Blois Shaunal Dvsc.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Blois Shaunal Dvsc.Pdf THE EFFECTS OF ASPIRIN, CARPROFEN, DERACOXIB, AND MELOXICAM ON HEMOSTASIS AND SYSTEMIC PROSTAGLANDINS IN DOGS A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by SHAUNA LEANNE BLOIS In partial fufilment of requirements for the degree of Doctor of Veterinary Science August 2008 © Shauna Leanne Blois, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-42554-1 Our file Notre reference ISBN: 978-0-494-42554-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. Canada ABSTRACT THE EFFECTS OF ASPIRIN, CARPROFEN, DERACOXIB, AND MELOXICAM ON HEMOSTASIS AND SYSTEMIC PROSTAGLANDINS IN DOGS Shauna Leanne Blois Advisor: University of Guelph 2008 Doctor D.G. Allen Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used in veterinary medicine to provide analgesic and anti-inflammatory benefits to patients. The adverse effects associated with NSAID use are believed to be largely due to inhibition of the enzyme cyclooxygenase (COX)-l. As such, COX-2-selective NSAIDs were developed in attempt to limit the development of NSAID-associated adverse effects. Recent reports in the human medical literature have suggested an increased incidence of thromboembolic events associated with the use of COX-2 selective NSAIDs. There is speculation that COX-2 selective NSAIDs may lead to an imbalance in prostaglandin levels, with a relative increase in thromboxane versus prostacyclin. Thromboxane promotes platelet aggregation and vasoconstriction, while prostacyclin counteracts these effects. This study examined the effects of NSAIDs on hemostasis and cardiovascular prostaglandin levels in healthy dogs. Ten dogs were given four NSAIDs and one placebo in a cross-over design at dosages consistent with current therapeutic recommendations. The NSAIDs administered included aspirin, carprofen, deracoxib, and meloxicam. Parameters measured before and after 7 days of NSAID administration included platelet optical aggregometry, platelet function analysis (using the PFA-100), and plasma thromboxane and prostacyclin levels. Administration of NSAIDs did not cause a significant effect on platelet function measured by the PFA-100. Platelet aggregation induced by 50 ^im of adenosine diphosphate (ADP) mildly decreased after deracoxib administration. Deracoxib did not affect platelet function measured by other aggregation studies and the PFA-100. Aspirin, carprofen, and meloxicam did not affect platelet function. Plasma thromboxane levels decreased after aspirin administration compared to after deracoxib administration, while NSAID administration did not affect plasma prostacyclin levels. This study showed that treatment with COX-2 selective NSAIDs in healthy dogs did not result in platelet dysfunction or an imbalance in plasma thromboxane and prostacyclin levels. Administration of aspirin, carprofen, deracoxib, and meloxicam had minimal impact on platelet function in healthy dogs. Further evaluation of COX-2 selective inhibitors should be performed, especially in patients prone to thromboembolic events. ACKNOWLEDGEMENTS Many thanks to my DVSc. advisory committee, Drs. Dana Allen, Peter Conlon, and Darren Wood for their support throughout my research project. My committee helped provide the initial idea for the project and were always ready to offer valuable advice to make the project grow in the right direction. Special thanks to Dr. Dana Allen for being a fantastic advisor both in and outside of the clinic during my residency. Thank you to Drs. Marilyn Dunn (Universite de Montreal) and Maureen Barry for agreeing to be a part of my DVSc. examination committee. I would also like to thank the Ontario Veterinary Pet Trust Foundation for their generous financial support of this project. The technical expertise of Barb Jefferson was invaluable throughout the duration of the project. Many thanks to Michelle Ross for taking the time to teach us the necessary techniques to perform platelet aggregometry. Thank you to Gabrielle Monteith and Dr. William Sears for their assistance with the statistical analysis. A special thanks to the staff (and the dogs) at the Central Animal Facility, University of Guelph, for facilitating the sample collection and drug administration for this project. DECLARATION OF WORK PERFORMED I declare that with the exception of the items below, all work reported in this thesis was performed by me. Complete blood cell count, serum biochemical profile, urinalysis, one stage prothrombin time, activated partial thromboplastin time, and fibrinogen levels were analysed by the technicians in the Animal Health Laboratory, University of Guelph, Guelph, Ontario. The animal care was provided by the Central Animal Facility, University of Guelph, Guelph, Ontario. Technicians, and animal care attendants performed restraint and blood collection, and administered nonsteroidal anti-inflammatory drugs. The pharmacy at the Ontario Veterinary College, University of Guelph, Guelph, Ontario, provided the nonsteroidal anti-inflammatory drugs at the requested dosages. Statistical randomization of the project was performed with the assistance of William Sears, Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario. Statistical analysis was performed by Gabrielle Monteith, Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario. 11 TABLE OF CONTENTS Page Acknowledgements i Declaration of Work Performed ii Table of Contents iii List of Figures vi Glossary viii CHAPTER 1: LITERATURE REVIEW 1.0 INTRODUCTION 1 1.1 PRIMARY HEMOSTASIS: FORMATION OF THE PLATELET PLUG 3 Megakaryocytes 3 Platelet Structure and Function 4 . Platelet Adhesion, Activation, and Aggregation 6 Disorders of Primary Hemostasis 8 Summary 10 1.2 SECONDARY HEMOSTASIS: STABILIZING THE PLATELET PLUG 10 The Coagulation Cascade 10 The Fibrinolytic System 13 Disorders of Secondary Hemostasis 14 Summary 15 1.3 MEASURES OF PRIMARY HEMOSTASIS 16 Sample Collection 16 Platelet Number and Morphology 17 Buccal Mucosal Bleeding Time 17 Von Willebrand Factor Analysis 18 Platelet Aggregometry 18 Platelet Function Analyzer 20 Other Measurements of Primary Hemostasis 21 Summary 21 1.4 MEASURES OF SECONDARY HEMOSTASIS & FIBRINOLYSIS 22 Partial Thromboplastin and Prothrombin Times 22 Other Measurements of Secondary Hemostasis 23 Fibrin Degradation Products and D-dimers 24 Global Tests of Hemostasis 25 Measurements of Endogenous Anticoagulants 25 Summary 26 1.5 THE ARACHIDONIC ACID PATHWAY 26 Summary 27 m 1.6 THE PHARMACOLOGY OF NSAIDS 29 COX-2 Selective Inhibitors 30 Adverse effects of NSAIDs 31 Summary 32 1.7 EFFECTS OF NSAIDS ON THE CARDIOVASCULAR SYSTEM 33 COX-2 Selective Inhibitors and Cardiovascular Outcomes in Humans 33 Effects of NSAIDs on the Canine Cardiovascular System 35 Summary 36 References 38 CHAPTER 2: RESARCH PROJECT 51 2.0 PRIMARY AND SECONDARY HEMOSTASIS 51 Introduction 51 Materials and Methods 52 Animals 52 Study Design 53 Blood Collection 54 Platelet Count, Hematocrit, and Leukocyte count 55 Analysis of Hemostasis 55 Platelet Function Analysis as Measured by the PFA-100™ 55 Platelet Aggregation 56 Plasma Thromboxane Levels 59 Plasma Prostacyclin Levels 61 One-stage PT, Activated PTT, and Fibrinogen Concentration . 61 Statistical Analysis 61 Results 63 Platelet Count, Hematocrit, and Leukocyte Count 63 Platelet Function Analysis as Measured by the PFA-100™ and Platelet Aggregometry 63 Plasma PGI2 and TBX2 Levels 69 Measures of Secondary Hemostasis 71 Discussion 74 Limitations and Future Areas of Study 82 Conclusions 83 References 85 CHAPTER 3: CONCLUSIONS 91 Summary 91 4.0 APPENDICES 93 Appendix la: Circulating platelet count 93 Appendix lb: Circulating hematocrit 93 lv Appendix 1c: Circulating white blood cell count 93 Appendix Id: Closure time as measured by the PFA-100™
Recommended publications
  • United States Patent (19) 11 Patent Number: 5,955,504 Wechter Et Al
    USOO5955504A United States Patent (19) 11 Patent Number: 5,955,504 Wechter et al. (45) Date of Patent: Sep. 21, 1999 54 COLORECTAL CHEMOPROTECTIVE Marnett, “Aspirin and the Potential Role of Prostaglandins COMPOSITION AND METHOD OF in Colon Cancer, Cancer Research, 1992; 52:5575–89. PREVENTING COLORECTAL CANCER Welberg et al., “Proliferation Rate of Colonic Mucosa in Normal Subjects and Patients with Colonic Neoplasms: A 75 Inventors: William J. Wechter; John D. Refined Immunohistochemical Method.” J. Clin Pathol, McCracken, both of Redlands, Calif. 1990; 43:453-456. Thun et al., “Aspirin Use and Reduced Risk of Fatal Colon 73 Assignee: Loma Linda University Medical Cancer." N Engl J Med 1991; 325:1593-6. Center, Loma Linda, Calif. Peleg, et al., “Aspirin and Nonsteroidal Anti-inflammatory Drug Use and the Risk of Subsequent Colorectal Cancer.” 21 Appl. No.: 08/402,797 Arch Intern Med. 1994, 154:394–399. 22 Filed: Mar 13, 1995 Gridley, et al., “Incidence of Cancer among Patients With Rheumatoid Arthritis J. Natl Cancer Inst 1993 85:307-311. 51) Int. Cl. .......................... A61K 31/19; A61K 31/40; Labayle, et al., “Sulindac Causes Regression Of Rectal A61K 31/42 Polyps. In Familial Adenomatous Polyposis” Gastroenterol 52 U.S. Cl. .......................... 514/568; 514/569; 514/428; ogy 1991 101:635-639. 514/416; 514/375 Rigau, et al., “Effects Of Long-Term Sulindac Therapy On 58 Field of Search ..................................... 514/568, 570, Colonic Polyposis” Annals of Internal Medicine 1991 514/569, 428, 416, 375 11.5:952-954. Giardiello.et al., “Treatment Of Colonic and Rectal 56) References Cited Adenomas With Sulindac In Familial Adenomatous Poly U.S.
    [Show full text]
  • Pain Management in Companion Animals
    CONTINUING EDUCATION TAP OUR APP Pain Management in Companion Animals Download “NCPA Mobile” Today! by Ann Philbrick, PharmD, BCPS Don’t be left out of the latest news affecting community pharmacy—download our new app, NCPA Mobile! Receive real-time updates, join the conversation on Twitter with a built-in feed, Jul. 1, 2015 (expires Jul. 1, 2018) and never miss out on breaking news affecting community pharmacy. Keep the Activity Type: Application-based app on your phone year-round for updates, news, alerts, and more from NCPA. To earn continuing education credit: ACPE Program 0207-0000-15-007-H01-P; 0207-0000-15-007-H01-T Upon successful completion of this article, the pharmacist should be able to: 1. Describe the process of pain in the dog and cat including identification of ways they express pain. 2. Describe the appropriate use, mechanism of action, and precautions for use of analgesics in the treatment of pain in dogs and cats. 3. Explain the key issues that impair the prevention of diversion in compan- ion animal owners. Upon successful completion of this article, the pharmacist should be able to: 1. Describe the process of pain in the dog and cat including identification of ways they express pain. To get the free NCPA Mobile app: 2. Describe the appropriate use, mechanism of action, and precautions for FREE ONLINE CE. To take advantage use of analgesics in the treatment of pain in dogs and cats. of free continuing pharmacy educa- iPhone and iPad users—search “NCPA 3. Explain the key issues that impair the prevention of diversion in compan- tion (CPE) for this program, pharma- ion animal owners.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Deracoxib Item No. 27371 CAS Registry No.: 169590-41-4 O H2N Formal Name: 4-[3-(difluoromethyl)-5-(3-fluoro- S O 4-methoxyphenyl)-1H-pyrazol-1- yl]-benzenesulfonamide F Synonym: SC-59046 O MF: C17H14F3N3O3S 397.4 FW: N Purity: ≥98% N UV/Vis.: λmax: 256 nm Supplied as: A solid Storage: -20°C F Stability: ≥2 years F Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Deracoxib is supplied as a solid. A stock solution may be made by dissolving the deracoxib in the solvent of choice, which should be purged with an inert gas. Deracoxib is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide (DMF). The solubility of deracoxib in ethanol is approximately 3 mg/ml and approximately 10 mg/ml in DMSO and DMF. Deracoxib is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, deracoxib should first be dissolved in DMF and then diluted with the aqueous buffer of choice. Deracoxib has a solubility of approximately 0.1 mg/ml in a 1:8 solution of DMF:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Deracoxib is a non-steroidal anti-inflammatory drug (NSAID) and selective inhibitor of COX-2 1 (IC50s = 0.63 and 23 μM for COX-2 and COX-1, respectively). In vivo, deracoxib (0.3-10 mg/kg) increases weight bearing and decreases lameness and joint effusion in a canine model of urate crystal-induced intraarticular synovitis.2 Deracoxib induces less lesion formation in the gastric mucosa of healthy canines than aspirin (Item No.
    [Show full text]
  • NIH Public Access Author Manuscript J Am Chem Soc
    NIH Public Access Author Manuscript J Am Chem Soc. Author manuscript; available in PMC 2014 January 09. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: J Am Chem Soc. 2013 January 9; 135(1): 22–25. doi:10.1021/ja308733u. A binding site for non-steroidal anti-inflammatory drugs in FAAH Laura Bertolacci¶, Elisa Romeo¶, Marina Veronesi, Paola Magotti, Clara Albani, Mauro Dionisi, Chiara Lambruschini, Rita Scarpelli, Andrea Cavalli‡, Marco De Vivo, Daniele Piomelli*,†, and Gianpiero Garau* ‡Department of Pharmaceutical. Sciences, University of Bologna, Italy. †Department of Pharmacology, Univ. of California, Irvine, California, USA. Abstract In addition to inhibiting the cyclooxygenasemediated biosynthesis of prostanoids, various widely used non-steroidal anti-inflammatory drugs (NSAIDs) enhance endocannabinoid signaling by blocking the anandamidedegrading membrane enzyme, fatty acid amide hydrolase (FAAH). The X-ray structure of FAAH in complex with the NSAID carprofen, along with studies of site- directed mutagenesis, enzyme activity assays, and nuclear magnetic resonance, now reveal the molecular details of this interaction, providing information that may guide the design of dual FAAH-cyclooxygenase inhibitors with superior analgesic efficacy. Non-steroidal anti-inflammatory drugs (NSAIDs), one of the most widely used classes of therapeutic agents, alleviate pain and inflammation1 by inhibiting the enzymes cyclooxygenase-1 (COX-1) and COX-2,2 which catalyze the conversion of
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Dog Owner Information About ® Chewable Tablets (Carprofen)
    Dog Owner Information about ® Chewable Tablets (carprofen) ® Caplets (carprofen, USP) Rimadyl® (pronounced “Rim-a-dill”) for Osteoarthritis and Post-Surgical Pain Generic name: carprofen (“car-pro-fen”) This summary contains important information about Rimadyl. You should read this What are the possible side effects that may occur in my dog during information before you start giving your dog Rimadyl and review it each time the Rimadyl therapy? prescription is refilled. This sheet is provided only as a summary and does not take Rimadyl, like other drugs, may cause some side effects. Serious but rare side effects the place of instructions from your veterinarian. Talk to your veterinarian if you do not have been reported in dogs taking NSAIDs, including Rimadyl. Serious side effects can understand any of this information or if you want to know more about Rimadyl. occur with or without warning and in rare situations result in death. What is Rimadyl? The most common NSAID-related side effects generally involve the stomach (such as Rimadyl is a nonsteroidal anti-inflammatory drug (NSAID) that is used to reduce pain bleeding ulcers), and liver or kidney problems. Look for the following side effects that and inflammation (soreness) due to osteoarthritis and pain following surgery in dogs. can indicate your dog may be having a problem with Rimadyl or may have another Rimadyl is a prescription drug for dogs. It is available as a caplet and chewable tablet medical problem: and is given to dogs by mouth. • Decrease or increase in appetite Osteoarthritis
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,472,433 B2 Wechter (45) Date of Patent: Oct
    USOO6472433B2 (12) United States Patent (10) Patent No.: US 6,472,433 B2 Wechter (45) Date of Patent: Oct. 29, 2002 (54) METHOD FOR TREATMENT OF Variability of Inversion of (R)-Flurbiprofen in Different NFLAMMATION WITH R-NSAIDS Species, Sabine Menzel-Soglowek, Gerd Geisslinger, Win fried S. Beck, and Kay Brune-Journal of Pharmaceutical (75) Inventor: William J. Wechter, Ojai, CA (US) Sciences vol. 81, No. 9, Sep. 1992. Disposition and Pharmacokinetics of R-flurbiprofen in (73) Assignee: Loma Linda University Medical Three Species: Demonstration of R- to S-Flurbiprofen Center, Loma Linda, CA (US) Inversion in the Mouse, Rat and Monkey-William J. Wechter, E. David Murray, Jr. Karina M. Gibson, David D. (*) Notice: Subject to any disclaimer, the term of this Quiggle, and Douglas L. Leipold-Laboratory of Chemical patent is extended or adjusted under 35 Endocrinology, Loma Linda University School of Medicine, U.S.C. 154(b) by 0 days. 1998. Superaspirin, Jerome Groopman The New Yorker, Jun. 15, (21) Appl. No.: 09/797,022 1998 pp. 32–35. (22) Filed: Mar. 1, 2001 Building a Better Aspirin, Science, vol. 280, May 22, 1998. (65) Prior Publication Data R-Flurbiprofen Chemoprevention and Treatment of Intesti nal Adenomas in the APC Min/+ Mouse Model: Implica US 2001/0012849 A1 Aug. 9, 2001 tions for Prophylazis and Treatment of Colon Caner, Will iam Wechter, Darko Kantoci, E. David Murray, Jr. David D. Related U.S. Application Data Quiggle, Douglas D. Leipold, Karina M. Gibson, and John D. McCracker-Cancer Research 57, 4316-4324, Oct. 1, (63) Continuation of application No.
    [Show full text]
  • Nonsteroidal Anti-Inflammatory Drugs for Dysmenorrhoea (Review)
    Cochrane Database of Systematic Reviews Nonsteroidal anti-inflammatory drugs for dysmenorrhoea (Review) Marjoribanks J, Ayeleke RO, Farquhar C, Proctor M Marjoribanks J, Ayeleke RO, Farquhar C, Proctor M. Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. Cochrane Database of Systematic Reviews 2015, Issue 7. Art. No.: CD001751. DOI: 10.1002/14651858.CD001751.pub3. www.cochranelibrary.com Nonsteroidal anti-inflammatory drugs for dysmenorrhoea (Review) Copyright © 2015 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 4 BACKGROUND .................................... 5 OBJECTIVES ..................................... 6 METHODS ...................................... 6 Figure1. ..................................... 8 Figure2. ..................................... 10 Figure3. ..................................... 12 RESULTS....................................... 14 Figure4. ..................................... 16 Figure5. ..................................... 18 Figure6. ..................................... 24 ADDITIONALSUMMARYOFFINDINGS . 25 DISCUSSION ..................................... 26 AUTHORS’CONCLUSIONS . 27 ACKNOWLEDGEMENTS . 27 REFERENCES ..................................... 28 CHARACTERISTICSOFSTUDIES . 40 DATAANDANALYSES. 130 Analysis 1.1. Comparison 1 NSAIDs vs placebo, Outcome 1 Pain relief dichotomous data. 136
    [Show full text]
  • Non Commercial Use Only
    Veterinary Science Development 2017; volume 7:6245 Effects of licofelone, matory mediators in inflammation, injury, and pain settings.1 Although COX-2 specific drugs Correspondence: Correspondence: Aidin Shojaee a novel 5-LOX inhibitor, such as COXIBs (celecoxib, deracoxib, rofacox- Tabrizi, Department of Clinical Sciences, Faculty in comparison to celecoxib ib) have less gastric side effects than non- of Veterinary Medicine, Shiraz University, Shiraz, on gastric mucosa of dogs selective ones. Reports show that they are not Iran. as safe as they are expected to be.2 Tel.: +98.9171046274. Fax: +98.7132284950. E-mail: [email protected] Aidin Shojaee Tabrizi,1 Arachidonic acid (AA) is a substance that is converted to PGs and leulotriens (LTs) by COX Mohammad Azizzadeh,2 Aidin Esfandiari1 Key words: Licofelone; celecoxib; gastric lesions; and 5-lipoxygenase (LOX) enzymes, respec- dog. 1Faculty of Veterinary Medicine, Shiraz tively. LTs are responsible for inflammations University, Shiraz; 2Faculty of Veterinary and NSAIDs-induced gastrointestinal dam- Acknowledgments: the authors wish to thank the medicine, Ferdowsi University of ages. Studies showed that diminishing Research Council of the Veterinary Medicine Mashhad, Mashhad Iran leukotriene B4 levels in gastric mucosa will School of Shiraz University for their Financial result in gastroprotection against NSAIDs- Support. induced gastropathy.3 The inhibition of COX Abstract enzyme may lead to a shunt of AA metabolism Contributions: MA, AE, substantial contributions towards 5-LOX pathway, and therefore, treat- to conception and design, acquisition of data; ment with NSAIDs increase the formation of AST, substantial contributions to conception and Despite the extensive application of non- LTs possibly leading to gastric damage.4 Thus, design, acquisition of data, drafting the article or steroidal anti-inflammatory drugs (NSAIDs), revising it critically for important intellectual the idea of dual inhibition i.e.
    [Show full text]
  • Anesthetic Emergencies, Crises, and High-Risk Cases Ralph Harvey, DVM, MS, DACVAA University of Tennessee Knoxville, TN
    Anesthetic Emergencies, Crises, and High-Risk Cases Ralph Harvey, DVM, MS, DACVAA University of Tennessee Knoxville, TN Supportive care is based on recognition of patients needs Focused monitoring and patient evaluation leads to individualized care. Appropriate patient evaluation provides for the recognition of anesthetic risks and anesthetic concerns for that specific patient and procedure. “Problem-based” anesthetic management is the framework for individualized patient care. What “anesthetic concerns” have you identified for this patient? “100 things are missed due to not looking for every 1 thing missed due to not knowing”. Preanesthetic physical examination and laboratory analyses - individualized o “minimum data base” based on risk o diagnostic imaging o radiographs, contrast studies, CT, MRI, o ultrasonography, scintigraphy, etc. o other directed testing ASA physical status categories 0. American Society of Anesthesiologists (ASA) 1. ASA I - excellent anesthetic risk 2. ASA II - good anesthetic risk 3. ASA III - fair anesthetic risk 4. ASA IV - poor anesthetic risk 5. ASA V - guarded anesthetic risk additional “Emergency” designation (x)-E Ventilatory complications Airway obstruction Inadequate Delivery of Oxygen Hypoventilation Inadequate Ventilation, Apnea Hyperventilation: Tachypnea or panting Irregular patterns of ventilation All anesthetics are respiratory depressants! Anesthetic overdose: Relative or Absolute Direct depression of central respiratory centers Secondary to circulatory depression Specific drug actions Hypoventilation requires patient support Endotracheal intubation, ventilatory support by IPPV manual or mechanical ventilation based on patient monitoring, evaluate and address the underlying problem. Hyperventilation and/or panting are less common, but may reflect hyperthermia, pain, or occur as a side-effect of specific drugs. Control of body temperature, management of pain, and control of ventilation may be necessary.
    [Show full text]
  • Non-Steroidal Anti-Inflammatory Drugs (Nsaids)
    Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) NSAIDs are pain medications. The first drug in this class of medication was aspirin. Aspirin in the Stop NSAID therapy and notify your form of willow bark was known by American Indians to be an effective pain medication but it was veterinarian if your not until 1973 that the mechanism of action was discovered. Since this time, more potent forms pet experiences: of aspirin have been developed that are safer for the stomach and kidneys. Examples of the newer • Decrease in appetite forms of aspirin in people include celebrex and ibuprofen. There have been NSAIDS specifically or vomiting designed for dogs that are safe and effective pain medications (see below). • Dark or NSAIDs are thought in people to have the best pain fighting characteristics relative to side effects bloody diarrhea and addiction potential. A BVNS doctor would prescribe an NSAID anytime a patient is thought to • Increased drinking be painful. We often use pain modulators as well which are not as effective but are safer. Examples or urination would include gabapentin, tramadol and amitriptyline. • Lethargy, yellowing of NSAIDs can cause stomach and intestinal problems, damage the kidneys and less commonly gums, skin, or whites of the liver and bone marrow. These problems are uncommon to rare, especially with the eyes (jaundice) appropriate monitoring. • Bleeding under the skin None of the following medications should be given together: NSAIDs Steroids Aspirin Cortisone Rimadyl/Carprofen Dexamethasone Etogesic/Etodolac Medrol/Methylprednisolone Deramaxx/Deracoxib Prednisone Metacam/Meloxicam Triamcinolone Previcox/Firocoxib Zubrin/Tepoxalin To learn more about neurologic diseases, treatments, medications and our practice, please visit www.bvns.net.
    [Show full text]
  • Carprovet® (Carprofen)
    ® Post-Approval Experience: Although not all adverse reactions are reported, the following adverse reactions are based on voluntary post-approval Carprovet (carprofen) adverse drug experience reporting. The categories of adverse reactions are listed in decreasing order of frequency by Flavored Tablets body system. Gastrointestinal: Vomiting, diarrhea, constipation, inappetence, melena, hematemesis, gastrointestinal ulceration, Non-steroidal anti-inammatory drug gastrointestinal bleeding, pancreatitis. For oral use in dogs only Hepatic: Inappetence, vomiting, jaundice, acute hepatic toxicity, hepatic enzyme elevation, abnormal liver function test(s), hyperbilirubinemia, bilirubinuria, hypoalbuminemia. Approximately one-fourth of hepatic reports were in CAUTION: Federal law restricts this drug to use by or on the order of a licensed veterinarian. Labrador Retrievers. DESCRIPTION: Carprovet (carprofen) is a non-steroidal anti-inammatory drug (NSAID) of the propionic acid class that Neurologic: Ataxia, paresis, paralysis, seizures, vestibular signs, disorientation. includes ibuprofen, naproxen, and ketoprofen. Carprofen is the nonproprietary designation for a substituted carbazole, Urinary: Hematuria, polyuria, polydipsia, urinary incontinence, urinary tract infection, azotemia, acute renal failure, 6-chloro-α-methyl-9H-carbazole-2-acetic acid. The empirical formula is C15H12ClNO2 and the molecular weight 273.72. tubular abnormalities including acute tubular necrosis, renal tubular acidosis, glucosuria. The chemical structure of carprofen
    [Show full text]