Circadian Locomotor Activity in Freshwater Decapods: an Ecological Approach

Total Page:16

File Type:pdf, Size:1020Kb

Circadian Locomotor Activity in Freshwater Decapods: an Ecological Approach Biological Rhythm Research 2004, Vol. 35 Nos 1/2. pp. 69–78 Circadian Locomotor Activity in Freshwater Decapods: An Ecological Approach Manuel Miranda-Anaya Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, DF 04510, México Abstract Circadian rhythms of locomotor activity shown by freshwater decapods display dif- ferent patterns among crayfish, Procambarus, and crabs, when exposed to artificial light-dark cycles. Crayfish are mainly nocturnal while a crepuscular activity is observed in crabs of the genus Pseudothelphusa. In constant darkness, free running rhythms are displayed in unimodal or bimodal patterns by crayfish Procambarus; however, Pseudothelphusa continues to show bimodal rhythms. The many studies using locomotor activity indicate that the rhythm in freshwater crabs is circadian in nature, but that a multioscillatory system may be controlling the overt rhythm. In the present study, the implications of different locomotor activity patterns are analyzed in selected freshwater decapods with regard to the interactions between light and the organisms. Crabs and crayfish are commonly found in similar habitats, often sharing the same environment; however, different patterns of locomotor activity as well as different sensitivities of the bouts of activity with regard to entrainment by light, indi- cate that distinct temporal niches may exist that result in temporal exclusion or low competition. Keywords: Freshwater crab, circadian rhythm, locomotor activity. Introduction Ecological studies on biological timing in organisms allows an understanding of the temporal relationship of behavior and geophysical changes; therefore it is possible to study the mechanisms underlying the interactions of organisms and their environment by studying their clock output. Decapods are a diverse group found in a wide diver- sity of habitats, from deep sea to fresh water and land. Their ability to adapt to diverse Address correspondence to: Dr. Manuel Miranda-Anaya, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México. E-mail: mma@ hp.fciencias.unam.mx DOI: 10.1080/09291010412331313241 © 2004 Taylor & Francis Ltd. 70 M. Miranda-Anaya conditions generates many questions about physiological adaptations that allow this group to be successful. Many studies on circadian organization in crustaceans have used locomotor activity as a measure of the output of the clock, and most of the obser- vations have been in performed in laboratory, presumably because of difficulties in long-term observation in natural aquatic habitats (DeCoursey, 1983). Decapods have, for several years, been a biological model for studying circadian organization in Crustacea (Warner, 1977; DeCoursey, 1983; Brown, 1983; Aréchiga et al., 1993; Fuentes-Pardo & Hernández-Falcón, 1993). The crayfish, Procambarus, has been extensively studied, since it displays circadian rhythms in physiological fea- tures; locomotor activity, in particular, has been widely studied (Page & Larimer, 1972, 1975; Fanjul-Moles, 1998; Fuentes-Pardo et al., 1996). Studies on circadian rhythms of activity in freshwater decapods have shown that activity patterns may be different among crayfishes and crabs sharing similar habitats. The freshwater crab, Pseudothelphusa, is often found in habitats where other crayfish species coexist (Álvarez & Villalobos, 1997; López-Hernández, 1997). Studying differences in their circadian activity under laboratory conditions may be useful in understanding the temporal relationship between each species regarding the physical and biological rhythmic environment where they are found. In this paper, we present a summary of the circadian characteristics of locomotor activity displayed by species of Procambarus and the freshwater crab, Pseudothelphusa, as well as an interpretation of the ecological significance of these locomotor activity patterns. I. Freshwater decapods and the environment Freshwater decapods are found in habitats such as standing water (for example, lakes and ponds — lentic) and flowing water (for example, streams and rivers — lotic). Each of these habitats presents a varied set of environmental characteristics. The most obvious factor in freshwater environments is the low salinity and the complex inter- action of this with other factors such as temperature. Other differences associated with the temporary and isolated nature of freshwater ponds and streams may limit the distribution of crustaceans (Vernberg & Vernberg, 1983). Freshwater decapods are represented by crayfish of the family Cambaridae, Astacidae and Parastacidae (Hobbs et al., 1989) and by crabs of the family Pseudothelphusidae and Trichodactilidae (Álvarez & Villalobos, 1997). There is little information about the biology of fresh- water Brachyurans (true crabs); however, extensive information about of crayfish biology has been documented elsewhere (Hobbs, 1988; Holdich, 2002). Crayfish and crabs are frequent in slow streams of clean water and near the river shore, living in places where they can hide, like in flooded roots or under stones. Crayfish dig tunnels in soft soil and can remain inside for long periods of time. Field observations of locomotor activity of crayfish indicate that adults are mainly noctur- nal, but activity may begin in the late afternoon. Most of the species of freshwater decapods present small populations, high morphologic differentiation within the population, and reduced distribution areas (Álvarez & Villalobos, 1997). It is common to find both crayfish and crabs in lakes Circadian Rhythms of Activity in Freshwater Decapods 71 and rivers from Southern Mexico to tropical South America as a component of the aquatic fauna (López-Hernández, 1997). Both crayfish and crabs are omnivorous and usually feed on plants and small animals. II. Laboratory studies on locomotor activity in freshwater decapods Freely moving locomotor activity rhythms in freshwater decapods have often been analyzed by means of tilt cages (Page & Larimer, 1972) or of aquaria equipped with infrared light-crossings (Fanjul-Moles et al., 1996; Miranda-Anaya et al., 2003a). Locomotor activity has been also recorded from restrained animals, with a thread tied to the ambulatory legs and movement recorded by a force transducer (Fuentes-Pardo & Inclán-Rubio, 1981; Viccon-Pale & Fuentes-Pardo, 1994). Locomotor activity in decapods is often mathematically ‘noisy’; however, some statistical tools have been used to analyze significant circadian behavior (DeCoursey, 1983). Methods used include plotting data in conventional actograms, and calculating circadian periods by means of Enright’s and the X2 periodograms (Enright, 1965; Sokolove & Bushell, 1978). In species like Procambarus clarkii, circadian rhythms of locomotor activity manifest themselves gradually after the first week post hatching, and this has allowed study of the ontogenetic expression of locomotor activity rhythms (Fanjul-Moles et al., 1996; Miranda-Anaya & Fanjul-Moles, 1997). Studies of circadian locomotor activity rhythms in crustaceans have been performed not only in Procambarus clarkii but also in other crayfish species like P bouvierii (Fuentes-Pardo & Inclán-Rubio, 1981) and P. diguetti (Fanjul-Moles et al., 1998b). Both freely moving and restrained animals kept in LD cycles display mainly two peaks of activity, an induced short burst right after lights on and an endogenous long burst after lights off, typical for a nocturnal animal (Page & Larimer, 1972). When placed in constant darkness (DD), their locomotor activity displays mainly a unimodal pattern (Page & Larimer, 1972; Fanjul-Moles, 1998); however, bimodal patterns have been observed in some studies (Fuentes-Pardo et al., 1996). Figure 1 represents a typical actogram obtained from an adult crayfish in freely moving conditions using infrared light crossings. In constant darkness (DD) loco- motor activity is usually noisy during the first days of recording; however, circadian rhythms are seen after about four days in DD. Activity becomes bimodal with multi- ple short bouts. The circadian rhythm of locomotion in crayfish has been considered as unimodal (Page & Larimer, 1972; Fanjul-Moles et al., 1996) but sometimes it is possible to observe bimodal activity with alternate dominance of each bout (Fuentes- Pardo & Inclán-Rubio, 1981; Gherardhi, 2002; and Fig. 1). During LD, a short bout of activity is observed at lights on, and a larger bout of activity which starts before lights off and continues until well after lights off. The cor- responding waveform (upper right) shows the average activity during DD, there being a clear indication of its bimodal nature. Entraining locomotor activity of the crayfish to an LD cycle denotes typical nocturnal behavior, again with bimodal rhythmicity (lower right). The waveform derived from 9 consecutive days shows that activity peaks are coincident with lights on and lights off respectively (arrow). The duration of the two peaks indicates that the lights-off bout represents the main activity episode, and 72 M. Miranda-Anaya DD A 300 150 Activity 0 0 12.6 25.3 LD B 300 YS ty DA 150 Activi 0 0 12 24 Time (h) 24 24 24 TIME OF DAY (h) Figure 1. Double-plot of locomotor activity in a freshwater crayfish Procambarus clarkii. In DD (upper arrow), a circadian rhythm is observed with two bouts of activity, represented in the waveform (A) fitted to the dominant period. In LD (second arrow) an activity peak is coin- cident with lights on, also observed in the waveform (B). the lights-on
Recommended publications
  • New Alien Crayfish Species in Central Europe
    NEW ALIEN CRAYFISH SPECIES IN CENTRAL EUROPE Introduction pathways, life histories, and ecological impacts DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Christoph Chucholl aus Rosenheim Ulm 2012 NEW ALIEN CRAYFISH SPECIES IN CENTRAL EUROPE Introduction pathways, life histories, and ecological impacts DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Naturwissenschaften der Universität Ulm vorgelegt von Christoph Chucholl aus Rosenheim Ulm 2012 Amtierender Dekan: Prof. Dr. Axel Groß Erstgutachter: Prof. Dr. Manfred Ayasse Zweitgutachter: Prof. apl. Dr. Gerhard Maier Tag der Prüfung: 16.7.2012 Cover picture: Orconectes immunis male (blue color morph) (photo courtesy of Dr. H. Bellmann) Table of contents Part 1 – Summary Introduction ............................................................................................................................ 1 Invasive alien species – a global menace ....................................................................... 1 “Invasive” matters .......................................................................................................... 2 Crustaceans – successful invaders .................................................................................. 4 The case of alien crayfish in Europe .............................................................................. 5 New versus Old alien crayfish .......................................................................................
    [Show full text]
  • Circadian Clocks in Crustaceans: Identified Neuronal and Cellular Systems
    Circadian clocks in crustaceans: identified neuronal and cellular systems Johannes Strauss, Heinrich Dircksen Department of Zoology, Stockholm University, Svante Arrhenius vag 18A, S-10691 Stockholm, Sweden TABLE OF CONTENTS 1. Abstract 2. Introduction: crustacean circadian biology 2.1. Rhythms and circadian phenomena 2.2. Chronobiological systems in Crustacea 2.3. Pacemakers in crustacean circadian systems 3. The cellular basis of crustacean circadian rhythms 3.1. The retina of the eye 3.1.1. Eye pigment migration and its adaptive role 3.1.2. Receptor potential changes of retinular cells in the electroretinogram (ERG) 3.2. Eyestalk systems and mediators of circadian rhythmicity 3.2.1. Red pigment concentrating hormone (RPCH) 3.2.2. Crustacean hyperglycaemic hormone (CHH) 3.2.3. Pigment-dispersing hormone (PDH) 3.2.4. Serotonin 3.2.5. Melatonin 3.2.6. Further factors with possible effects on circadian rhythmicity 3.3. The caudal photoreceptor of the crayfish terminal abdominal ganglion (CPR) 3.4. Extraretinal brain photoreceptors 3.5. Integration of distributed circadian clock systems and rhythms 4. Comparative aspects of crustacean clocks 4.1. Evolution of circadian pacemakers in arthropods 4.2. Putative clock neurons conserved in crustaceans and insects 4.3. Clock genes in crustaceans 4.3.1. Current knowledge about insect clock genes 4.3.2. Crustacean clock-gene 4.3.3. Crustacean period-gene 4.3.4. Crustacean cryptochrome-gene 5. Perspective 6. Acknowledgements 7. References 1. ABSTRACT Circadian rhythms are known for locomotory and reproductive behaviours, and the functioning of sensory organs, nervous structures, metabolism and developmental processes. The mechanisms and cellular bases of control are mainly inferred from circadian phenomenologies, ablation experiments and pharmacological approaches.
    [Show full text]
  • Studio Della Modulazione Ormonale Della Riproduzione E Della Crescita Nei Crostacei Decapodi Mediante L’Uso Di Neurormoni Ricombinanti Ed Anticorpi Specifici
    UNIVERSITÀ DEGLI STUDI DI TRIESTE Sede Amministrativa del Dottorato di Ricerca XX CICLO DEL DOTTORATO DI RICERca IN NEUROSCIENZE Studio della modulazione ormonale della riproduzione e della crescita nei Crostacei Decapodi mediante l’uso di neurormoni ricombinanti ed anticorpi specifici (Settore scientifico-disciplinare BIO/05) DOTTORANDO COORDINATORE DEL COLLEGIO DEI ALESSANDRO MOSCO DOCENTI Prof.sa PAOLA LORENZON Università degli Studi di Trieste TUTORE Dott. PIERO G. GIULIANINI Università degli Studi di Trieste CO-TUTORE Dott. PAOLO EDOMI Università degli Studi di Trieste Anno Accademico 2006-2007 Indice Introduzione 1 Localizzazione del cHH 2 Struttura del cHH 4 Maturazione 9 Funzione 10 Manipolazione ormonale 12 Scopo della tesi 13 Materiali e metodi 14 Clonaggio del cDNA nel vettore di espressione 14 Clonaggio del Asl-rcHH-Gly-Lys 14 Clonaggio del Asl-rcHH-Gly 14 Espressione dei peptidi ricombinanti 14 Refolding e purificazione 16 Reazione di ammidazione 16 Spettrometria di massa 16 Dicroismo circolare 17 Estratto di ghiandole del seno 17 Purificazione del cHH nativo 17 Misura della concentrazione 17 Produzione e purificazione di anticorpi anti-Asl-rcHH-Val-Gly 18 ELISA 18 Stabulazione degli animali 19 Saggi biologici in vivo 19 Inibizione del cHH in A. leptodactylus 20 Risultati 21 Clonaggio del cDNA codificante per cHH-Gly-Lys e cHH-Gly 21 Espressione dei peptidi ricombinanti 21 Refolding e purificazione 21 Ammidazione 22 Caratterizzazione biochimica 22 Quantificazione del cHH 25 Saggi omologhi 26 Saggi eterologhi 29 Risposta iperglicemica
    [Show full text]
  • Silencing Two Main Isoforms of Crustacean Hyperglycemic Hormone
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Trieste ISJ 12: 29-37, 2015 ISSN 1824-307X RESEARCH REPORT Silencing two main isoforms of crustacean hyperglycemic hormone (CHH) induces compensatory expression of two CHH-like transcripts in the red swamp crayfish Procambarus clarkii C Manfrin, L Peruzza, LC Bonzi, A Pallavicini, PG Giulianini Department of Life Sciences, University of Trieste, Trieste, Italy Accepted January 14, 2015 Abstract RNA interference has frequently been applied to modulate gene function in organisms. With the aim of creating new autocidal methods based on neuro-endocrine disruptors for invasive populations of Procambarus clarkii, we silenced the Crustacean Hyperglycemic Hormone (CHH) by injecting the corresponding dsRNA. CHH is a pleiotropic hormone that primarily regulates the mobilization of energy reserves and plays a pivotal role in stress responses. Here, we describe two experiments aimed at testing whether CHH silencing significantly alters important physiological aspects. The first experiment investigates the effects of CHH silencing at the glycemic and transcriptomic level in the eyestalk. The second experiment explores the long-term effects of CHH silencing and the effects on mortality and moulting rates. Osmotic deficits and mortality were recorded in specimens injected with CHH dsRNA, whilst controls were injected with GFP dsRNA. After 20 days, despite still silenced for CHH, individuals that survived recovered a strong hyperglycemic response after serotonin injection due to the compensatory effect of two peptides belonging to the crustacean neurohormone CHH protein family. Key Words: Procambarus clarkii; crustacean hyperglycemic hormone (CHH); RNA interference; stress; survival Introduction The red swamp crayfish is an invasive species The crustacean hyperglycemic hormone (CHH) widely distributed worldwide (ISSG, 2012).
    [Show full text]
  • Efectos De Metales Pesados Sobre La Síntesis Y Secreción Hormonal En El Cangrejo De Estuario Chasmagnathus Granulatus, DANA 1851 (Decapoda, Varunidae)
    Tesis Doctoral Efectos de metales pesados sobre la síntesis y secreción hormonal en el cangrejo de estuario Chasmagnathus granulatus, DANA 1851 (Decapoda, Varunidae) Medesani, Daniel Alberto 2004 Tesis presentada para obtener el grado de Doctor en Ciencias Biológicas de la Universidad de Buenos Aires Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the Master's and Doctoral Theses Collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Medesani, Daniel Alberto. (2004). Efectos de metales pesados sobre la síntesis y secreción hormonal en el cangrejo de estuario Chasmagnathus granulatus, DANA 1851 (Decapoda, Varunidae). Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://hdl.handle.net/20.500.12110/tesis_n3703_Medesani Cita tipo Chicago: Medesani, Daniel Alberto. "Efectos de metales pesados sobre la síntesis y secreción hormonal en el cangrejo de estuario Chasmagnathus granulatus, DANA 1851 (Decapoda, Varunidae)". Tesis de Doctor. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2004. http://hdl.handle.net/20.500.12110/tesis_n3703_Medesani Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 Universidad de Buenos Aires Facultad de Ciencias Exactasy Naturales Argentina Trabajo de Tesis presentado para optar al título.
    [Show full text]
  • Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae) C
    Himmelfarb Health Sciences Library, The George Washington University Health Sciences Research Commons Computational Biology Institute Institutes, Centers, and Laboratories 11-2012 Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae) C. Pedraza-Lara I. Doadrio J. Breinholt Keith A. Crandall George Washington University Follow this and additional works at: https://hsrc.himmelfarb.gwu.edu/smhs_centers_cbi Part of the Computational Biology Commons, Research Methods in Life Sciences Commons, and the Structural Biology Commons APA Citation Pedraza-Lara, C., Doadrio, I., Breinholt, J., & Crandall, K. A. (2012). Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae). PLoS ONE, 7 (11). http://dx.doi.org/10.1371/journal.pone.0048233 This Journal Article is brought to you for free and open access by the Institutes, Centers, and Laboratories at Health Sciences Research Commons. It has been accepted for inclusion in Computational Biology Institute by an authorized administrator of Health Sciences Research Commons. For more information, please contact [email protected]. Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae) Carlos Pedraza-Lara1,2*, Ignacio Doadrio1, Jesse W. Breinholt3, Keith A. Crandall3,4 1 Departamento de Biodiversidad y Biologı´a Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain, 2 Instituto de Biologı´a, Universidad Nacional Auto´noma de Me´xico, Distrito Federal, Me´xico, 3 Department of Biology, Brigham Young University, Provo, Utah, United States of America, 4 Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America Abstract The Dwarf crayfish or Cambarellinae, is a morphologically singular subfamily of decapod crustaceans that contains only one genus, Cambarellus.
    [Show full text]
  • A Dictionary of Non-Scientific Names of Freshwater Crayfishes (Astacoidea and Parastacoidea), Including Other Words and Phrases Incorporating Crayfish Names
    £\ A Dictionary of Non-Scientific Names of Freshwater Crayfishes (Astacoidea and Parastacoidea), Including Other Words and Phrases Incorporating Crayfish Names V5 C.W. HART, JR. SWF- SMITHSONIAN CONTRIBUTIONS TO ANTHROPOLOGY • NUMBER 38 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Procambarus Clarkii (Girard, 1852)
    Identification of Invasive Alien Species using DNA barcodes Royal Belgian Institute of Natural Sciences Royal Museum for Central Africa Rue Vautier 29, Leuvensesteenweg 13, 1000 Brussels , Belgium 3080 Tervuren, Belgium +32 (0)2 627 41 23 +32 (0)2 769 58 54 General introduction to this factsheet The Barcoding Facility for Organisms and Tissues of Policy Concern (BopCo) aims at developing an expertise forum to facilitate the identification of biological samples of policy concern in Belgium and Europe. The project represents part of the Belgian federal contribution to the European Research Infrastructure Consortium LifeWatch. Non-native species which are being introduced into Europe, whether by accident or deliberately, can be of policy concern since some of them can reproduce and disperse rapidly in a new territory, establish viable populations and even outcompete native species. As a consequence of their presence, natural and managed ecosystems can be disrupted, crops and livestock affected, and vector-borne diseases or parasites might be introduced, impacting human health and socio-economic activities. Non-native species causing such adverse effects are called Invasive Alien Species (IAS). In order to protect native biodiversity and ecosystems, and to mitigate the potential impact on human health and socio-economic activities, the issue of IAS is tackled in Europe by EU Regulation 1143/2014 of the European Parliament and Council. The IAS Regulation provides for a set of measures to be taken across all member states. The list of Invasive Alien Species of Union Concern is regularly updated. In order to implement the proposed actions, however, methods for accurate species identification are required when suspicious biological material is encountered.
    [Show full text]
  • The Propinquus Group of the Crawfish Genus Orconectes (Decapoda: Astacidae)1'2
    THE OHIO JOURNAL OF SCIENCE Vol. 67 MAY, 1967 No~3 THE PROPINQUUS GROUP OF THE CRAWFISH GENUS ORCONECTES (DECAPODA: ASTACIDAE)1'2 J. F. FITZPATRICK, JR. Department of Biology, University of Virginia, Charlottesville3 ABSTRACT Nine species and subspecies assigned to the Propinquus Group, Propinquus Section, of the crawfish genus Orconectes are evaluated on the basis of 1226 specimens examined. Eleven characters are analyzed statistically and 12 more qualitatively, principally by determination of comparative frequencies. 0. jeffersoni is judged specifically distinct from 0. propinquus and the conspecific 0. s. sanborni and 0. s. erismophorous. All other taxa of the Group are distinct species. A new species from Iowa is diagnosed, but not described. Two distinct subgroups, Propinquus and Sanborni, are proposed and diagnosed. A lectotype and paralectotypes were designated for Cambarus obscurus Hagen and for Cambarus sanborni Faxon. Standard taxonomic characters in crawfishes are discussed briefly with particular reference to the Propinquus Group. Less than one hundred years ago, only 55 known species and subspecies of crawfish were recognized on the North American continent (Hagen, 1870), and all were believed to belong to two genera, one of which was endemic. Almost nothing was known concerning their interrelations and evolution. Today approxi- mately 350 species and subspecies are assigned to eight genera and three sub- families, of which all genera and two subfamilies are endemic. Most of the addi- tional knowledge was contributed near the turn of the century and subsequent to 1930. Hobbs (1940, et sec/.), among others, has demonstrated that the con- clusions of earlier writers, especially of A.
    [Show full text]
  • Procambarus Clarkii Global Invasive
    FULL ACCOUNT FOR: Procambarus clarkii Procambarus clarkii System: Freshwater Kingdom Phylum Class Order Family Animalia Arthropoda Malacostraca Decapoda Cambaridae Common name red swamp crayfish (English), Louisiana crayfish (English) Synonym Similar species Procambarus zonangulus Summary Procambarus clarkii is a highly adaptable, tolerant, and fecund freshwater crayfish that may inhabit a wide range of aquatic environments. It is native to parts of Mexico and the United States and has established throughout the world as a result of commercial introductions for harvest as a food source. Invasive populations have been reported from Europe, Asia, Africa, North America, and South America. Impacts include aggressive competition with native crayfish, introduction of the crayfish plague, reduction of macrophyte assemblages, alteration of water quality, predation on and competition with a variety of aquatic species, and negative impacts on agricultural and fishing industries. Management strategies for P. clarkii include trapping and removing populations, creating barriers to prevent its spread, prohibiting the transport of live crayfish, and improving public education about it risks to the environment. Encouraging farming of native species as well as research on economically productive harvesting of native crayfish has the potential to reduce further introductions. view this species on IUCN Red List Species Description Typically dark red, Procambarus clarkii is capable of reaching sizes in excess of 50g in 3-5 months (NatureServe, 2003; Henttonen and Huner, 1999). Adults reach about 5.5 to 12cms (2.2 to 4.7 inches) in length. Its rostrum is cuminate with cervical spines present, and its areola is linear to obliterate. The palm and the mesial margin of the cheliped bare rows of tubercles.
    [Show full text]
  • CIRCADIAN PHYSIOLOGY Third Edition This Page Intentionally Left Blank CIRCADIAN PHYSIOLOGY Third Edition
    CIRCADIAN PHYSIOLOGY Third Edition This page intentionally left blank CIRCADIAN PHYSIOLOGY Third Edition Roberto Refinetti, PhD Boise State University Idaho, USA CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20160202 International Standard Book Number-13: 978-1-4665-1498-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
    [Show full text]
  • Crustacean Biology Advance Access Published 8 August 2017 Journal of Crustacean Biology the Crustacean Society Journal of Crustacean Biology (2017) 1–39
    Journal of Crustacean Biology Advance Access published 8 August 2017 Journal of Crustacean Biology The Crustacean Society Journal of Crustacean Biology (2017) 1–39. doi:10.1093/jcbiol/rux070 An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list Keith A. Crandall1 and Sammy De Grave2 1Computational Biology Institute, George Washington University, SEH 7000D, 800 22nd St. NW, Washington DC, 20052, USA and Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA; and 2Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Correspondence: K.A. Crandall; e-mail: [email protected] (Received 13 May 2017; accepted 16 June 2017) ABSTRACT The freshwater crayfishes are a group of decapod crustaceans that have played a critical role in a diversity of biological studies, from physiology, to ecology, neurobiology, conserva- tion, and evolution. Central to many of these fields of study is the dependence on a robust taxonomic framework for accurate communication relating to species diversity and associated attributes. Despite a huge body of taxonomic work since Linnaeus, there has never been a single, comprehensive taxonomic summary of all the species of crayfish of the world. There has also been an abundance of recent taxonomic work in terms of new species descriptions and taxonomic insights gained from a variety of phylogenetic studies. Here we gather diverse taxonomic and phylogenetic information into a single resource. We develop an updated clas- sification system that includes all the crayfishes worldwide and taxonomic changes to better reflect the current phylogenetic knowledge of the group. We also include all the fossil crayfish taxa for a complete classification of extant and extinct crayfishes.
    [Show full text]