16, 1993. Related U.S. Application Data Primary Examiner-Galen L. Barefoot 63 Continuation-in-part of Ser. No. 217,791, Mar. 25, 1994, Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Pat No. 5,595,360. Gudmestad; Wanda K. Denson-Low (51) Int. Cl. ... ... B64G 1/10 52 U.S.C. ................................................... 244/158 R 57 ABSTRACT 58) Field of Search ................................ 244/158 R, 164, 244/168, 169, 172 An apparatus and method for translating a spacecraft (102. 108) from an injection orbit (114) about a central body (100) 56) References Cited to synchronous orbit (122) in a time efficient manner. The U.S. PATENT DOCUMENTS spacecraft (102, 108) includes propulsion thrusters (50) 4,943,014 7/1990 Harwood et al. ....................... 244/169 which are fired in predetermined timing sequences con trolled by a controller (64) in relation to the apogee (118) FOREIGN PATENT DOCUMENTS and perigee (120) of the injection orbit (114) and successive 0 047 211 3/1982 European Pat. -
The Aerospace Update
The Aerospace Update First Light from a Gravitational-Wave Event Oct. 17, 2017 Video Credit: NASA's Goddard Space Flight Center/CI Lab First Light from a Gravitational-Wave Event For the first time ever, scientists have spotted both gravitational waves and light coming from the same cosmic event — in this case, the cataclysmic merger of two super dense stellar corpses known as neutron stars. The landmark discovery initiates the field of "multi-messenger astrophysics," which promises to reveal exciting new insights about the cosmos, researchers said. The find also provides the first solid evidence that neutron-star smashups are the source of much of the universe's gold, platinum and other heavy elements. Source: Mike Wall, Space.com Image Credit: Robin Dienel, Carnegie Institution for Science ATLAS 5 Launches Classified NROL 52 Satellite A covert communications relay station to route spy satellite data directly to users was successfully launched by a million-pound Atlas 5 rocket overnight. The United Launch Alliance rocket left Cape Canaveral under the cover of darkness on Sunday, Oct. 15th, dodging rain showers while speeding through decks of clouds, for a trek to geosynchronous transfer orbit to deploy the NROL-52 spacecraft. The fifth launch attempt proved to be the charm for NROL-52 after four thwarted tries over the past week, mainly due to bad weather. Video courtesy of United Launch Alliance Source: Justin Ray @ SpaceFlightNow.com SpaceX Launches Third Pre-Flown Rocket with EchoStar-SES Satellite, Lands Booster Maintaining a brisk flight rate three days after its last launch, SpaceX sent a Falcon 9 booster powered by a reused first stage into orbit on Wednesday evening, Oct 11th from Florida with an Airbus-built communications satellite for SES and EchoStar. -
Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
NASA Reference Publication 1390 - j Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield, R.D. Leach, and M.B. Alexander, Editor August 1996 NASA Reference Publication 1390 Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield Universities Space Research Association • Huntsville, Alabama R.D. Leach Computer Sciences Corporation • Huntsville, Alabama M.B. Alexander, Editor Marshall Space Flight Center • MSFC, Alabama National Aeronautics and Space Administration Marshall Space Flight Center ° MSFC, Alabama 35812 August 1996 PREFACE The effects of the natural space environment on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of seven major areas of the natural space environment including brief definitions, related programmatic issues, and effects on various spacecraft subsystems. The primary focus is to present more than 100 case histories of spacecraft failures and anomalies documented from 1974 through 1994 attributed to the natural space environment. A better understanding of the natural space environment and its effects will enable spacecraft designers and managers to more effectively minimize program risks and costs, optimize design quality, and achieve mission objectives. .o° 111 TABLE OF CONTENTS -
Probability of Collision in the Geostationary Orbit*
PROBABILITY OF COLLISION IN THE GEOSTATIONARY ORBIT* Raymond A. LeClair and Ramaswamy Sridharan MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420 USA, Email: [email protected] ABSTRACT/RESUME The initial Geosynchronous Encounter Analysis (GEA) CRDA spanned two years beginning in mid 1997. The advent of geostationary satellite communication During this period, Lincoln Laboratory provided timely 37 years ago, and the resulting continued launch activ- warning of encounters between Telstar 401 and partner ity, has created a population of active and inactive geo- satellites and precision orbits for these objects for use synchronous satellites which will interact, with genu- in avoidance maneuver planning [1]. In all, 32 en- ine possibility of collision, for the foreseeable future. counters between Telstar 401 and a partner satellite As a result of the failure of Telstar 401 three years ago, were supported in 24 months leading to nine avoidance MIT Lincoln Laboratory, in cooperation with commer- maneuvers incorporated into routine station keeping cial partners, began an investigation into this situation. and six dedicated avoidance maneuvers. This process Under the agreement, Lincoln worked to ensure a col- has led to a validated concept of operations for en- lision did not occur between Telstar 401 and partner counter support at Lincoln. satellites and to understand the scope and nature of the Active problem. The results of this cooperative activity and Satellites recent results to carefully characterize the actual prob- SOLIDARIDAD 02 ANIK E1 04-Oct-1999 ability of collision in the geostationary orbit are de- 114 SOLIDARIDAD 1 GOES 07 scribed. ANIK E2 112 MSAT M01 ) ANIK C1 110 GSTAR 04 deg USA 0114 1. -
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan. 21, 1997 54) OPTIMAL TRANSFER ORBIT TRAJECTORY Meserole, J., "Launch Costs To GEO Using Solar Powered USENGELECTRIC PROPULSION Orbit Transfer Vehicles', American Institute of Aeronautics and Astronautic (AIAA) Paper 93-2219, AIAA/SAE/ 75) Inventor: Arnon Spitzer, Los Angeles, Calif. ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Jun. 28-30, 1993. (73) Assignee: Hughes Aircraft Company, Los Free, B. "High Altitude Orbit Raising With On-Board Angeles, Calif. Electric Power”, International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 217,791 Astronautics AIAA/AIDA/DGLA/JSASS 23rd International (22 Filed: Mar 25, 1994 Electric Propulsion Conference, Sep. 13-16, 1993. Parkhash, "Electric Propulsion for Space Missions' Electri (51) int. Cl. ................ B64G 1/10 cal India vol. 19, No. 7, pp. 5-18., Apr. 1979. (52 U.S. C. ........................................................ 244/158 R Davison, "orbit Expansion by Microthrust” Royal Aircraft 58 Field of Search ................................ 244/158 R, 164, Est. Tech Report 67249 Sep. 1967. 244/172, 168, 169 Primary Examiner-Galen L. Barefoot 56 References Cited Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Gud U.S. PATENT DOCUMENTS mestad; Wanda K. Denson-Low 4,943,014 7/1990 Harwood et al. ....................... 244/169 57) ABSTRACT FOREIGN PATENT DOCUMENTS An apparatus and method for translating a spacecraft (10) from an injection orbit (16) about a central body (10) to 0047211 3/1982 European Pat. Off. ............... 244/169 geosynchronous orbit (18) in a time efficient manner. -
<> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A -
Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering Law
Trans. JSASS Aerospace Tech. Japan Vol. 17, No. 3, pp. 363-370, 2019 DOI: 10.2322/tastj.17.363 Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering Law By Kenji KITAMURA,1) Katsuhiko YAMADA,2) and Takeya SHIMA1) 1) Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan 2) Graduate School of Engineering, Osaka University, Osaka, Japan (Received June 23rd, 2017) This study considers the minimum time orbit-raising problem of geostationary spacecraft with low-propulsion thrusters. This problem is equivalent to determining an appropriate thrust direction during orbit raising. This study proposes a closed- loop thruster steering law that determines the thrust direction based on the optimal feedback gains and control errors of each orbital element. The feedback gains of the steering law are assumed to be the functions of orbital elements and are optimized by a meta-heuristic method. The orbital semi-major axis, eccentricity, and inclination are considered as independent variables for expressing the gains. Numerical simulations show that whichever orbital elements is selected as an independent variable, the same performances are obtained. Therefore, regardless of the initial orbital elements, by selecting the independent variable appropriately, the proposed method can always solve the minimum time orbit-transfer problem. Key Words: Orbit Raising, Geostationary Orbit, Low-Propulsion Thruster, Optimal Control Nomenclature Subscripts 0 : initial : semi-major axis : final : eccentric anomaly : normal direction in Local Vertical Local � : eccentricity � Horizontal (LVLH) coordinates � : eccentricity vector � : radial direction in LVLH coordinates � : magnitude of thruster force : transversal direction in LVLH coordinates ������� � g : gravitational acceleration of Earth at sea � � � level 1. -
Ground Observations of Falcon-9 Second Stage
GROUND OBSERVATIONS OF FALCON-9 SECOND STAGE ORBITAL VENTING/THRUSTING AS AID FOR INTERPRETING UNUSUAL VISUAL FEATURES OF MYSTERIOUS ‘ZUMA’ LAUNCH FINAL DRAFT March 20, 2018 James Oberg [email protected] PROBLEM AND APPROACH • 1 Classified payload Zuma launched, results not disclosed • 2 Accidental imaging of second stage venting by MANY observers • 3 SpaceX disclosure of ‘normal’ venting procedure is scanty • 4 However, some past launches had similar venting imagery • 5 Detailed study of images and descriptions can possibly help characterize spacecraft activities including anomalies • 6. Random nature of rare enabling conditions will always make such opportunities for insights rare and unpredictable • 7. All the more motivation to jump on such literally heaven-sent serendipitous opportunities whenever they are discovered • 6. Assessment of witness misperceptions [based on a known visual stimulus] helps understand reliability of other sky observations • 7 Two more stage2 burn/dump observations occurred the following month and those events are incorporated into this overview report • 8. All five ‘analogous plumes’ have detailed focused reports to be examined 2 Launch sequence of events & rumors • LAUNCH • Mission event discussion: https://forum.nasaspaceflight.com/index.php?topic=44175.0 • Mission results analysis https://forum.nasaspaceflight.com/index.php?topic=43976.0 • Launch video https://youtu.be/iS644RQYKTw • S2 debris warning zone https://forum.nasaspaceflight.com/assets/43976.0/1468540.jpg 3 The double-spiral “Khartoum Clue” -
Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects
AAS 12-017 Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects Brent W. Barbee*, Salvatore Alfano†, Elfego Piñon‡, Kenn Gold‡, and David Gaylor‡ *NASA-GSFC, †CSSI, ‡Emergent Space Technologies, Inc. 35th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE February 3 - February 8, 2012 Sponsored by Breckenridge, Colorado Rocky Mountain Section AAS Publications Office, P.O. Box 28130 - San Diego, California 92198 AAS 12-017 DESIGN OF SPACECRAFT MISSIONS TO REMOVE MULTIPLE ORBITAL DEBRIS OBJECTS Brent W. Barbee,∗ Salvatore Alfano,y Elfego Pinon˜ ,z Kenn Gold,x and David Gaylor{ The amount of hazardous debris in Earth orbit has been increasing, posing an ever- greater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approx- imately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital de- bris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environ- ment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the fa- mous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Mars Phobos and Deimos Survey (M-PADS) – A Martian Moons Orbiter and Phobos Lander Journal Item How to cite: Ball, Andrew J.; Price, Michael E.; Walker, Roger J.; Dando, Glyn C.; Wells, Nigel S. and Zarnecki, John C. (2009). Mars Phobos and Deimos Survey (M-PADS) – A Martian Moons Orbiter and Phobos Lander. Advances in Space Research, 43(1) pp. 120–127. For guidance on citations see FAQs. c 2008 COSPAR. Published by Elsevier Ltd. Version: [not recorded] Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.asr.2008.04.007 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Mars Phobos and Deimos Survey (M-PADS)—A Martian Moons Orbiter and Phobos Lander Andrew J. Balla, Michael E. Priceb, Roger J. Walkerb,†, Glyn C. Dandob, Nigel S. Wellsb, and John C. Zarneckia aPlanetary and Space Sciences Research Institute, Centre for Earth, Planetary, Space & Astronomical Research, The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA, UK. Email: [email protected] bSpace Department, QinetiQ, Cody Technology Park, Farnborough, Hampshire GU14 0LX, UK †Now at ESA ESTEC, Noordwijk, Netherlands Abstract We describe a Mars ‘Micro Mission’ for detailed study of the martian satellites Phobos and Deimos. The mission involves two ~330 kg spacecraft equipped with solar electric propulsion to reach Mars orbit. -
2013 Commercial Space Transportation Forecasts
Federal Aviation Administration 2013 Commercial Space Transportation Forecasts May 2013 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) • i • 2013 Commercial Space Transportation Forecasts About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover: The Orbital Sciences Corporation’s Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. Image Credit: NASA/Bill Ingalls NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Table of Contents EXECUTIVE SUMMARY . 1 COMSTAC 2013 COMMERCIAL GEOSYNCHRONOUS ORBIT LAUNCH DEMAND FORECAST . -
NASA NASA - NSSDC - Spacecraft - Query Results
Cronología de Lanzamientos Espaciales Año 1993 Recopilación de datos Ing. Eladio Miranda Batlle. Los textos, imágenes y tablas fueron obtenidos de la National Space Science. Data Center. NASA NASA - NSSDC - Spacecraft - Query Results Wednesday, 04 May 2011 NSSDC Master Catalog Search Spacecraft Experiments Data Collections Spacecraft Query Results Personnel Publications There were 116 spacecraft returned. Maps Spacecraft Name NSSDC ID Launch Date New/Updated Data ACTS 1993-058B 1993-09-11 Lunar/Planetary Events Alexis 1993-026A 1993-04-24 Arasene 1993-031B 1993-05-11 ASCA 1993-011A 1993-02-19 Astra 1C 1993-031A 1993-05-11 Atlas 2 ATLAS2 1993-04-07 Cosmos 2230 1993-001A 1993-01-11 Cosmos 2231 1993-004A 1993-01-18 Cosmos 2232 1993-006A 1993-01-25 Cosmos 2233 1993-008A 1993-02-08 Cosmos 2234 1993-010A 1993-02-16 Cosmos 2235 1993-010B 1993-02-16 Cosmos 2236 1993-010C 1993-02-16 Cosmos 2237 1993-016A 1993-03-25 Cosmos 2238 1993-018A 1993-03-29 Cosmos 2239 1993-020A 1993-04-01 Cosmos 2240 1993-021A 1993-04-01 Cosmos 2241 1993-022A 1993-04-05 Cosmos 2242 1993-024A 1993-04-15 Cosmos 2243 1993-028A 1993-04-26 Cosmos 2244 1993-029A 1993-04-27 Cosmos 2245 1993-030A 1993-05-10 Cosmos 2246 1993-030B 1993-05-10 Cosmos 2247 1993-030C 1993-05-10 Cosmos 2248 1993-030D 1993-05-10 Cosmos 2249 1993-030E 1993-05-10 Cosmos 2250 1993-030F 1993-05-10 Cosmos 2251 1993-036A 1993-06-15 Cosmos 2252 1993-038A 1993-06-23 Cosmos 2253 1993-038B 1993-06-23 Cosmos 2254 1993-038C 1993-06-23 Cosmos 2255 1993-038D 1993-06-23 Cosmos 2256 1993-038E 1993-06-23 Cosmos 2257 1993-038F