Alkali and Alkaline Earth Metal Complexes Ligated by an Ethynyl Substituted Cyclopentadienyl Ligand

Total Page:16

File Type:pdf, Size:1020Kb

Alkali and Alkaline Earth Metal Complexes Ligated by an Ethynyl Substituted Cyclopentadienyl Ligand inorganics Article Alkali and Alkaline Earth Metal Complexes Ligated by an Ethynyl Substituted Cyclopentadienyl Ligand Tim Seifert and Peter W. Roesky * Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-721-608-46117 Academic Editor: Matthias Westerhausen Received: 30 March 2017; Accepted: 14 April 2017; Published: 20 April 2017 Abstract: Sodium, potassium, and calcium compounds of trimethyl((2,3,4,5- tetramethylcyclopentadien-1-yl)ethynyl)silane (CpMe4(C≡CSiMe3)) were synthesized and characterized by X-ray diffraction and standard analytical methods. The sodium derivative was obtained by deprotonation of CpMe4(C≡CSiMe3)H with Na{N(SiMe3)2} to give a monomeric complex [NaCpMe4(C≡CSiMe3)(THF)3]. In a similar reaction, starting from K{N(SiMe3)2} the corresponding potassium compound [KCpMe4(C≡CSiMe3)(THF)2]n, which forms a polymeric super sandwich structure in the solid state, was obtained. Subsequently, salt metathesis reactions were − conducted in order to investigate the versatility of the CpMe4(C≡CSiMe3) ligand in alkaline earth chemistry. The reaction of [KCpMe4(C≡CSiMe3)(THF)2]n with CaI2 afforded the dimeric complex [CaCpMe4(C≡CSiMe3)I(THF)2]2, in which both CpMe4(C≡CSiMe3)Ca units are bridged by iodide 2 in a µ fashion. In-depth NMR investigation indicates that [CaCpMe4(C≡CSiMe3)I(THF)2]2 is in a Schlenk equilibrium with [{CpMe4(C≡CSiMe3)}2Ca(THF)x] and CaI2(THF)2, as is already known for [CaCp*I(THF)2]. Keywords: calcium; cyclopentadienyl; potassium; sodium 1. Introduction Cyclopentadienyl salts of the alkali metals are probably one of the most versatile reagents in organometallic chemistry. They have been used for the synthesis of countless cyclopentadienyl complexes. Potassium cyclopentadienyl (KCp) was first reported by J. Thiele, who reacted potassium and cyclopentadiene in benzene [1], while the analogous sodium cyclopentadienyl (NaCp) was discovered approximately 50 years later by the groups of E. O. Fischer [2,3] and K. Ziegler [4]. The alkali metal cyclopentadienyls are generally available either by deprotonation of cyclopentadiene with an alkali metal base such as M{N(SiMe3)2}, MH, MOtBu, MOH or the alkali metal itself [5,6]. Some years ago, we showed that sodium and potassium cyclopentadienyl is most conveniently prepared in a one-pot synthesis directly from alkali metals with neat dicyclopentadiene at elevated temperature [7,8]. Especially in the chemistry of electron poor metals, cyclopentadienyl is often 5 used in the form of its permethylated derivative pentamethylcyclopentadienyl η -CpMe5 (Cp*) [8,9], because of the higher solubility of the corresponding metal complexes and the enlarged steric demand of the ligand, which prevents polymerization. Furthermore, other derivatives of cyclopentadienyl are easily accessible and increase the versatility of the cyclopentadienyl ligand [10–12]. For this reason, we became aware of the ligand trimethysilylethynyltetramethylcyclopentadiene CpMe4(C≡CSiMe3)H. − CpMe4(C≡CSiMe3) has been used before in group 8 chemistry. The postmodification of 5 − η -CpMe4(C≡CSiMe3) metal complexes may include access to metal acetylides [13,14], metal alkyne complexes [15,16], Sonogashira couplings [17–19], click reactions [20,21] and cyclizations [22–24]. Inorganics 2017, 5, 28; doi:10.3390/inorganics5020028 www.mdpi.com/journal/inorganics Inorganics 2017, 5, 28 2 of 9 Inorganics 2017, 5, 28 2 of 9 [LiCpMe4(C≡CSiMe3)] has been generated in situ but, to the best of our knowledge, s-block Inorganics[LiCpMe 20174(C, 5,≡ 28CSiMe 3)] has been generated in situ but, to the best of our knowledge, s-block2 of 9 compounds have not been isolated. compounds have not been isolated. [LiCpMe4(C≡CSiMe3)] has been generated in situ but, to the best of our knowledge, s-block 2. Results and Discussion compounds2. Results andhave Discussion not been isolated. CpMeCpMe4(C≡4CSiMe(C≡CSiMe3)H3)H was was prepared prepared in a modified modified procedur proceduree published published by Pudelski by Pudelski et al. et[23] al. [23] 2. Results and Discussion (Scheme(Scheme1). CpMe 1). CpMe4(C≡4(CCSiMe≡CSiMe3)H3)H was was obtainedobtained in in an an overall overall yield yield of 55% of 55% as a aslight a lightyellow yellow oil. oil. CpMe4(C≡CSiMe3)H was prepared in a modified procedure published by Pudelski et al. [23] (Scheme 1). CpMe4(C≡CSiMe3)H was obtained in an overall yield of 55% as a light yellow oil. Scheme 1. Preparation of the ligand CpMe4(C≡CSiMe3)H [23]. Scheme 1. Preparation of the ligand CpMe4(C≡CSiMe3)H [23]. In the first metalation reaction, CpMe4(C≡CSiMe3)H was reacted with Na{N(SiMe3)2} in THF. Scheme 1. Preparation of the ligand CpMe4(C≡CSiMe3)H [23]. InUpon the firstreaction, metalation the reaction,solution CpMe turned4(C≡ CSiMedark 3)Hred, was indicating reacted withthe Na{N(SiMe formation3 )2}of in THF. Upon reaction,[NaCpMe the4(C≡ solutionCSiMe3)(THF) turned3] (1 dark) (Scheme red, indicating2). Single crystals the formation suitable offor[NaCpMe X-ray diffraction4(C≡CSiMe formed3)(THF) in 3] In the first metalation reaction, CpMe4(C≡CSiMe3)H was reacted with Na{N(SiMe3)2} in THF. (1) (Scheme50% yield2). upon Single cooling crystals the concentrated suitable for solution X-ray diffraction to −30 °C. formed in 50% yield upon cooling the Upon reaction, the solution turned dark red, indicating the formation of concentratedThe solutionsodium complex to −30 1◦ C.crystallizes in the monoclinic space group P21/c with one molecule in the [NaCpMe4(C≡CSiMe3)(THF)3] (1) (Scheme 2). Single crystals suitable for X-ray diffraction formed in asymmetric unit (Figure 1). The molecular structure of 1 reveals a monomeric NaCpMe4(C≡CSiMe3) The sodium complex 1 crystallizes in the monoclinic space group P21/c with one molecule in the 50%compound yield upon in thecooling solid the state, concentrated in which CpMe solution4(C≡ toCSiMe −30 °C.3)− coordinates in a η5 fashion to the metal asymmetric unit (Figure1). The molecular structure of 1 reveals a monomeric NaCpMe (C≡CSiMe ) center.The sodiumFurthermore, complex three 1 crystallizes THF molecules in the aremonoclinic attached space to the group sodium P21/ catom. with oneThe moleculecoordination4 in the 3 − 5 compoundasymmetricpolyhedron in unit the thus (Figure solid forms state, 1).a three-leggedThe inmolecular which piano-stool structure CpMe4 (Cconfiguration. of≡ 1CSiMe reveals3 )a Themonomericcoordinates bond distances NaCpMe in between a 4(Cη ≡CSiMefashion the 3) to − 5 thecompound metalcarbon center.atoms in the of solidthe Furthermore, five-membered state, in which three CpMe CpMe THF4(C4(C≡CSiMe≡CSiMe molecules3) ring3) coordinates and are the attached sodium in a ηatom tofashion (Na–C the to sodium =the 2.672– metal atom. Thecenter. coordination2.736 Furthermore,Å) are polyhedronslightly three elongated thusTHF forms comparedmolecules a three-legged to are NaCp attached* [25], piano-stool towhich the issodium configuration.probably atom. caused The The by coordination bondthe steric distances betweenpolyhedrondemand the carbonof thus the forms atomsrather a larger ofthree-legged the TM five-memberedS-ethynyl piano-stool substituent. CpMeconfiguration. 4The(C≡ O–NaCSiMe The–O bond3 )angles ring distances andaverage the between sodiumto 96.2°. the atom (Na–CcarbonCompound = 2.672–2.736 atoms 1of was the Å ) alsofive-membered are characterized slightly elongated CpMe in solution4(C compared≡CSiMe by NMR3) ring to methods. NaCp* and the[ 25The sodium], whichresonances atom is probably (Na–Cof the methyl= caused2.672– by 1 13 the steric2.736groups demandÅ) are splitslightly of into the twoelongated rather signals larger compared(δ( H) TMS-ethynyl = 1.89 to and NaCp 2.02 substituent. *ppm; [25], δ (whichC) = The 10.7 is O–Na–Oprobablyand 11.5 ppm). caused angles The averageby resonance the steric to 96.2 ◦. attributed to the Si(CH3)3 moiety is slightly upfield shifted from 0.22 ppm CpMe4(C≡CSiMe3)H to 0.12 Compounddemand 1ofwas the alsorather characterized larger TMS-ethynyl in solution substituent. by NMR The methods. O–Na–O The angles resonances average of to the 96.2°. methyl Compoundppm (1) in 1 the was 1H alsoNMR characterized spectrum. In inthe solution ATR-IR (ATRby NMR = Attenuated methods. Total The Reflection,resonances IR of = theInfrared) methyl groups are split into two signals (δ(1H) = 1.89 and 2.02 ppm; δ(13C) = 10.7 and 11.5 ppm). The resonance groupsspectrum, are split the Cinto≡C twotriple signals bond of(δ (the1H) ethynyl = 1.89 and moiety 2.02 in ppm; 1 shows δ(13C) a stretching= 10.7 and band 11.5 ppm).at 2118 The cm −resonance1, which attributed to the Si(CH3)3 moiety is slightly4 upfield3 shifted− from1 0.22 ppm CpMe4(C≡CSiMe3)H to attributedis slightly to shifted the Si(CH compared3)3 moiety to CpMe is slightly(C≡CSiMe upfield)H shifted (2131 cmfrom). 0.22 ppm CpMe4(C≡CSiMe3)H to 0.12 1 0.12ppm ppm (1(1) )in in the the 1HH NMR NMR spectrum. spectrum. In Inthe the ATR-IR ATR-IR (ATR (ATR = Attenuated = Attenuated Total Total Reflection, Reflection, IR =IR Infrared) = Infrared ) −1 spectrum,spectrum, the the C≡ CC≡C triple triple bond of of the the ethynyl ethynyl moiety moiety in 1 inshows1 shows a stretching a stretching band at band2118 cm at−1 2118, which cm , −1 whichis slightly is slightly shifted shifted compared compared to CpMe to CpMe4(C≡CSiMe4(C≡3)HCSiMe (21313)H cm (2131−1). cm ). Figure 1. Molecular structure of 1 in the solid state. Hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: Na1–C6 2.691(4), Na1–C7 2.673(4), Na1–C8 2.672(4), Na1–C9 2.717(4), Na1–C10 2.736(4), C4–C5 1.223(6), Na1–O1 2.289(3), Na1–O2 2.321(3), Na1–O3 2.293(3), O1–Na1–O2 96.70(2), O2–Na1–O3 95.75(12), O3–Na1–O1 96.14(12).
Recommended publications
  • Comparison of Lead Calcium and Lead Selenium Alloys
    A COMPARISON OF LEAD CALCIUM & LEAD SELENIUM ALLOYS Separating Fact From Fiction By: Carey O’Donnell & Chuck Finin Background Debate between lead antimony vs. lead calcium has been ongoing for almost 70 years Both are mature ‘technologies’, with major battery producers and users in both camps Batteries based on both alloy types have huge installed bases around the globe Time to take another look for US applications: • New market forces at work • Significant improvements in alloy compositions • Recognize that users are looking for viable options Objectives Provide a brief history of the development and use of both lead selenium (antimony) and lead calcium; objectively compare and contrast the performance and characteristics of each type To attempt to draw conclusions about the performance, reliability, and life expectancy of each alloy type; suitability of each for use in the US Then & Now: Primary Challenges in Battery Manufacturing The improvement of lead alloy compositions for increased tensile strength, improved casting, & conductive performance Developing better compositions & processes for the application and retention of active material on the grids Alloy Debate: Lead Calcium Vs. Lead Selenium Continues to dominate & define much of the technical and market debate in US Good reasons for this: • Impacts grid & product design, long-term product performance & reliability • Directly affects physical strength & hardness of grid; manufacturability • Influences grid corrosion & growth, retention of active material History of Antimony First
    [Show full text]
  • IA Metals: Alkali Metals
    IA Metals: Alkali Metals INTRODUCTION: The alkali metals are a group in the periodic table consisting of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs). You should remember that there is a separate group called the alkaline earth metals in Group Two. They are a very different family, even though they have a similar name. The seventh member of alkali metals group – francium, is radioactive and so rare that only 20 atoms of francium may exist on Earth at any given moment. The term alkali is derived from an Arabic word meaning “ashes.” PHYSICAL PROPERTIES: Shiny Soft (They can all be cut easily with a knife ) Highly reactive at standard temperature and pressure Because of their high reactivity, they must be stored under oil to prevent reaction with air Their density increases as we move from Li to F White/metal coloured Very good conductors of heat and electricity Have the ability to impart colour to the flame. This property of alkali metals is used in their identification. CHEMICAL PROPERTIES: The atom of any given alkali metal has only one valence electron. The chemical reactivity of alkali metals increase as we move from the top to the bottom of the group. Like any other metals, ionization potential is very low. In fact, alkali metals have the lowest ionization potential among the elements of any given period of the periodic table. Any alkali metal when comes in contact with air or oxygen, starts burning and oxides are formed in the process. At the end of the chemical reaction, lithium gives lithium monoxide (LiO), sodium gives sodium peroxide (Na2O2) and other alkali metals give superoxides.
    [Show full text]
  • An Alternate Graphical Representation of Periodic Table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt
    An Alternate Graphical Representation of Periodic table of Chemical Elements Mohd Abubakr1, Microsoft India (R&D) Pvt. Ltd, Hyderabad, India. [email protected] Abstract Periodic table of chemical elements symbolizes an elegant graphical representation of symmetry at atomic level and provides an overview on arrangement of electrons. It started merely as tabular representation of chemical elements, later got strengthened with quantum mechanical description of atomic structure and recent studies have revealed that periodic table can be formulated using SO(4,2) SU(2) group. IUPAC, the governing body in Chemistry, doesn‟t approve any periodic table as a standard periodic table. The only specific recommendation provided by IUPAC is that the periodic table should follow the 1 to 18 group numbering. In this technical paper, we describe a new graphical representation of periodic table, referred as „Circular form of Periodic table‟. The advantages of circular form of periodic table over other representations are discussed along with a brief discussion on history of periodic tables. 1. Introduction The profoundness of inherent symmetry in nature can be seen at different depths of atomic scales. Periodic table symbolizes one such elegant symmetry existing within the atomic structure of chemical elements. This so called „symmetry‟ within the atomic structures has been widely studied from different prospects and over the last hundreds years more than 700 different graphical representations of Periodic tables have emerged [1]. Each graphical representation of chemical elements attempted to portray certain symmetries in form of columns, rows, spirals, dimensions etc. Out of all the graphical representations, the rectangular form of periodic table (also referred as Long form of periodic table or Modern periodic table) has gained wide acceptance.
    [Show full text]
  • Suppression Mechanisms of Alkali Metal Compounds
    SUPPRESSION MECHANISMS OF ALKALI METAL COMPOUNDS Bradley A. Williams and James W. Fleming Chemistry Division, Code 61x5 US Naval Research Lnhoratory Washington, DC 20375-5342, USA INTRODUCTION Alkali metal compounds, particularly those of sodium and potassium, are widely used as fire suppressants. Of particular note is that small NuHCOi particles have been found to be 2-4 times more effective by mass than Halon 1301 in extinguishing both eountertlow flames [ I] and cup- burner flames [?]. Furthermore, studies in our laboratory have found that potassium bicarbonate is some 2.5 times more efficient by weight at suppression than sodium bicarhonatc. The primary limitation associated with the use of alkali metal compounds is dispersal. since all known compounds have very low volatility and must he delivered to the fire either as powders or in (usually aqueous) solution. Although powders based on alkali metals have been used for many years, their mode of effective- ness has not generally been agreed upon. Thermal effects [3],namely, the vaporization of the particles as well as radiative energy transfer out of the flame. and both homogeneous (gas phase) and heterogeneous (surface) chemistry have been postulated as mechanisms by which alkali metals suppress fires [4]. Complicating these issues is the fact that for powders, particle size and morphology have been found to affect the suppression properties significantly [I]. In addition to sodium and potassium, other alkali metals have been studied, albeit to a consider- ably lesser extent. The general finding is that the suppression effectiveness increases with atomic weight: potassium is more effective than sodium, which is in turn more effective than lithium [4].
    [Show full text]
  • Oregon Department of Human Services HEALTH EFFECTS INFORMATION
    Oregon Department of Human Services Office of Environmental Public Health (503) 731-4030 Emergency 800 NE Oregon Street #604 (971) 673-0405 Portland, OR 97232-2162 (971) 673-0457 FAX (971) 673-0372 TTY-Nonvoice TECHNICAL BULLETIN HEALTH EFFECTS INFORMATION Prepared by: Department of Human Services ENVIRONMENTAL TOXICOLOGY SECTION Office of Environmental Public Health OCTOBER, 1998 CALCIUM CARBONATE "lime, limewater” For More Information Contact: Environmental Toxicology Section (971) 673-0440 Drinking Water Section (971) 673-0405 Technical Bulletin - Health Effects Information CALCIUM CARBONATE, "lime, limewater@ Page 2 SYNONYMS: Lime, ground limestone, dolomite, sugar lime, oyster shell, coral shell, marble dust, calcite, whiting, marl dust, putty dust CHEMICAL AND PHYSICAL PROPERTIES: - Molecular Formula: CaCO3 - White solid, crystals or powder, may draw moisture from the air and become damp on exposure - Odorless, chalky, flat, sweetish flavor (Do not confuse with "anhydrous lime" which is a special form of calcium hydroxide, an extremely caustic, dangerous product. Direct contact with it is immediately injurious to skin, eyes, intestinal tract and respiratory system.) WHERE DOES CALCIUM CARBONATE COME FROM? Calcium carbonate can be mined from the earth in solid form or it may be extracted from seawater or other brines by industrial processes. Natural shells, bones and chalk are composed predominantly of calcium carbonate. WHAT ARE THE PRINCIPLE USES OF CALCIUM CARBONATE? Calcium carbonate is an important ingredient of many household products. It is used as a whitening agent in paints, soaps, art products, paper, polishes, putty products and cement. It is used as a filler and whitener in many cosmetic products including mouth washes, creams, pastes, powders and lotions.
    [Show full text]
  • Sodium Aluminium Silicate (Tentative)
    SODIUM ALUMINIUM SILICATE (TENTATIVE) th Prepared at the 80 JECFA and published in FAO JECFA Monographs 17 (2015), superseding tentative specifications prepared at the 77th JECFA (2013) and published in FAO JECFA Monographs 14 (2013). An ADI 'not specified' for silicon dioxide and certain silicates was established at the 29th JECFA (1985). A PTWI of 2 mg/kg bw for total aluminium was established at the 74th JECFA (2011). The PTWI applies to all aluminium compounds in food, including food additives. Information required: Functional uses other than anticaking agent, if any, and information on the types of products in which it is used and the use levels in these products Data on solubility using the procedure documented in the “Compendium of Food Additives Specifications, Vol. 4, Analytical methods” Data on the impurities soluble in 0.5 M hydrochloric acid, from a minimum of five batches. If a different extraction and determination method is used, provide data along with details of method and QC data. Suitability of the analytical method for the determination of aluminium, silicon and sodium using the proposed “Method of assay” along with data, from a minimum of five batches, using the proposed method. If a different method is used, provide data along with details of the method and QC data. SYNONYMS Sodium silicoaluminate; sodium aluminosilicate; aluminium sodium silicate; silicic acid, aluminium sodium salt; INS No. 554 DEFINITION Sodium aluminium silicate is a series of amorphous hydrated sodium aluminium silicates with varying proportions of Na2O, Al2O3 and SiO2. It is manufactured by, precipitation process, reacting aluminium sulphate and sodium silicate.
    [Show full text]
  • Of the Periodic Table
    of the Periodic Table teacher notes Give your students a visual introduction to the families of the periodic table! This product includes eight mini- posters, one for each of the element families on the main group of the periodic table: Alkali Metals, Alkaline Earth Metals, Boron/Aluminum Group (Icosagens), Carbon Group (Crystallogens), Nitrogen Group (Pnictogens), Oxygen Group (Chalcogens), Halogens, and Noble Gases. The mini-posters give overview information about the family as well as a visual of where on the periodic table the family is located and a diagram of an atom of that family highlighting the number of valence electrons. Also included is the student packet, which is broken into the eight families and asks for specific information that students will find on the mini-posters. The students are also directed to color each family with a specific color on the blank graphic organizer at the end of their packet and they go to the fantastic interactive table at www.periodictable.com to learn even more about the elements in each family. Furthermore, there is a section for students to conduct their own research on the element of hydrogen, which does not belong to a family. When I use this activity, I print two of each mini-poster in color (pages 8 through 15 of this file), laminate them, and lay them on a big table. I have students work in partners to read about each family, one at a time, and complete that section of the student packet (pages 16 through 21 of this file). When they finish, they bring the mini-poster back to the table for another group to use.
    [Show full text]
  • Adverse Health Effects of Heavy Metals in Children
    TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children.
    [Show full text]
  • High Potassium Eating 
    High Potassium Eating Why is eating a high potassium diet important? Potassium is a mineral found naturally in many foods. It can help lower blood pressure and may lower the risk of heart disease and stroke. It is used in your body to make the heart beat, to build protein and muscle, to make energy from food and to help kidneys work. Potassium-rich foods maintain your body’s potassium levels. Depending on your age, aim for a daily intake of: Age group (years) Recommended Potassium Intake (mg/day) 1-3 3000 4-8 3800 9-13 4500 14-70 4700 >70 4700 Pregnancy (all age groups) 4700 Breastfeeding (all age groups) 5100 Your Doctor will closely watch the potassium level in your blood. He will tell you if you need to eat more or less high potassium foods. You may need more potassium if you: take certain medications such as some types of diuretics (water pills). are losing too much potassium through urine, sweat or diarrhea. have high blood pressure. The "Steps You can Take" section below has lists of high potassium foods to help you increase your daily potassium intake. © 2017 Province of British Columbia. All rights reserved. May be reproduced in its entirety provided source is acknowledged. This information is not meant to replace advice from your medical doctor or individual counseling with a registered dietitian. It is intended for educational and informational purposes only. Updated: 2017-02-27 | PAGE 1 of 10 To increase potassium in your diet, choose potassium-rich foods most often. Choose a variety of foods from each of the four food groups to meet your potassium needs.
    [Show full text]
  • Calcium Fluoride Scale Prevention
    Tech Manual Excerpt Water Chemistry and Pretreatment Calcium Fluoride Scale Prevention Calcium Fluoride Fluoride levels in the feedwater of as low as 0.1 mg/L can create a scaling potential if Scale Prevention the calcium concentration is high. The calculation of the scaling potential is analogous to the procedure described in Calcium Sulfate Scale Prevention (Form No. 45-D01553-en) for CaSO4. Calculation 1. Calculate the ionic strength of the concentrate stream (Ic) following the procedure described in Scaling Calculations (Form No. 45-D01551-en): Eq. 1 2. Calculate the ion product (IPc) for CaF2 in the concentrate stream: Eq. 2 where: m 2+ 2+ ( Ca )f = M Ca in feed, mol/L m – – ( F )f = M F in feed, mol/L 3. Compare IPc for CaF2 with the solubility product (Ksp) of CaF2 at the ionic strength of the concentrate stream, Figure 2 /11/. If IPc ≥ Ksp, CaF2 scaling can occur, and adjustment is required. Adjustments for CaF2 Scale Control The adjustments discussed in Calcium Sulfate Scale Prevention (Form No. 45-D01553-en) for CaSO4 scale control apply as well for CaF2 scale control. Page 1 of 3 Form No. 45-D01556-en, Rev. 4 April 2020 Figure 1: Ksp for SrSO4 versus ionic strength /10/ Page 2 of 3 Form No. 45-D01556-en, Rev. 4 April 2020 Figure 2: Ksp for CaF2 versus ionic strength /11/ Excerpt from FilmTec™ Reverse Osmosis Membranes Technical Manual (Form No. 45-D01504-en), Chapter 2, "Water Chemistry and Pretreatment." Have a question? Contact us at: All information set forth herein is for informational purposes only.
    [Show full text]
  • Periodic Trends and the S-Block Elements”, Chapter 21 from the Book Principles of General Chemistry (Index.Html) (V
    This is “Periodic Trends and the s-Block Elements”, chapter 21 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i Chapter 21 Periodic Trends and the s-Block Elements In previous chapters, we used the principles of chemical bonding, thermodynamics, and kinetics to provide a conceptual framework for understanding the chemistry of the elements. Beginning in Chapter 21 "Periodic Trends and the ", we use the periodic table to guide our discussion of the properties and reactions of the elements and the synthesis and uses of some of their commercially important compounds.
    [Show full text]
  • Periodic Activity of Metals Periodic Trends and the Properties of the Elements SCIENTIFIC
    Periodic Activity of Metals Periodic Trends and the Properties of the Elements SCIENTIFIC Introduction Elements are classified based on similarities, differences, and trends in their properties, including their chemical reactions. The reactions of alkali and alkaline earth metals with water are pretty spectacular chemical reactions. Mixtures bubble and boil, fizz and hiss, and may even smoke and burn. Introduce the study of the periodic table and periodic trends with this exciting demonstration of the activity of metals. Concepts • Alkali and alkaline earth metals • Periodic table and trends • Physical and chemical properties • Metal activity Materials Calcium turnings, Ca, 0.3 g Beaker, Berzelius (tall-form), Pyrex®, 500-mL, 4 Lithium metal, Li, precut piece Forceps or tongs Magnesium ribbon, Mg, 3-cm Knife (optional) Sodium metal, Na, precut piece Petri dishes, disposable, 4 Phenolphthalein, 1% solution, 2 mL Scissors Water, distilled or deionized, 600 mL Safety Precautions Lithium and sodium are flammable, water-reactive, corrosive solids; dangerous when exposed to heat or flame. They react violently with water to produce flammable hydrogen gas and solutions of corrosive metal hydroxides. Hydrogen gas may be released in sufficient quantities to cause ignition. Do NOT “scale up” this demonstration using larger pieces of sodium or lithium! These metals are shipped in dry mineral oil. Store them in mineral oil until immediately before use. Do not allow these metals to stand exposed to air from one class period to another or for extended periods of time. Purchasing small, pre-cut pieces of lithium and sodium greatly reduces their potential hazard. Calcium metal is flammable in finely divided form and reacts upon contact with water to give flammable hydrogen gas and corrosive calcium hydroxide.
    [Show full text]