Isoamyl Acetate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness
Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness Level, in Different Cultivars and During Eating Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gulsah Ozcan Graduate Program in Food Science and Technology The Ohio State University 2010 Thesis Committee: Sheryl Ann Barringer, Adviser W. James Harper John Litchfield 1 Copyright by Gülşah Özcan 2010 ii ABSTRACT Strawberry samples with enzyme activity and without enzyme activity (stannous chloride added) were measured for real time formation of lipoxygenase (LOX) derived aroma compounds after 5 min pureeing using selected ion flow tube mass spectrometry (SIFT-MS). The concentration of (Z)-3-hexenal and (E)-2-hexenal increased immediately after blending and gradually decreased over time while hexanal concentration increased for at least 5 min in ground strawberries. The formation of hexanal was slower than the formation of (Z)-3-hexenal and (E)-2-hexenal in the headspace of pureed strawberries. The concentration of LOX aldehydes and esters significantly increased during refrigerated storage. Damaging strawberries increased the concentration of LOX aldehydes but did not significantly affect the concentration of esters. The concentrations of many of the esters were strongly correlated to their corresponded acids and/or aldehydes. The concentration of LOX generated aldehydes decreased during ripening, while fruity esters increased. Different varieties had different aroma profiles and esters were the greatest percentage of the volatiles. The aroma release of some of the LOX derived aldehydes in the mouthspace in whole strawberries compared to chopped strawberries showed that these volatiles are formed in the mouth during chewing. -
Isobutyl Acetate Acetic Acid Isobutyl Ester Acetic Acid 2-Methylpropyl Ester 2-Methyl-1-Propyl Acetate
Product Information Isobutyl Acetate Acetic Acid Isobutyl Ester Acetic Acid 2-Methylpropyl Ester 2-Methyl-1-Propyl Acetate (CH3)2CHCH2OC(O)CH3 Description Physical properties Isobutyl acetate is a colorless solvent Molecular Weight 116.16 with medium volatility and a characteristic fruity ester odor. It has Relative Evaporation Rate nBuAc=1 1.7 good solvency characteristics for ° polymers, resins, oils and cellulose Vapor Pressure at 20 C, mmHg 15 nitrate and is miscible with all Density at 20°C lb/gal 7.26 common organic solvents. ° Specific Gravity at 20/20 C 0.873 ° Viscosity at 20 C cP 0.7 Surface Tension (dynes/cm at 20°C) 23.4 ° (dynes/cm at 25 C) - Hansen Solubility Parameters Total 8.2 Non-Polar 7.4 Polar 1.8 Hydrogen Bonding 3.1 ° Boiling Point, C at 760mm Hg 118.0 Solubility at 20°C %Wt In Water 0.66 %Wt Water in 1.1 ° Closed Cup Flash Point F62 † SARA 313 (see note 1 )N †† Hazardous Air Pollutant (see note 2 )N † Note 1: Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III Section 313 †† Note 2: Hazardous Air Pollutants listed under Title III of the Clean Air Act Classification/Registry Numbers CAS Number 110-19-0 EINECS 203-745-1 (Please see second page) DOW RESTRICTED - For internal use only*Trademark of The Dow Chemical Company Isobutyl Acetate Acetic Acid Isobutyl Ester Acetic Acid 2-Methylprpoyl Ester 2-Methyl-1-Propyl Acetate Features • Miscible with all common organic solvents (alcohols, ketones, aldehydes, glycols, ethers, glycol ethers) • Readily thinned with aromatic and aliphatic hydrocarbons • Limited -
Solvent Fractionation and Acetone Precipitation for Crude Saponins from Eurycoma Longifolia Extract
molecules Article Solvent Fractionation and Acetone Precipitation for Crude Saponins from Eurycoma longifolia Extract Lee Suan Chua 1,2,* , Cher Haan Lau 1, Chee Yung Chew 2 and Dawood Ali Salim Dawood 1 1 Metabolites Profiling Laboratory, Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310 UTM, Johor, Malaysia; [email protected] (C.H.L.); [email protected] (D.A.S.D.) 2 Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310 UTM, Johor, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +607-5531566 Academic Editors: Raffaele Capasso and Lorenzo Di Cesare Mannelli Received: 22 March 2019; Accepted: 2 April 2019; Published: 10 April 2019 Abstract: Eurycoma longifolia is a popular folk medicine in South East Asia. This study was focused on saccharide-containing compounds including saponins, mainly because of their medical potentials. Different organic solvents such as ethyl acetate, butanol, and chloroform were used to fractionate the phytochemical groups, which were consequently precipitated in cold acetone. Solvent fractionation was found to increase the total saponin content based on colorimetric assay using vanillin and sulfuric acid. Ethyl acetate fraction and its precipitate were showed to have the highest crude saponins after acetone precipitation. The samples were shown to have anti-proliferative activity comparable with tamoxifen (IC50 = 110.6 µg/mL) against human breast cancer cells. The anti-proliferative activities of the samples were significantly improved from crude extract (IC50 = 616.3 µg/mL) to ethyl acetate fraction (IC50 = 185.4 µg/mL) and its precipitate (IC50 = 153.4 µg/mL). -
Fermentation and Ester Taints
Fermentation and Ester Taints Anita Oberholster Introduction: Aroma Compounds • Grape‐derived –provide varietal distinction • Yeast and fermentation‐derived – Esters – Higher alcohols – Carbonyls – Volatile acids – Volatile phenols – Sulfur compounds What is and Esters? • Volatile molecule • Characteristic fruity and floral aromas • Esters are formed when an alcohol and acid react with each other • Few esters formed in grapes • Esters in wine ‐ two origins: – Enzymatic esterification during fermentation – Chemical esterification during long‐term storage Ester Formation • Esters can by formed enzymatically by both the plant and microbes • Microbes – Yeast (Non‐Saccharomyces and Saccharomyces yeast) – Lactic acid bacteria – Acetic acid bacteria • But mainly produced by yeast (through lipid and acetyl‐CoA metabolism) Ester Formation Alcohol function Keto acid‐Coenzyme A Ester Ester Classes • Two main groups – Ethyl esters – Acetate esters • Ethyl esters = EtOH + acid • Acetate esters = acetate (derivative of acetic acid) + EtOH or complex alcohol from amino acid metabolism Ester Classes • Acetate esters – Ethyl acetate (solvent‐like aroma) – Isoamyl acetate (banana aroma) – Isobutyl acetate (fruit aroma) – Phenyl ethyl acetate (roses, honey) • Ethyl esters – Ethyl hexanoate (aniseed, apple‐like) – Ethyl octanoate (sour apple aroma) Acetate Ester Formation • 2 Main factors influence acetate ester formation – Concentration of two substrates acetyl‐CoA and fusel alcohol – Activity of enzyme responsible for formation and break down reactions • Enzyme activity influenced by fermentation variables – Yeast – Composition of fermentation medium – Fermentation conditions Acetate/Ethyl Ester Formation – Fermentation composition and conditions • Total sugar content and optimal N2 amount pos. influence • Amount of unsaturated fatty acids and O2 neg. influence • Ethyl ester formation – 1 Main factor • Conc. of precursors – Enzyme activity smaller role • Higher fermentation temp formation • C and N increase small effect Saerens et al. -
Electrolytic Study of Basic Beryllium Acetate in Carbon Disulphide at 303K, 308K, 313K
IARJSET ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 7, Issue 11, November 2020 DOI 10.17148/IARJSET.2020.71106 Electrolytic Study of Basic Beryllium Acetate in Carbon disulphide at 303K, 308K, 313K Rajeev Kumar Sharma1, Renu Singhal2 Assistant Professor, Department of Chemistry, D.S. College, Aligarh, U.P. (India)1 Associate Professor, Department of Chemistry, D.S. College, Aligarh, U.P. (India)2 Abstract: The electrolytic study of Basic Beryllium Acetate (B.B.A.) in carbon disulphide were reported at 303K, 308K, 313K, the solute solvent interaction have been carried out by computing various Physico-chemical Acoustic Parameters [Apparent Molal adiabatic compressibility (k), Isentropic compressibility (S), Intermolecular free length (Lf), Specific Acoustic Impedance (Z), Relative Association and Solvation Number (Sn)], these parameters have been evaluated by using ultrasonic velocity, density, viscosity data. The results of these parameters indicates the strength of molecular interaction. Keywords: Molecular Interaction, Electrolytic, viscous behavior of Basic Beryllium acetate. I. INTRODUCTION The Isentropic compressibility of dilute aqueous solution of electrolytes decreases with increasing conc. indicating a strong interaction of the dissolved ion with the alkanols1-7, the non-aqueous solution of electrolytes have drawn the attention of same workers.7-9 Now, we are reporting a study of Ultrasound velocity, density and viscosity measurement at 300C, 350C, 400C have 8 been used to calculate isentropic compressibility (s), Intermolecular Free Lenght (Lf) , Specific Acoustic Impedance 9 10 (Z) , Molar sound velocity (R), Relative association (RA) , Apparent molal adiabatic compressibility (k), Wada 11 0 0 constant (B), Shear’s relaxation time (s) and Solvation numbers (Sn) of B.B.A. -
Isopropyl Acetate Iac
ISOPROPYL ACETATE IAC CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 60°F O.C. 37°F C.C. 7.1 Grades of Purity: 95-99+% Common Synonyms Watery liquid Colorless Pleasant fruity 4.2 Flammable Limits in Air: 1.8%-8.0% 7.2 Storage Temperature: Ambient Acetic acid, isopropyl ester odor 4.3 Fire Extinguishing Agents: Alcohol foam, 2-Propyl acetate 7.3 Inert Atmosphere: No requirement dry chemical, carbon dioxide 7.4 Venting: Open (flame arrester) or pressure- Floats and mixes slowly with water. Flammable, irritating vapor is 4.4 Fire Extinguishing Agents Not to Be vacuum produced. Used: Not pertinent 7.5 IMO Pollution Category: Currently not available 4.5 Special Hazards of Combustion Keep people away. Products: Not pertinent 7.6 Ship Type: Currently not available Shut off ignition sources and call fire department. 4.6 Behavior in Fire: Not pertinent 7.7 Barge Hull Type: Currently not available Stay upwind and use water spray to ``knock down'' vapor. Avoid contact with liquid and vapor. 4.7 Auto Ignition Temperature: 860°F Notify local health and pollution control agencies. 4.8 Electrical Hazards: Not pertinent 8. HAZARD CLASSIFICATIONS Protect water intakes. 4.9 Burning Rate: Currently not available 8.1 49 CFR Category: Flammable liquid 4.10 Adiabatic Flame Temperature: Currently 8.2 49 CFR Class: 3 FLAMMABLE. not available Fire Flashback along vapor trail may occur. 8.3 49 CFR Package Group: Not listed. 4.11 Stoichometric Air to Fuel Ratio: 30.9 Vapor may explode if ignited in an enclosed area. -
Dehydrogenation of Ethanol to Acetaldehyde Over Different Metals Supported on Carbon Catalysts
catalysts Article Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts Jeerati Ob-eye , Piyasan Praserthdam and Bunjerd Jongsomjit * Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] (J.O.-e.); [email protected] (P.P.) * Correspondence: [email protected]; Tel.: +66-2-218-6874 Received: 29 November 2018; Accepted: 27 December 2018; Published: 9 January 2019 Abstract: Recently, the interest in ethanol production from renewable natural sources in Thailand has been receiving much attention as an alternative form of energy. The low-cost accessibility of ethanol has been seen as an interesting topic, leading to the extensive study of the formation of distinct chemicals, such as ethylene, diethyl ether, acetaldehyde, and ethyl acetate, starting from ethanol as a raw material. In this paper, ethanol dehydrogenation to acetaldehyde in a one-step reaction was investigated by using commercial activated carbon with four different metal-doped catalysts. The reaction was conducted in a packed-bed micro-tubular reactor under a temperature range of 250–400 ◦C. The best results were found by using the copper doped on an activated carbon catalyst. Under this specified condition, ethanol conversion of 65.3% with acetaldehyde selectivity of 96.3% at 350 ◦C was achieved. This was probably due to the optimal acidity of copper doped on the activated carbon catalyst, as proven by the temperature-programmed desorption of ammonia (NH3-TPD). In addition, the other three catalyst samples (activated carbon, ceria, and cobalt doped on activated carbon) also favored high selectivity to acetaldehyde (>90%). -
Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging. -
Butyl Acetate Safety Data Sheet Sipchem Chemicals Company
Butyl Acetate Safety Data Sheet Sipchem Chemicals Company SCC Sipchem Chemicals Company Safety Data Sheet According to Regulation (EC) No. 1272/2008, Regulation (EC) 1907/2006 1. Identification of the substance/mixture and of the responsible company 1.1. Product Identifier: Butyl Acetate (C6H12O2) BUTYL ACETATE; BUTYL ETHANOATE; 1-BUTYL ACETATE; ACETIC ACID N-BUTYL ESTER; ACETIC ACID, BUTYL ESTER; 1-ACETOXYBUTANE; UN 1123; C6H12O2 1.2. Relevant identified uses of the substance or mixture and uses advised against: Identified uses: Industrial solvent, solvent for coatings, films, perfumes and synthetic flavoring agents, extraction solvent for various products and laboratory procedures. 1.3. Details of the supplier of the safety data sheet: Sipchem Chemicals Company (SCC) PO Box 12021 Post Coe 31961 Jubail Industrial City Kingdom of Saudi Arabia Website: www.sipchem.com/en/affiliates.htm 1.4. Emergency telephone number: 00966-359 9985 (24 hours) 2. Hazards Identification Butyl Acetate CAS 123-86-4 Purity: >99.0% Trace Impurities: Butanol 2.1. Classification of the substance or mixture: Classification of Labeling in accordance with the CLP Regulations: Classification Labeling N International Hazard Class and Hazard statement Pictogram Hazard Suppl. Hazard Specific o Index No Chemical EC No CAS No Category Code(s) Code(s) Signal Statement statement Conc. Limits, t Identification Word Code(s) Code(s) M-factors e Code(s) s 607-025- R:10-66-67 GHS02 H225 123-86-4 Flam. Liq. 3 00-1 Butyl Acetate 204-658-1 GHS07 H319 #EUH066 100 STOT SE 3 H336 Classification according to Regulation 1272/2008/EC (CLP) Basis for Classification This substance is classified based on Directive 1272/2008/EC and its amendments (CLP Regulation,GHS) BUTYL ACETATE (123-86-4) SAFETY DATA SHEET according to Regulation (EC) No. -
Hydrogenation of Ethyl Acetate to Ethanol Over Ni-Based Catalysts Obtained from Ni/Al Hydrotalcite-Like Compounds
Molecules 2010 , 15 , 5139-5152; doi:10.3390/molecules15085139 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Hydrogenation of Ethyl Acetate to Ethanol over Ni-Based Catalysts Obtained from Ni/Al Hydrotalcite-Like Compounds Beixiao Zhang, Lu Lin *, Junping Zhuang, Ying Liu *, Lincai Peng and Longfei Jiang State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China * Author to whom correspondence should be addressed; E-Mails: [email protected] (L.L.); [email protected] (Y.L.). Received: 18 June 2010; in revised form: 17 July 2010 / Accepted: 23 July 2010 / Published: 29 July 2010 Abstract: A series of Ni-based catalysts were prepared using hydrogen reduction of Ni/Al hydrotalcite-like compounds (Ni/Al HTlcs) synthesized by coprecipitation. The physico- chemical properties of Ni/Al hydrotalcite-like compounds and the corresponding Ni-based catalysts were characterized using inductively coupled plasma (ICP), BET surface areas, X- ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The results indicated that Ni/Al HTlcs with layered structures could be successfully prepared by the coprecipitation method, and the characteristic HTlcs reflections were also observed in the XRD analysis. The NiO and Ni 0 phases were identified in all Ni-based catalysts, which displayed randomly interconnected pores and no layer structures. In addition, the studies also found the Ni/Al HTlcs and Ni- based catalysts had high specific surface areas, low pore volumes and low pore diameters. The catalytic hydrogenation of ethyl acetate to ethanol with Ni-based catalysts was also investigated. -
Dc349fr3501 A3 1/12
DC349FR3501_A3 Safety Data Sheet DEVTHANE 349 LOW HAP ARMAG WHITE PTA Bulk Sales Reference No.: DC349FR3501 SDS Revision Date: 02/11/2019 SDS Revision Number: A3-7 1. Identification of the preparation and company 1.1. Product identifier Product Identity DEVTHANE 349 LOW HAP ARMAG WHITE PTA Bulk Sales Reference No. DC349FR3501 1.2. Relevant identified uses of the substance or mixture and uses advised against Intended Use See Technical Data Sheet. 1.3. Details of the supplier of the safety data sheet Company Name International Paint LLC Manufacturer: Akzo Nobel Coatings International Paint 6001 Antoine Drive Houston, Texas 77091 Emergency CHEMTREC (800) 424-9300 International Paint (713) 682-1711 Poison Control Center (800) 854-6813 Customer Service International Paint (800) 589-1267 Fax No. (800) 631-7481 2. Hazard identification of the product 2.1. Classification of the substance or mixture Flam. Liq. 3;H226 Flammable liquid and vapor. Skin Sens. 1;H317 May cause an allergic skin reaction. Aquatic Chronic 3;H412 Harmful to aquatic life with long lasting effects. 2.2. Label elements Using the Toxicity Data listed in section 11 & 12 the product is labelled as follows. Warning. H226 Flammable liquid and vapor. H317 May cause an allergic skin reaction. H412 Harmful to aquatic life with long lasting effects. P210 Keep away from heat / sparks / open flames / hot surfaces - No smoking. P235 Keep cool. P240 Ground / bond container and receiving equipment. 1/12 DC349FR3501_A3 P241 Use explosion-proof electrical / ventilating / light / equipment. P242 Use only non-sparking tools. P243 Take precautionary measures against static discharge. P261 Avoid breathing dust / fume / gas / mist / vapors / spray. -
A New Take on the Aspirin Synthesis Lab: a Multi-Step Organic Synthesis Laboratory for High School Students
A new take on the aspirin synthesis lab: A multi-step organic synthesis laboratory for high school students Michael P. Kowalski Rationale The use of the extracts of various plants for the treatment of pain and fever goes back several centuries. A tea made from the leaves or bark of Willow ( Saliaceae ) was found to be especially effective. By the late 19th Century, the active ingredient in these plant extracts, salicylic acid, had been identified. In 1874, the process for the commercial production of salicylic acid was perfected. The use of salicylic acid as an analgesic became widespread. However, side effects, such as gastric bleeding, made long term use of the drug impossible for many patients. In 1895, Felix Hoffman of the Fredrick Bayer Company found a method to acetylate salicylic acid, producing acetyl salicylic acid. This derivative was found to be as effective as salicylic acid as an analgesic but did not have the side effects associated with salicylic acid. The new drug was named “aspirin”, a name inspired by Saint Aspirinius, the patron saint of headaches. The introduction of aspirin marks the beginning of the modern pharmaceutical industry. The mechanism as to how aspirin alleviates pain was not elucidated until the 1970’s, when it was found that aspirin inhibits COX 1 and COX 2, enzymes that catalyze the formation of prostaglandins, substances that cause inflammation (1). The synthesis of aspirin, acetylsalicylic acid, is a standard first year organic chemistry laboratory activity at the college level. In most protocols, salicylic acid is reacted with acetic anhydride producing aspirin and acetic acid by acid catalysis: O OH O O OH O O H2SO4 O CH3 + H3C OH OH H C O CH + 3 3 O The reaction is refluxed for 30 minutes, and then cooled.