Symplectic Geometry and Analytical Mechanics Mathematics and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Symplectic Geometry and Analytical Mechanics Mathematics and Its Applications Symplectic Geometry and Analytical Mechanics Mathematics and Its Applications Managing Editor: M. HAZE WINKEL Centre for Mathematics and Computer Science. Amsterdam. The Netherlands Editorial Board: F. CALOGERO. Universita deg/i Studi di Roma. Italy Yu. I. MANIN. Stekiov Institute of Mathematics. Moscow. U.S.S.R. A. H. G. RINNOOY KAN. Erasmus Ullh·ersity. Rotterdam. The Netherlands G.-c. ROTA. M.l. T.. Cambridge. Mass .. U.S.A. Symplectic Geometry and Analytical Mechanics Paulette Libermann Universite de Paris VIL Paris. France' and Charles-Michel Marle Universite Pierre et Marie Curie (Paris VI). Paris. France Translated by Bertram Eugene Schwarzbach D. Reidel Publishing Company A MEMBER OF THE KLUWER ACADEMIC PUBLISHERS GROUP Dordrecht / Boston / Lancaster / Tokyo Library of Congress Cataloging in PubHcation Data Libermann, Paulette, 1919- Symplectic geometry and analytical mechanics. (Mathematics and its applications) Translated from the French. Bibliography: p. Includes index. 1. Geometry, Differential. 2. Symplectic manifolds. 3. Mechanics, An­ alytic. I. Marle, Charles. II. Title. III. Series: Mathematics and its applica­ tions (D. Reidel Publishing Company) QA649.L465 1987 516.3'6 86-31568 ISBN-13: 978-90-277-2439-7 e-ISBN-13: 978-94-009-3807-6 DOl: 10.1007/978-94-009-3807-6 Published by D. Reidel Publishing Company, P.O. Box 17,3300 AA Dordrecht, Holland. Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers Group, P.O. Box 322,3300 AH Dordrecht, Holland. All Rights Reserved Softcover reprint of the hardcover 1st edition 1987 © 1987 by D. Reidel Publishing Company, Dordrecht, Holland No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner ala memoire d'Elie Cartan et de Charles Ehresmann en hommage it Andre Lichnerowicz Contents Series Editor's Preface xi Preface .. xiii Chapter I. Symplectic vector spaces and symplectic vector bundles 1 Part 1: Symplectic vector spaces . 2 1. Properties of exterior forms of arbitrary degree 2 2. Properties of exterior 2-forms ....... 3 3. Symplectic forms and their automorphism groups 6 4. The contravariant approach . 8 5. Orthogonality in a symplectic vector space 10 6. Forms induced on a vector subspace of a symplectic vector space 12 7. Additional properties of Lagrangian subspaces 16 8. Reduction of a symplectic vector space. Generalizations 20 9. Decomposition of a symplectic form ....... 23 10. Complex structures adapted to a symplectic structure 26 11. Additional properties of the symplectic group 33 Part 2: Symplectic vector bundles 36 12. Properties of symplectic vector bundles 36 13. Orthogonality and the reduction of a symplectic vector bundle 38 14. Complex structures on symplectic vector bundles . 40 Part 3: Remarks concerning the operator A and Lepage's decomposition theorem 43 15. The decomposition theorem in a symplectic vector space 43 16. Decomposition theorem for exterior differential forms 48 17. A first approach to Darboux's theorem .. 51 Chapter II. Semi-basic and vertical differential forms in mechanics 53 1. Definitions and notations 54 2. Vector bundles associated with a surjective submersion 54 3. Semi-basic and vertical differentia! forms 56 4. The Liouville form on the cotangent bundle 58 viii Contents 5. Symplectic structure on the cotangent bundle 63 6. Semi-basic differential forms of arbitrary degree 67 7. Vector fields and second-order differential equations 72 8. The Legendre transformation on a vector bundle . 73 9. The Legendre transformation on the tangent and cotangent bundles 75 10. Applications to mechanics: Lagrange and Hamilton equations 77 11. Lagrange equations and the calculus of variations 81 12. The Poincare-Cartan integral invariant 83 13. Mechanical systems with time dependent Hamiltonian or Lagrangian functions 86 Chapter m. Symplectic manifolds and Poisson manifolds 89 1. Symplectic manifolds; definition and examples 90 2. .special submanifolds of a symplectic manifold 91 3. Symplectomorphisms 94 4. Hamiltonian vector fields 96 5. The Poisson bracket 99 6. Hamiltonian systems 102 7. Presymplectic manifolds 105 8. Poisson manifolds 107 9. Poisson morphisms 114 10. Infinitesimal automorphisms of a Poisson structure 121 11. The local structure of Poisson m~ifolds 125 12. The symplectic foliation of a Poisson manifold 130 13. The local structure of symplectic manifolds 134 14. Reduction of a symplectic manifold . 141 15. The Darboux-Weinstein theorems 153 16. Completely integrable Hamiltonian systems 160 17. Exercises .............. 18] Chapter IV. Action of a Lie group on a symplectic manifold 185 1. Symplectic and Hamiltonian actions 186 2. Elementary properties of the momentum map 195 3. The equivariance of the momentum map 200 4. Actions of a Lie group on its cotangent bundle 204 5. Momentum maps and Poisson morphisms 213 6. Reduction of a symplectic manifold by the action of a Lie group 217 7. Mutually orthogonal actions and reduction 228 8. Stationary motions of a Hamiltonian system . 238 9. The motion of a rigid body about a fixed point 246 10. Euler's equations . 253 11. Special formulae for the group SO(3) . 256 12. ,The Euler-Poinsot problem ........ 260 13. The Euler-Lagrange and Kowalevska problems 265 14. Additional remarks and comments 267 15. Exercises 269 Contents ix Chapter V. Contact manifolds 275 1. Background and notations . 276 2. Pfaffian equations 277 3. Principal bundles and projective bundles 279 4. The class of Pfaffian equations and forms 284 5. Darboux's theorem for Pfaffian forms and equations 286 6. Strictly contact structures and Pfaffian structures 289 7. Project able Pfaffian equations 299 8. Homogeneous Pfaffian equations 302 9. Liouville structures . 306 10. Fibered Liouville structures 307 11. The automorphisms of Liouville structures 313 12. The infinitesimal automorphisms of Liouville structures 315 13. The automorphisms of strictly contact structures . 318 14. Some contact geometry formulae in local coordinates 324 15. Homogeneous Hamiltonian systems . 327 16. Time-dependent Hamiltonian systems . 328 17. The Legendre involution in contact geometry 332 18. The contravariant point of view ..... 336 Appendix 1. Basic notions of differential geometry 341 1. Differentiable maps, immersions, submersions 341 2. The flow of a vector field ....... 346 3. Lie derivatives 349 4. Infinitesimal automorphisms and conformal infinitesimal transformations 352 5. Time-dependent vector fields and forms 354 6. Tubular neighborhoods . 358 7. Generalizations of Poincare's lemma 359 Appendix 2. Infinitesimal jets 365 1. Generalities . 365 2. Velocity spaces . 367 3. Second-order differential equations 371 4. Sprays and the exponential mapping 373 5. Covelocity spaces . 376 6. Liouville forms on jet spaces . 379 Appendix 3. Distributions, Pfaffian systems and foliations 382 1. Distributions and Pfaffian systems ........ 382 2. Completely integrable distributions . 384 3. Generalized foliations defined by families of vector fields 387 4. Differentiable distributions of constant rank . 393 x Contents Appendix 4. Integral invariants 395 1. Integral invariants of a vector field 395 2. Integral invariants of a foliation 401 3. The characteristic distribution of a differential form 404 Appendix 5. Lie groups and Lie algebras 409 1. Lie groups and Lie algebras; generalities 409 2. The exponential map . 415 3. Action of a Lie group on a manifold 419 4. The adjoint and coadjoint representations 425 5. Semi-direct products ........ 429 6. Notions regarding the cohomology of Lie groups and Lie algebras 433 7. Affine actions of Lie groups and Lie algebras . 439 Appendix 6. The Lagrange-Grassmann manifold 448 1. The structure of the Lagrange-Grassmann manifold 448 2. The signature of a Lagrangian triplet . 454 3. The fundamental groups of the symplectic group and of the Lagrange-Grassmann manifold 458 Appendix 7. Morse families and Lagrangian submanifolds 461 1. Lagrangian submanifolds of a cotangent bundle 461 2. Hamiltonian systems and first-order partial differential equations 473 3. Contact manifolds and first-order partial differential equations 477 4. Jacobi's theorem . 484 5. The Hamilton-Jacobi equation for autonomous systems 490 6. The Hamilton-Jacobi equation for nonautonomous systems 492 Bibliography 497 Index .... 519 SERIES EDITOR'S PREFACE Approach your problems from the right end It isn't that they can't see the solution. and begin with the answers. Then one day, It is that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' Brown 'The point of a Pin'. in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thouglit to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sci­ ences has changed drastically in recent years: measure theory is used (non-trivially) in re­ gional
Recommended publications
  • Arxiv:1104.4852V2 [Math.DS] 25 Aug 2014
    LECTURES ON FOLIATION DYNAMICS: BARCELONA 2010 STEVEN HURDER Contents 1. Introduction 1 2. Foliation Basics 3 3. Topological Dynamics 4 4. Derivatives 7 5. Counting 11 6. Exponential Complexity 15 7. Entropy and Exponent 19 8. Minimal Sets 22 9. Classification Schemes 24 10. Matchbox Manifolds 27 11. Topological Shape 33 12. Shape Dynamics 34 Appendix A. Homework 36 References 36 1. Introduction The study of foliation dynamics seeks to understand the asymptotic properties of leaves of foliated manifolds, their statistical properties such as orbit growth rates and geometric entropy, and to classify geometric and topological \structures" which are associated to the dynamics, such as the minimal sets of the foliation. The study is inspired by the seminal work of Smale [189] (see also arXiv:1104.4852v2 [math.DS] 25 Aug 2014 the comments by Anosov [13]) outlining a program of study for the differentiable dynamics for a Cr-diffeomorphism f : N ! N of a closed manifold N, r ≥ 1. The themes of this approach included: (1) Classify dynamics as hyperbolic, or otherwise; (2) Describe the minimal/transitive closed invariant sets and attractors; (3) Understand when the system is structurally stable under Cr-perturbations, for r ≥ 1; (4) Find invariants (such as cohomology, entropy or zeta functions) characterizing the system. Smale also suggested to study these topics for large group actions, which leads directly to the topics of these notes. The study of the dynamics of foliations began in ernest in the 1970's with the research programs of Georges Reeb, Stephen Smale, Itiro Tamura, and their students. 2000 Mathematics Subject Classification.
    [Show full text]
  • Symplectic Foliations, Currents, and Local Lie Groupoids
    c 2018 Daan Michiels SYMPLECTIC FOLIATIONS, CURRENTS, AND LOCAL LIE GROUPOIDS BY DAAN MICHIELS DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Doctoral Committee: Professor Susan Tolman, Chair Professor Rui Loja Fernandes, Director of Research Professor Ely Kerman Professor James Pascaleff Abstract This thesis treats two main topics: calibrated symplectic foliations, and local Lie groupoids. Calibrated symplectic foliations are one possible generalization of taut foliations of 3-manifolds to higher dimensions. Their study has been popular in recent years, and we collect several interesting results. We then show how de Rham’s theory of currents, and Sullivan’s theory of structure currents, can be applied in trying to understand the calibratability of symplectic foliations. Our study of local Lie groupoids begins with their definition and an exploration of some of their basic properties. Next, three main results are obtained. The first is the generalization of a theorem by Mal’cev. The original theorem characterizes the local Lie groups that are part of a (global) Lie group. We give the corresponding result for local Lie groupoids. The second result is the generalization of a theorem by Olver which classifies local Lie groups in terms of Lie groups. Our generalization classifies, in terms of Lie groupoids, those local Lie groupoids that have integrable algebroids. The third and final result demonstrates a relationship between the associativity of a local Lie groupoid, and the integrability of its algebroid. In a certain sense, the monodromy groups of a Lie algebroid manifest themselves combinatorially in a local integration, as a lack of associativity.
    [Show full text]
  • Arxiv:2009.06344V2 [Math.GT] 8 Dec 2020 Ojcue Hc Eeete Omltdb Hrtno Who Or Thurston by Formulated Either Were Which Conjectures Thinking Was Thurston Simultaneously
    A GLIMPSE INTO THURSTON’S WORK KEN’ICHI OHSHIKA AND ATHANASE PAPADOPOULOS Abstract. We present an overview of some significant results of Thur- ston and their impact on mathematics. The final version of this article will appear as Chapter 1 of the book In the tradition of Thurston: Geo- metry and topology, ed. K. Ohshika and A. Papadopoulos, Springer Verlag, 2020. Keywords foliation, contact structure, symplectic structure, conformal geometry, holomorphic motion, Kleinian groups, circle packing, auto- matic groups, tiling, mapping class groups, Teichm¨uller space, fash- ion design, linkage, Anti-de Sitter geometry, higher Teichm¨uller theory, Grothendieck–Thurston theory, asymmetric metric, Schwarzian deriv- ative, computer science, Ehrenpreis conjecture, transitional geometry, 3-manifolds, geometric structures, (G,X)-structures, Dehn surgery, hy- perbolic geometry, Thurston norm, Smith conjecture, Cannon–Thurston map, discrete conformal geometry, discrete Riemann mapping theorem. AMS codes 57N10, 57M50, 20F34, 20F65, 22E40, 30F20, 32G15, 30F60, 30F45, 37D40, 57M25, 53A40, 57D30, 58D05, 57A35, 00A30, 01A60, 20F10, 68Q70, 57M05, 57M07, 57Q15, 57D15, 58A10, 58F10, 65Y25. Contents 1. Introduction 1 2. On Thurston’s works 2 3. On Thurston’s impact 34 4. In guise of a conclusion 46 References 46 1. Introduction arXiv:2009.06344v2 [math.GT] 8 Dec 2020 In this chapter, we present an overview of some significant results of Thurston and their impact on mathematics. The chapter consists of two parts. In the first part, we review some works of Thurston, grouped in topics. The choice of the topics reflects our own taste and our degree of knowledge. The choice of the order of these topics was almost random.
    [Show full text]
  • Mathématiques À Strasbourg-Clermont-Ferrand (1939-44) Vivre, Travailler, Résister
    Mathématiques à Strasbourg-Clermont-Ferrand (1939-44) Vivre, travailler, résister... Michèle Audin1 En 1993, un colloque universitaire réunit, à l'occasion du cinquantième anniversaire des rafles à l'université de Strasbourg à Clermont-Ferrand, des spécialistes de la période de l'Occupation et des « témoins » de cette histoire. Des mathématiciens y participèrent, qui expliquèrent que cette difficile période avait été, pour les mathématiques, un moment très fécond. Le livre issu de ce colloque2 n'inclut pas leur contribution3, qui fut publiée ultérieurement par la Gazette des mathématiciens, un journal de la Société mathématique de France. Vingt ans après, il est peut-être plus facile de faire entendre cette histoire4. Prologue strasbourgeois Janvier 1939. Après les accords de Munich, la nuit de cristal et l'inquiétante actualité de la fin de l'année 1938, cent vingt-huit professeurs (c'est-à-dire la grande majorité du corps professoral) de l'université de Strasbourg, avaient adressé au président de la République, Albert Lebrun, une lettre intitulée « Résister aux dictateurs fascistes », dans laquelle ils souhaitaient notamment que la France maintienne les traditions de liberté, de tolérance politique, religieuse et ethnique, qui constituent, au même titre que le territoire, le patrimoine de la nation, font la source de son patriotisme, et sont à la source de son rayonnement universel ; C'était un acte à la fois inouï et unique. Parmi les cent vingt-huit signataires, on trouve les noms des mathématiciens Henri Cartan, Georges Cerf, Paul Flamant, André Roussel, René Thiry, et (mais il est rangé avec les littéraires) celui de Jean Cavaillès 5.
    [Show full text]
  • Weyl and Intuitionistic Infinitesimals
    Weyl and intuitionistic infinitesimals Mark van Atten∗ July 3, 2018 dedicated to the memory of Richard Tieszen, 1951–2017 As Weyl was interested in infinitesimal analysis and for some years embraced Brouwer’s intuitionism, which he continued to see as an ideal even after he had convinced himself that it is a practical ne- cessity for science to go beyond intuitionistic mathematics, this note presents some remarks on infinitesimals from a Brouwerian perspec- tive. After an introduction and a look at Robinson’s and Nelson’s approaches to classical nonstandard analysis, three desiderata for an intuitionistic construction of infinitesimals are extracted from Brouwer’s writings. These cannot be met, but in explicitly Brouwe- rian settings what might in different ways be called approximations to infinitesimals have been developed by early Brouwer, Vesley, and Reeb. I conclude that perhaps Reeb’s approach, with its Brouwerian motivation for accepting Nelson’s classical formalism, would have suited Weyl best. 1 Introduction In the 1920s, Weyl doubted that non-Archimedean number systems could serve to develop real analysis with infinitesimals.1 In his ‘Philosophy of Mathematics and Natural Science’ of 1926, Weyl advanced the following argument: But once the limit concept has been grasped, it is seen to render the infinitely small superfluous. Infinitesimal analysis proposes to draw conclusions by integration from the behavior in the infinitely small, which is governed by elementary laws, to the behaviour in the large ... If the infinitely small is not interpreted ‘potentially’ here, in the sense of the limiting process, then the one has nothing to do with arXiv:1803.05014v2 [math.HO] 2 Jul 2018 the other, the processes in infinitesimal and in finite dimensions be- come independent of each other, the tie which binds them together ∗ SND (CNRS / Paris IV), 1 rue Victor Cousin, 75005 Paris, France.
    [Show full text]
  • Inventaire Du Fonds D'archive Jean Dieudonné
    INSTITUT DE FRANCE ACADEMIE DES SIENCES 11 J Archives de Jean Dieudonné Réalisée par Cécilia Carolo, stagiaire du master 1 « Métiers des Archives et Technologies Appliquées » de l’Université de Picardie Jules-Verne Sous la direction d’Isabelle Maurin-Joffre, conservateur en chef, directeur du Patrimoine historique et des Archives de l’Académie des Sciences Avril - Juin 2017 1 Sommaire Introduction…………………………………………p.4-10 Éléments biographiques Présentation du fonds Bibliographie Sources complémentaires Inventaire du fonds Jean Dieudonné 11 J………….p. 11-39 11J 1 Papiers personnels 11J 2- 4 Scolarité et études 11J 5-7 Séminaires et colloques 11J 8-18 Travaux mathématiques de Jean Dieudonné 11J 19-25 Jean Dieudonné et l’Histoire des mathématiques 11J 26-35 Travaux des collaborateurs de Dieudonné 11J 36-47 Académie des Sciences 11J 48-53 Correspondance 11J 54-56 Publications écrites par Jean Dieudonné 2 11J 57-61 Publications et tirés à part reçus par Jean Dieudonné 11J 62-65 Dossiers sur plusieurs scientifiques 3 Introduction Don de madame Odette Dieudonné en 1993. Cotes extrêmes : 11 J 1-65 Dates extrêmes : 1784-1992 Métrage linéaire :1, 70 ml ELEMENTS BIOGRAPHIQUES Jean Dieudonné est un mathématicien français né le 1er juillet 1906 à Lille. Son grand- père s’est établi dans le Nord de la France après l’annexion de l’Alsace-Lorraine par l’Allemagne en 1871. Son père, Ernest Dieudonné était un petit employé qui s’est élevé au rang de Directeur Général d’un important groupe d’industries textiles. Sa mère, Léontine Lebrun était institutrice jusqu’à la naissance de son fils.
    [Show full text]
  • RENÉ THOM: “MATHÉMATICIEN ET APPRENTI PHILOSOPHE”* René F. Thom Was Born September 2, 1923, in Montbéliard in the Easter
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 3, Pages 273{274 S 0273-0979(04)01029-8 Article electronically published on May 10, 2004 RENE´ THOM: \MATHEMATICIEN´ ET APPRENTI PHILOSOPHE"* JEAN-PIERRE BOURGUIGNON Ren´e F. Thom was born September 2, 1923, in Montb´eliard in the eastern part of France, where he grew up. His parents were shopkeepers. He, his wife, and their children paid regular visits to the region. Memories of his hometown obsessed him in the last part of his life. After successful years at primary and secondary schools in Montb´eliard, Thom obtained the baccalaur´eat \Math´ematiques ´el´ementaires" in Besan¸con in 1940. His studies were disrupted by the war, so his parents sent him and his brother south. After a detour through Switzerland, he got his baccalaur´eat \Philosophie" in Lyons in 1941, something that possibly set the stage for the dual inspiration that later deeply marked Thom's work. He then won a scholarship to attend Lyc´ee Saint-Louis, the only lyc´ee in France thathasClassesPr´eparatoires exclusively. He entered Ecole´ Normale Sup´erieure in 1943 on his second attempt and became agr´eg´edesciencesmath´ematiques in 1946. He then had the typical career of a successful normalien: after a few years as CNRS fellow in the extraordinarily stimulating atmosphere of Strasbourg, in 1951 he defended his Ph.D., entitled \Espaces fibr´es en sph`eres et carr´es de Steenrod", under the supervision of Henri Cartan. Shortly after this achievement, he visited the Institute for Advanced Study in Princeton, where he met leading mathematicians of the time...and of the times to come.
    [Show full text]
  • Geometric Theory of Foliations, by César Camacho and Alcides Lins Neto
    92 BOOK REVIEWS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, January 1988 ©1988 American Mathematical Society 0273-0979/88 $1.00 + $.25 per page Geometric theory of foliations, by César Camacho and Alcides Lins Neto. Translated from Portuguese by Sue E. Goodman. Birkhâuser, Boston, Basel and Stuttgart, 1985, 205 pp., $42.00. ISBN 0-8176-3139-9 The word "foliation" stands out in the title of the book under review as requiring explanation. For those who are predisposed to botanical terminology (this definitely includes the reviewer) this term conjures up images which are perhaps reminiscent of Desargues [20]. The term "structure feuilletée" was coined by Georges Reeb [2, 16]. Later authors began using the briefer "feuilletage" which was translated as "foliation." Reeb winces at the botanical interpretation and offers instead a gastronomic motivation [18]: "A défaut de botaniste l'assemblée comptera peut-être un pâtissier. La pâte feuilletée—j'ai de bonnes raisons de le croire—donne une bonne idée d'un feuilletage (de codimen- sion 1 dans R3) dont elle dessine bien les feuilles et en suggère des propriétés." Of course the more mundane translation to "sheeted" or "layered" shows that the terminology is appropriate since it suggests the image of pages in a book. Unlike the ill-fated terminology of Desargues, "foliation" has become a mathematical household word. A foliation is simply a decomposition of a manifold into a disjoint union of immersed submanifolds (called leaves) of constant dimension such that the decomposition is locally homeomorphic to the decomposition of Rn = Rk x Rn~k into the parallel submanifolds Rk x {point}.
    [Show full text]
  • René Thom: “Mathématicien Et Apprenti Philosophe”
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 3, Pages 273{274 S 0273-0979(04)01029-8 Article electronically published on May 10, 2004 RENE´ THOM: \MATHEMATICIEN´ ET APPRENTI PHILOSOPHE"* JEAN-PIERRE BOURGUIGNON Ren´e F. Thom was born September 2, 1923, in Montb´eliard in the eastern part of France, where he grew up. His parents were shopkeepers. He, his wife, and their children paid regular visits to the region. Memories of his hometown obsessed him in the last part of his life. After successful years at primary and secondary schools in Montb´eliard, Thom obtained the baccalaur´eat \Math´ematiques ´el´ementaires" in Besan¸con in 1940. His studies were disrupted by the war, so his parents sent him and his brother south. After a detour through Switzerland, he got his baccalaur´eat \Philosophie" in Lyons in 1941, something that possibly set the stage for the dual inspiration that later deeply marked Thom's work. He then won a scholarship to attend Lyc´ee Saint-Louis, the only lyc´ee in France thathasClassesPr´eparatoires exclusively. He entered Ecole´ Normale Sup´erieure in 1943 on his second attempt and became agr´eg´edesciencesmath´ematiques in 1946. He then had the typical career of a successful normalien: after a few years as CNRS fellow in the extraordinarily stimulating atmosphere of Strasbourg, in 1951 he defended his Ph.D., entitled \Espaces fibr´es en sph`eres et carr´es de Steenrod", under the supervision of Henri Cartan. Shortly after this achievement, he visited the Institute for Advanced Study in Princeton, where he met leading mathematicians of the time...and of the times to come.
    [Show full text]
  • Arxiv:1912.03115V1 [Math.GT] 6 Dec 2019
    W. P. THURSTON AND FRENCH MATHEMATICS FRAN ¸COIS LAUDENBACH AND ATHANASE PAPADOPOULOS, WITH CONTRIBUTIONS BY WILLIAM ABIKOFF, NORBERT A'CAMPO, PIERRE ARNOUX, MICHEL BOILEAU, ALBERT FATHI, DAVID FRIED, GILBERT LEVITT, VALENTIN POENARU,´ HAROLD ROSENBERG, FRANCIS SERGERAERT, VLAD SERGIESCU AND DENNIS SULLIVAN Abstract. We give a general overview of the influence of William Thurston on the French mathematical school and we show how some of the major problems he solved are rooted in the French mathemati- cal tradition. At the same time, we survey some of Thurston's major results and their impact. The final version of this paper will appear in the Surveys of the European Mathematical Society. AMS classification: 01A70; 01A60; 01A61; 57M50; 57R17; 57R30 Keywords: William P. Thurston: Geometric structures; Hyperbolic struc- tures; Haefliger structures; low-dimensional topology; foliations; contact structures; history of French mathematics. Part 1. 1. Prologue Seven years have passed since Bill Thurston left us, but his presence is felt every day in the minds of a whole community of mathematicians who were shaped by his ideas and his completely original way of thinking about mathematics. In 2015-2016 a two-part celebration of Thurston and his work was pub- lished in the Notices of the AMS, edited by Dave Gabai and Steve Kerckhoff with contributions by several of Thurston's students and other mathemati- cians who were close to him [15]. Among the latter was our former colleague and friend Tan Lei, who passed away a few years later, also from cancer, at the age of 53. One of Tan Lei's last professional activities was the the- arXiv:1912.03115v1 [math.GT] 6 Dec 2019 sis defense of her student J´er^omeTomasini in Angers, which took place on December 5, 2014 and for which Dylan Thurston served on the committee.
    [Show full text]
  • À Georges Reeb - [Pages Préliminaires] Astérisque, Tome 107-108 (1983), P
    Astérisque AST à Georges Reeb - [Pages préliminaires] Astérisque, tome 107-108 (1983), p. 1-11 <http://www.numdam.org/item?id=AST_1983__107-108__1_0> © Société mathématique de France, 1983, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ à Georges REEB Les organisateurs de cette troisième semaine de Géométrie du Schnepfenried remercient les organismes qui leur ont à nouveau apporté leur soutien : Société Mathématique de France, Université de Haute-Alsace (Mulhouse) et Université Louis Pasteur (Strasbourg), Ils remercient les conférenciers et les quelques quatre vingt parti­ cipants, représentant 18 nationalités différentes, qui ont apporté au chalet leur enthousiasme et leur bonne humeur. Ils remercient également Mademoiselle Marianne STEPHAN et Madame Fabienne GARUZ tant pour l'organisation matérielle des journées que pour la préparation du manuscrit. L'objet de ces journées était de "faire le point, par une large revue, sur la position et les développements actuels de certains problèmes où la géométrie apporte des vues nouvelles". Il s'agissait à la fois de présenter des Mathématiques en train de se faire et d'en donner une vue assez large pour ne pas intéresser les seuls spécialistes pointus de questions plus ou moins étroites : chacun devait parler pour les autres.
    [Show full text]
  • Primeiro Colóquio Brasileiro De Matemática: Identificação De Um Registro E Pequenas Biografias De Seus Participantes
    UNIVERSIDADE ESTADUAL PAULISTA - UNESP Instituto de Geociências e Ciências Exatas Campus de Rio Claro Primeiro Colóquio Brasileiro de Matemática: identificação de um registro e pequenas biografias de seus participantes Angelica Raiz Calábria Orientador: Prof. Dr. Sergio Roberto Nobre Dissertação de Mestrado elaborada junto ao Programa de Pós-Graduação em Educação Matemática – Área de Concentração em Ensino e Aprendizagem de Matemática e seus Fundamentos Filosófico-Científicos, para obtenção do Título de Mestre em Educação Matemática. Rio Claro (SP) 2010 Comissão Examinadora Sergio Roberto Nobre Ubiratan D’Ambrosio Iran Abreu Mendes Rio Claro, 20 de dezembro de 2010 Resultado: Aprovado. A Nelson, meu marido e grande companheiro AGRADECIMENTOS Agradeço, primeiramente, a Deus, por eu existir e nas horas de angústias e felicidade, ser uma referência para reflexão. Ao meu marido, Nelson da Conceição Calábria, por todo incentivo, pelo apoio tanto emocional quanto financeiro. Agradeço pela paciência e compreensão, durante o nosso convívio e, em especial, na elaboração desta pesquisa, principalmente, na companhia e nas valiosas contribuições ao meu trabalho. Ao meu orientador, Professor Doutor Sergio Roberto Nobre, pela confiança e oportunidade de elaborar e executar este projeto e, também, pelas horas de orientação e esclarecimento nos momentos mais complicados. Além disso, como professor, que ensinou e me mostrou os grandes valores desta profissão. À banca examinadora, professor Ubiratan e Iran, pelas contribuições na qualificação e por aceitar o convite de participar da avaliação deste trabalho e concretizar o término do mesmo e, também, a banca suplente. Aos meus pais, Fernando e Maria Sandra, e aos meus irmãos, Willian, Júnior e Victor, pelo incentivo e orgulho do meu trabalho.
    [Show full text]