Ester Taints Wine Flavor 101 January 2017

Total Page:16

File Type:pdf, Size:1020Kb

Ester Taints Wine Flavor 101 January 2017 1/9/2017 Ester Taints Wine Flavor 101 January 2017 Linda F. Bisson Department of Viticulture and Enology University of California, Davis, CA Outline of Presentation Introduction to Esters Ester Formation during Fermentation Stability of Esters 1 1/9/2017 Introduction to Esters What Is an Ester? Volatile molecule Formed chemically from the reaction of an alcohol and a keto acid (slow in wine conditions) Formed enzymatically from an alcohol and a keto acid bound to the cofactor, Coenzyme A (fast in wine conditions) Characteristic fruity and floral aromas that become more negative as concentration increases 2 1/9/2017 Ester Formation O R1-OH + R2-CCoA O R1-O-C-R2 Where do Esters Come From? Can be formed by the chemical reaction of an alcohol and a keto acid Can be formed enzymatically by the plant Can be formed enzymatically by microbes 3 1/9/2017 Where do Esters Come from in Wine? Can be formed by the chemical reaction of an alcohol and a keto acid Can be formed enzymatically by the plant Formed enzymatically by microbes – Non-Saccharomyces yeasts – Saccharomyces – Lactic acid bacteria – Acetic acid bacteria The Two Ester Classes: Ethyl esters of acids – Keto acids from amino acid catabolism – Fatty acids from fatty acid biosynthesis or lipid degradation – Reaction with ethanol Acetate esters of alcohols – Ethanol – Derivatives from nitrogen metabolism » Fusel oils from amino acid catabolism » Alcohols from purine and pyrimidine catabolism – Reaction with acetyl-CoA 4 1/9/2017 Common Esters Found in Wine Ethyl Acetate (most 2-Methylpropyl Acetate common) 2-Methylbutyl Acetate Ethyl Propanoate 3-Methylbutyl Acetate Ethyl -2-Methylpropanoate (Isoamyl acetate) Ethyl-2 -Methylbutanoate Hexyl Acetate Ethyl-3-Methylbutanoate – Requires grape precursor Isobutyl Acetate Ethyl Lactate – Bacterial in origin Issues with Ester Formation Low concentrations are positive: – Fruit characters (tropical, apple) – Generic fruit (enhances perceptions of varietal fruit characters) – Floral characters (rose, violet) High concentrations are negative: – Too dominating of profile (strong yeast signature) – Mask other characters (depress ability to sense them) – Are definitely microbial and not varietal It is important to know the progression of aroma traits as a function of concentration 5 1/9/2017 Positive Wine Characters Associated with Esters Fruit Tropical fruit – Apple – Banana – Apricot – Coconut –Fig – Mango – Melon – Pineapple – Peach Floral – Pear –Rose – Prune Butter – Raspberry – Strawberry Spice – vanilla Honey Yeast (bread) Esters Associated with Apple Amyl acetate Ethyl acetate Ethyl butyrate Isobutyl acetate Phenethyl acetate 6 1/9/2017 Esters Associated with Pineapple Ethyl acetate Ethyl butanoate (Ethyl butyrate) Ethyl hexanoate Esters Found in Chardonnay Concentration Range Across Ester Strains (mg/L) Ethyl Acetate 50 - 95 Ethyl Butyrate 0.4 - 0.75 Isoamyl Acetate 3.5 - 11.0 Hexyl Acetate 1.0 - 1.7 Ethyl Hexanoate 1.0 - 2.2 Ethyl Octanoate 1.4 - 2.0 Ethyl Decanoate 0.6 - 0.9 7 1/9/2017 Negative Wine Characteristics Associated with Esters Foxy Nail polish Bubble gum/cotton candy Soapy Candle wax Perfume Intense fruit Intense floral Combinations with other compounds can be quite negative: two positives can create a negative Ester Expression Dependent upon chemical species present Dependent upon concentrations: relative and absolute Dependent upon matrix factors Dependent upon yeast strain and substrates 8 1/9/2017 In General . The higher the concentration the more negative the impression is of the character Longer chain esters fall into soapy, perfume range Combinations of esters can confer a stronger aroma than the sum of the individual compounds Negative Ester Characters Nail polish/glue: ethyl acetate Soap: ethyl octanoate, ethyl decanoate Perfume: hexyl acetate Rose: phenethylacetate, phenethyl alcohol Apple/unripe apple: Ethyl 2-methyl- butyrate 9 1/9/2017 Esters Found in Chardonnay Concentration Range Across Ester Strains (mg/L) Ethyl Acetate 50 - 95 Ethyl Butyrate 0.4 - 0.75 Isoamyl Acetate 3.5 - 11.0 Hexyl Acetate 1.0 - 1.7 Ethyl Hexanoate 1.0 - 2.2 Ethyl Octanoate 1.4 - 2.0 Ethyl Decanoate 0.6 - 0.9 Ester Formation During Fermentation 10 1/9/2017 Ester Formation during Fermentation Influence of non-Saccharomyces yeasts Production by Saccharomyces Production by acetic and lactic acid bacteria Production by Non-Saccharomyces yeast Grape flora Winery residents Primary genera: – Hanseniaspora (Kloeckera) – Metschnikowia (Candida) – Candida – Pichia – Torulaspora – Kluveromyces 11 1/9/2017 Production by Non-Saccharomyces yeast Contribute generic fruity and floral notes Can make excessive ethyl acetate (Hanseniaspora) Better adapted to lower temperatures than Saccharomyces – Bloom during cold-settling – Bloom during cold maceration – Can be sulfite tolerant Production by Saccharomyces Yeast Strain Nutrition (Sugar, Nitrogen) – Generally increased nitrogen in vineyard increases ester concentrations – During fermentation impacted by both nitrogen + source (NH4 , amino acids) and nitrogen level interacting with yeast genetic background Temperature Grape Variety 12 1/9/2017 Stability of Esters Ester Loss Volatilization: – temperature dependent – fermentation vigor dependent Hydrolysis: – pH dependent – time dependent Matrix effects: – masking: ethanol – enhancing: sugar, polyphenol, tannin 13 1/9/2017 Ester Taint Tasting Glass 1: Control Chardonnay wine Glass 2: Phenethyl alcohol: rose/floral/perfume Glass 3: Phenethylacetate: honey/rose Glass 4: Ethyl butyrate: tropical Glass 5: Ethyl 5-methyl butyrate: green apple Glass 6: Ethyl octanoate: tropical/sour apple/soap Ester Tasting Compound conc. in wine threshold in glass (mg/L) (mg/L) (ppm) Phenethyl ethanol 18-197 10 100.0 Phenethyl acetate trace-0.75 0.25 1.0 Ethyl butyrate 0.7-2 var 1.5 Ethyl 2-methyl butyrate trace-0.03 var 0.03 Ethyl octanoate 0.05-3.8 0.02 2.0 14.
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness
    Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness Level, in Different Cultivars and During Eating Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gulsah Ozcan Graduate Program in Food Science and Technology The Ohio State University 2010 Thesis Committee: Sheryl Ann Barringer, Adviser W. James Harper John Litchfield 1 Copyright by Gülşah Özcan 2010 ii ABSTRACT Strawberry samples with enzyme activity and without enzyme activity (stannous chloride added) were measured for real time formation of lipoxygenase (LOX) derived aroma compounds after 5 min pureeing using selected ion flow tube mass spectrometry (SIFT-MS). The concentration of (Z)-3-hexenal and (E)-2-hexenal increased immediately after blending and gradually decreased over time while hexanal concentration increased for at least 5 min in ground strawberries. The formation of hexanal was slower than the formation of (Z)-3-hexenal and (E)-2-hexenal in the headspace of pureed strawberries. The concentration of LOX aldehydes and esters significantly increased during refrigerated storage. Damaging strawberries increased the concentration of LOX aldehydes but did not significantly affect the concentration of esters. The concentrations of many of the esters were strongly correlated to their corresponded acids and/or aldehydes. The concentration of LOX generated aldehydes decreased during ripening, while fruity esters increased. Different varieties had different aroma profiles and esters were the greatest percentage of the volatiles. The aroma release of some of the LOX derived aldehydes in the mouthspace in whole strawberries compared to chopped strawberries showed that these volatiles are formed in the mouth during chewing.
    [Show full text]
  • Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2019 doi:10.20944/preprints201912.0109.v1 Peer-reviewed version available at Fermentation 2020, 6, 14; doi:10.3390/fermentation6010014 Saccharomyces Arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile Matthew J. Winans1,2,*, Yuki Yamamoto1, Yuki Fujimaru1, Yuki Kusaba1, Jennifer E.G. Gallagher2, Hiroshi Kitagaki1 1Saga University of Agriculture, Saga City, Saga, Japan 2West Virginia University, Morgantown, West Virginia, United States of America *Corresponding Author: Matthew J. Winans Email: [email protected] Telephone: (304) 483-1786 Fax: (304) 293-6363 Address: 53 Campus Drive, West Virginia University – Biology Department, Morgantown, W.Va., 26506-6057, USA Abstract The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. We used hierarchical clustering heatmapping with principal component analysis for metabolic profiling and found that the low levels of endogenous amino/organic acids clustered S. arboricola apart from the S. cerevisiae industrial strains. In sake fermentations, hybrid strains showed a mosaic profile of parental strains, while metabolic analysis suggested S.
    [Show full text]
  • The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage Charles F
    WORKSHOP The Composition of Strawberry Aroma Is Influenced by Cultivar, Maturity, and Storage Charles F. Forney1, Willy Kalt2, and Michael A. Jordan3 Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main Street, Kentville, N.S., B4N 1J5, Canada Strawberry (Fragaria ×ananassa Duch.) fruit have a unique, they both may contribute to strawberry aroma (Dirinck et al., 1981; highly desirable flavor and are one of the most popular summer fruits. Schreier, 1980). Sugars, acids, and aroma volatiles contribute to the characteristic The volatile profile obtained from strawberry fruit is influenced by strawberry flavor, which is dependent on the proper balance of these the analytical methods used to characterize these compounds. Volatiles chemical constituents. While sugars and acids are responsible for the from whole, intact fruit can be collected using headspace techniques; sweetness and tartness of the fruit, aroma volatiles provide the unique, these samples can be analyzed directly or concentrated using adsor- fruity flavors that characterize a fresh strawberry. bent or cold traps. Volatiles are also collected from homogenized fruit The aroma of fresh strawberries is dependent on many factors. The or juice, using either headspace or solvent extraction techniques. large genetic variability in the nature of strawberry aroma results in Volatile samples are normally analyzed by gas liquid chromatography differences in flavor among cultivars. In addition, the aroma changes using a variety of methods of sample introduction, including liquid dramatically during fruit ripening after harvest; therefore, it is impor- injection, thermal desorption, and cold on-column injection. High tant to preserve and enhance the ripe fruit aroma during postharvest performance liquid chromatography (HPLC) has been used for some handling.
    [Show full text]
  • Factors Affecting Extraction of Adsorbed Wine Volatile Compounds and Wood T Extractives from Used Oak Wood ⁎ Eduardo Coelho , José A
    Food Chemistry 295 (2019) 156–164 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem Factors affecting extraction of adsorbed wine volatile compounds and wood T extractives from used oak wood ⁎ Eduardo Coelho , José A. Teixeira, Lucília Domingues, Teresa Tavares, José M. Oliveira CEB – Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710–057 Braga, Portugal ARTICLE INFO ABSTRACT Keywords: During ageing, wood adsorbs volatile compounds from beverages. However, chemical interactions involved in Wood sorption sorption still remain unclear, as well as wood capacity to transfer such compounds to subsequent matrices when Hydrophobic adsorption reused. Therefore, extractions were conducted from used wood manipulating variables such as ethanol con- Wine volatiles centration, contact temperature and pH, in order to determine their effect in the interaction and consequent Wood extractives recovery of wine volatiles from wood. Mathematical models were outlined, which demonstrated an exclusive Wood ageing effect of ethanol concentration on the extraction of wine volatiles adsorbed in wood, more prominentfor compounds of higher hydrophobicity. Thus adsorption of wine volatiles was shown to be based on hydrophobic interactions. Recovery of wood extractives was also modeled, confirming the known positive effect of ethanol and temperature on the overall extraction of characteristic wood compounds. When reused, wood transferred wine compounds to hydroalcoholic matrices, demonstrating
    [Show full text]
  • Fermentation and Ester Taints
    Fermentation and Ester Taints Anita Oberholster Introduction: Aroma Compounds • Grape‐derived –provide varietal distinction • Yeast and fermentation‐derived – Esters – Higher alcohols – Carbonyls – Volatile acids – Volatile phenols – Sulfur compounds What is and Esters? • Volatile molecule • Characteristic fruity and floral aromas • Esters are formed when an alcohol and acid react with each other • Few esters formed in grapes • Esters in wine ‐ two origins: – Enzymatic esterification during fermentation – Chemical esterification during long‐term storage Ester Formation • Esters can by formed enzymatically by both the plant and microbes • Microbes – Yeast (Non‐Saccharomyces and Saccharomyces yeast) – Lactic acid bacteria – Acetic acid bacteria • But mainly produced by yeast (through lipid and acetyl‐CoA metabolism) Ester Formation Alcohol function Keto acid‐Coenzyme A Ester Ester Classes • Two main groups – Ethyl esters – Acetate esters • Ethyl esters = EtOH + acid • Acetate esters = acetate (derivative of acetic acid) + EtOH or complex alcohol from amino acid metabolism Ester Classes • Acetate esters – Ethyl acetate (solvent‐like aroma) – Isoamyl acetate (banana aroma) – Isobutyl acetate (fruit aroma) – Phenyl ethyl acetate (roses, honey) • Ethyl esters – Ethyl hexanoate (aniseed, apple‐like) – Ethyl octanoate (sour apple aroma) Acetate Ester Formation • 2 Main factors influence acetate ester formation – Concentration of two substrates acetyl‐CoA and fusel alcohol – Activity of enzyme responsible for formation and break down reactions • Enzyme activity influenced by fermentation variables – Yeast – Composition of fermentation medium – Fermentation conditions Acetate/Ethyl Ester Formation – Fermentation composition and conditions • Total sugar content and optimal N2 amount pos. influence • Amount of unsaturated fatty acids and O2 neg. influence • Ethyl ester formation – 1 Main factor • Conc. of precursors – Enzyme activity smaller role • Higher fermentation temp formation • C and N increase small effect Saerens et al.
    [Show full text]
  • Isoamyl Acetate
    SUMMARY OF DATA FOR CHEMICAL SELECTION Isoamyl Acetate CAS No. 123-92-2 Prepared for NTP by Technical Resources International, Inc Prepared on 11/94 Under NCI Contract No. N01-CP-56019 Table of Contents I. Chemical Identification II. Exposure Information Table 1. Levels of isoamyl acetate reported in foods III. Evidence for Possible Carcinogenic Activity Appendix A: Structural Analogs of Isoamyl Acetate IV. References SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry No.: 123-92-2 Chem. Abstr. Name: 1-Butanol, 3-methyl-, acetate Synonyms: Acetic acid 3-methylbutyl ester; acetic acid, isopentyl ester; AI3-00576; banana oil; isoamyl ethanoate; isopentyl acetate; isopentyl alcohol, acetate; pear oil; 3-methyl-1-butanol acetate; 3-methyl-1-butyl acetate; 3-methylbutyl acetate; 3-methylbutyl ethanoate; i-amyl acetate Structure: Molecular Formula and Molecular Weight: C7H14O2 Mol. Wt.: 130.18 Chemical and Physical Properties: Description: Colorless, flammable liquid with a banana-like odor (ACGIH, 1993). Boiling Point: 142°C (Lide, 1993) Melting Point: -78.5°C (Mark, et al, 1984; Lide, 1993) Solubility: Soluble in water (2000 mg/L at 25°C) (Howard, 1990); soluble in ethanol, diethyl ether, and acetone (Lide, 1993). Vapor 4.5 mm Hg at 20°C (Howard, 1990) Pressure: Refractive 1.4003 (Lide, 1993) Index: Flash Point: closed cup, 33°C; open cup, 38°:C (Budavari, 1989) Density: 0.876 (Lewis, 1993) Reactivity: Thermal decomposition of isoamyl acetate may produce acrid fumes. Contact with strong oxidizing agents, strong acids, and alkaline materials should be avoided (Haarmann & Reimer Corp., 1994). Hazardous decomposition products of isoamyl acetate include CO and CO2 (AESAR/Alfa, 1994) Log 2.13 (Howard, 1990) P(octanol/water partition coefficient): Technical Isoamyl acetate is commercially available as both a natural and synthetic product with a purity Products and range of 95-99+%.
    [Show full text]
  • Differences in Volatile Ester Composition Between Fragaria Ananassa and F
    Scientia Horticulturae 150 (2013) 47–53 Contents lists available at SciVerse ScienceDirect Scientia Horticulturae journa l homepage: www.elsevier.com/locate/scihorti × Differences in volatile ester composition between Fragaria ananassa and F. ଝ vesca and implications for strawberry aroma patterns a,b b c b a,∗ Jing Dong , Yuntao Zhang , Xiaowei Tang , Wanmei Jin , Zhenhai Han a Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China b Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, No. 12 Ruiwangfen, Xiangshan, Haidian District, Beijing 100093, PR China c Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Banjin, Haidian District, Beijing 100097, PR China a r t i c l e i n f o a b s t r a c t Article history: Esters are a very important component of strawberry (Fragaria sp.) aroma. In this study, fruit volatiles Received 8 April 2012 were isolated by solid-phase microextraction and analyzed by gas chromatography–mass spectrometry Received in revised form 1 November 2012 (SPME/GC–MS). It was found that F. × ananassa had more esters than F. vesca, but there was no significant Accepted 1 November 2012 difference in average relative content of esters. Twenty five esters were selected as predominant esters, 16 of which were prevalent in F. × ananassa and another 16 in F. vesca. Among them, hexyl acetate, Keywords: octyl acetate, ethyl butyrate, ethyl hexanoate, ethyl octanoate, methyl decanoate, and ethyl decanoate Volatile ester composition were found in both F.
    [Show full text]
  • Flavour in Food
    Flavour in food Edited by Andree Voilley and Patrick Etievant d^^ CRC Press Boca Raton Boston New York Washington, DC WOODHEAD PUBLISHING LIMITEI Cambridge England Published by Woodhead Publishing Limited Abington Hall, Abington Cambridge CBl 6AH England www.woodheadpublishing.com Published in North America by CRC Press LLC 6000 Broken Sound Parkway, NW Suite 300 Boca Raton, FL 33487 USA First published 2006, Woodhead Publishing Limited and CRC Press LLC © 2006, Woodhead Publishing Limited The authors have asserted their moral rights. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited. The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
    [Show full text]
  • Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters from Volatile Organic Acids
    ARTICLE Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters From Volatile Organic Acids Donovan S. Layton,1,2 Cong T. Trinh1,2,3 1 Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 2 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 3 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee; telephone: þ865-974-8121; fax: 865-974-7076; e-mail: [email protected] Biotechnol. Bioeng. 2016;113: 1764–1776. ABSTRACT: Volatile organic acids are byproducts of fermentative ß 2016 Wiley Periodicals, Inc. metabolism, for example, anaerobic digestion of lignocellulosic KEYWORDS: modular chassis cell; carboxylate; ester; acyl acetate; biomass or organic wastes, and are often times undesired inhibiting acyl acylate; ester fermentative pathway cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol Introduction acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic Harnessing renewable or waste feedstocks (e.g., switchgrass, corn acids to acyl CoAs and alcohols to form a combinatorial library of stover, agricultural residue, or municipal solid waste)
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan BIOCHEMICAL STUDIES of ZOOGLOEA RAMIGERA ISOLATE 115
    This dissertation has been microfilmed exactly as received 69-11,658 JOYCE, Gayle Hahn, 1937- BIOCHEMICAL STUDIES OF ZOOGLOEA RAMIGERA ISOLATE 115 WITH EMPHASIS ON ETHYL ALCOHOL METABOLISM. The Ohio State University, Ph.D., 1968 Microbiology University Microfilms, Inc., Ann Arbor, Michigan BIOCHEMICAL STUDIES OF ZOOGLOEA RAMIGERA ISOLATE 115 WITH EMPHASIS ON ETHYL ALCOHOL METABOLISM DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University v * By Gayle hT Joyce, B.S., M.S. ****** The Ohio State University 1968 Approved by / Adviser ' fj . qpobiAcademic Faculty of Miqpobial.qpobiAcademic and Cellular Biology ACKNOWLEDGMENTS The author wishes to express her sincere gratitude to Dr. Patrick R. Dugan for the many helpful suggestions and guidance given during the course of this study and in the preparation of this manuscript. Her appreciation is expressed to the graduate students of the Faculty of Microbial and Cellular Biology, particularly to Mr. Jon Tuttle, for their helpful discussions and assistance, to Mrs. John Olenzak for her technical assistance, and to Mr. Robert Joyce for his patience during the course of this study. The use of the facilities of the Water Resources Center of The Ohio State University is appreciated. The research was supported in part by Research Grant No. WP-00713 from the Federal Water Pollution Control Administration, U.S. Department of the Interior. VITA September 10, 1937 Born - Cleveland, Ohio 1959 ....... B.S., Kent State University, Kent, Ohio 1959-1961 ........ Research Assistant, Department of Microbiology, The Pennsylvania State University, University Park, Pennsylvania 1961 ......
    [Show full text]
  • Product Specification
    Product Specification Product Name: ETHYL BUTYRATE NATURAL Vigon Code: 500132 CAS Number: 105-54-4 FEMA Number: 2427 Characteristic: Specification: Acid Value 0.000 1.000 Purity % 98.00 100.00 Gas Chromatograph PASSES TEST Odor POWERFUL, FRUITY, BANANA-LIKE ODOR. Refractive Index (@20c) 1.3910 1.3940 Specific Gravity (@25c) 0.8700 0.8770 Color/appearance COLORLESS LIQUID. Additional Product Information: Flash Point: 75 °F Shelf Life: 36 Months Storage Conditions: Stable when stored in its original package, tightly sealed in a cool (46-90ºF) and dry location out of direct heat and light. Effective Date: September 11, 2012 Printed Date:September 8, 2021 Vigon International, LLC. 127 Airport Road East Stroudsburg, PA 18301-9629 USA | Tel: +1 570-476-6300 | Fax: +1 570-476-1110 | Email: [email protected] | Web: vigon.com SAFETY DATA SHEET 500132 ETHYL BUTYRATE NATURAL Revision Date: 05-17-2021 Page 1 of 11 Version # 06 Print Date: 05-17-2021 1. IDENTIFICATION Product Description: ETHYL BUTYRATE NATURAL CAS # 105-54-4 FEMA Number 2427 Other means of identification Vigon Item # 500132 Recommended use Concentrated aromatic and flavor ingredient which may be used in flavor and fragrance compounds according to legal and IFRA or FEMA GRAS/FDA guidelines. Recommended restrictions For Manufacturing Use Only Company 24 Hour Emergency Response Information Vigon International, Inc. INFOTRAC (ACCT# 78928); 127 Airport Road 1-800-535-5053 WITHIN THE U.S.A. 1-352-323-3500 OUTSIDE THE U.S.A. E. Stroudsburg, PA 18301 For information call: 570-476-6300 Web Site: www.vigon.com Manufacturer/Importer/Supplier/Distributor information Manufacturer Company name Vigon International, Inc.
    [Show full text]