Primeiro Colóquio Brasileiro De Matemática: Identificação De Um Registro E Pequenas Biografias De Seus Participantes

Total Page:16

File Type:pdf, Size:1020Kb

Primeiro Colóquio Brasileiro De Matemática: Identificação De Um Registro E Pequenas Biografias De Seus Participantes UNIVERSIDADE ESTADUAL PAULISTA - UNESP Instituto de Geociências e Ciências Exatas Campus de Rio Claro Primeiro Colóquio Brasileiro de Matemática: identificação de um registro e pequenas biografias de seus participantes Angelica Raiz Calábria Orientador: Prof. Dr. Sergio Roberto Nobre Dissertação de Mestrado elaborada junto ao Programa de Pós-Graduação em Educação Matemática – Área de Concentração em Ensino e Aprendizagem de Matemática e seus Fundamentos Filosófico-Científicos, para obtenção do Título de Mestre em Educação Matemática. Rio Claro (SP) 2010 Comissão Examinadora Sergio Roberto Nobre Ubiratan D’Ambrosio Iran Abreu Mendes Rio Claro, 20 de dezembro de 2010 Resultado: Aprovado. A Nelson, meu marido e grande companheiro AGRADECIMENTOS Agradeço, primeiramente, a Deus, por eu existir e nas horas de angústias e felicidade, ser uma referência para reflexão. Ao meu marido, Nelson da Conceição Calábria, por todo incentivo, pelo apoio tanto emocional quanto financeiro. Agradeço pela paciência e compreensão, durante o nosso convívio e, em especial, na elaboração desta pesquisa, principalmente, na companhia e nas valiosas contribuições ao meu trabalho. Ao meu orientador, Professor Doutor Sergio Roberto Nobre, pela confiança e oportunidade de elaborar e executar este projeto e, também, pelas horas de orientação e esclarecimento nos momentos mais complicados. Além disso, como professor, que ensinou e me mostrou os grandes valores desta profissão. À banca examinadora, professor Ubiratan e Iran, pelas contribuições na qualificação e por aceitar o convite de participar da avaliação deste trabalho e concretizar o término do mesmo e, também, a banca suplente. Aos meus pais, Fernando e Maria Sandra, e aos meus irmãos, Willian, Júnior e Victor, pelo incentivo e orgulho do meu trabalho. A minha sogra, D. Maria, pelas orações e por todo apoio para que este trabalho se concretizasse. Aos professores da Pós-Graduação, Iran Mendes, Vanderlei Nascimento, Rosa Baroni, Pedro Paulo Scandiuzzi e Miriam Penteado, pelo conhecimento adquirido nas disciplinas, que enriqueceu o meu saber, ser e fazer e, também, a amizade que se constituiu. Aos meus colegas e professores do Grupo de História da Matemática, pelas discussões, contribuições e esclarecimentos de ideias, que surgiram durante nossas reuniões. Agradeço, também, aos meus colegas de pós-graduação, Rodrigo, Silvio, Evelaine, Ivone, Mônica, Sabrina, Luciele, Elmha, Cristina, Paula e Zaqueu pelo apoio e pelas horas de estudo. À Mariana, em especial, pelo apoio, companheirismo e paciência nos momentos de angústia e, principalmente, no desenvolvimento deste trabalho. A Ronaldo pela parte técnica da foto. Aos funcionários e professores do Departamento de Matemática da UNESP, campus Rio Claro. Aos funcionários das instituições visitadas, pelo acolhimento e autorização de pesquisar os documentos necessários, destaco Silvana da EESC-USP; Jordelino da FEA-USP; Major Okada, Marina (bibliotecária) e Professor Jony Santellano do ITA; Neusa do IME-USP e Regina do IGCE – UNESP – Rio Claro. Além das instituições, ao Museu de Poços de Caldas, em particular, Haroldo, coordenador do Museu, que concedeu informações sobre o Primeiro Colóquio Brasileiro de Matemática e aos funcionários do Arquivo Público do Estado de São Paulo. Às pessoas e aos professores que se disponibilizaram e aceitaram a ajudar neste trabalho, tanto na identificação da foto quanto na elaboração das biografias, cito: Profa. Lourdes Onuchic, Prof. Loibel e D. Izete Loibel, Prof. Alberto Azevedo, Prof. Alexandre Rodrigues, Prof. Artibano Micali, Prof. Djairo Guedes Figueiredo, Prof. Jorge Alberto Barroso, Prof. Leo Amaral, Prof. Lindolpho de Carvalho Dias, Prof. Luiz Adauto da Justa Medeiros, Prof. Manfredo P. do Carmo, Prof. Mauricio Matos Peixoto, Prof. Nelo Allan, Prof. Renzo Peccinini, Prof. Roberto Ramalho, Prof. Ubiratan D'Ambrosio, Prof. Waldyr Muniz Oliva, Prof. Chaim Samuel Hönig e Prof. Rubens Gouvêa Lintz. Também agradeço aos familiares de alguns professores, como Carlos Alberto Aragão de Carvalho Filho, Aquiles Pisanelli, Lúcia Feijó, Cavalcante Júnior, Rogério e Lucas Lacaz Ruiz e Selene Loibel, pelas informações concedidas. Ao Conselho Nacional de Pesquisas e Desenvolvimento (CNPq), pelo apoio financeiro a esta pesquisa. Enfim, agradeço a todos que de alguma maneira colaboraram para a realização deste trabalho, visto que são muitas pessoas que participaram da construção deste importante projeto para minha carreira acadêmica. RESUMO Um grande marco histórico para a Matemática no Brasil foi o Primeiro Colóquio Brasileiro de Matemática, realizado no período de 1º a 20 de julho de 1957, no Palace Hotel, em Poços de Caldas/MG, sendo idealizado e coordenado pelo professor Chaim Samuel Hönig, e teve a colaboração de uma comissão organizadora com mais de dez membros de diferentes regiões do Brasil. O primeiro Colóquio contou com quarenta e nove professores de nove centros universitários brasileiros, além de outras pessoas que participaram como ouvintes. Este evento contribuiu para o desenvolvimento e o crescimento da Matemática brasileira, bem como propiciou contatos pessoais entre seus participantes. O presente trabalho tem como um dos objetivos contribuir, e acrescentar informações à História da Matemática no Brasil, identificando todos os participantes do Colóquio e organizando informações a partir de registros deste importante evento como a apresentação e identificação da Foto Oficial do Primeiro Colóquio Brasileiro de Matemática. Tal foto foi tirada no saguão do hotel, estando presente nela a maioria dos convidados deste colóquio como, também, algumas pessoas que os acompanhavam. São sessenta e duas pessoas, das quais quarenta e nove estão identificadas, e o restante não foram reconhecidas. Outro objetivo importante deste trabalho é apresentar, também, notas biográficas dos matemáticos brasileiros participantes deste colóquio, investigando e documentando sua trajetória acadêmica, seus trabalhos administrativos, suas pesquisas, obras e contribuições para a Matemática no Brasil, por meio de pesquisas em Arquivos e Acervos das principais instituições brasileiras, de entrevistas e da internet. Com este estudo espera- se que contribuamos com um dos temas da História da Matemática, que é Biografias, campo de investigação ainda muito inexplorado no que diz respeito à História da Matemática brasileira, apresentando dados confiáveis sobre os matemáticos do movimento científico brasileiro. Palavras Chaves: História da Matemática no Brasil. Primeiro Colóquio Brasileiro de Matemática. Foto Oficial do Primeiro Colóquio. Biografias. ABSTRACT A major milestone for Mathematics in Brazil was the First Brazilian Colloquium of Mathematics, realized from 1st to July 20th, 1957 at the Palace Hotel in Poços de Caldas, MG, being idealized and coordinated by Professor Chaim Samuel Hönig, and it had the collaboration of an organizing committee with more than ten members from different regions of Brazil. The first colloquium had forty- nine teachers from nine Brazilian university centers, and others who participated as listeners. This event contributed to the development and growth of Brazilian mathematics, as well as providing network personal contacts between participants. The present work has as one of objectives contributed and adding information to the History of Mathematics in Brazil, identifying all the participants of the Colloquium and organizing information from the records of this important event such as presentation and identification of the Official Photo of the First Brazilian Mathematics Colloquium. This photo was taken in the hotel hall, and the most of the guests of this colloquium was presented, as well, some people who accompanied them. Are sixty-two people, of which forty-nine are identified and the others were not recognized. Another objective important of this work is present also biographical notes of mathematicians Brazilian participants of this colloquium, investigating and documenting their academic career, their administrative work, their research works and contributions to mathematics in Brazil, through research in Archives and Collections of the mains Brazilian institutions, interviews and Internet. Then, we want to contribute to the Biographies, research field still unexplored, with reliable data on the mathematicians of the Brazilian scientific movement. Keywords: History of Mathematics in Brazil. First Brazilian Colloquium of Mathematics. Official Photo of the First Conference. Biographies. LISTA DE FIGURAS Figura 1 - Município de Poços de Caldas - Minas Gerais ............................................................... 28 Figura 2 - Palace Hotel - Poços de Caldas (2007) ............................................................................ 29 Figura 3 - Foto Oficial do Primeiro Colóquio Brasileiro de Matemática ........................................ 35 Figura 4 - 1 Colóquio Brasileiro de Matemática, realizado em Poços de Caldas em julho de 1957 ....................................................................................................................................................... 37 Figura 5 - Foto Oficial com Identificação (Vermelho - Identificado, Verde - Não identificado) ... 38 Figura 6 - Alberto de Carvalho Peixoto de Azevedo (19--) ............................................................. 43 Figura 7 - Alexandre Augusto Martins Rodrigues (1953) ............................................................... 45 Figura 8 - Alexandre Augusto Martins Rodrigues (2010) ..............................................................
Recommended publications
  • Arxiv:1104.4852V2 [Math.DS] 25 Aug 2014
    LECTURES ON FOLIATION DYNAMICS: BARCELONA 2010 STEVEN HURDER Contents 1. Introduction 1 2. Foliation Basics 3 3. Topological Dynamics 4 4. Derivatives 7 5. Counting 11 6. Exponential Complexity 15 7. Entropy and Exponent 19 8. Minimal Sets 22 9. Classification Schemes 24 10. Matchbox Manifolds 27 11. Topological Shape 33 12. Shape Dynamics 34 Appendix A. Homework 36 References 36 1. Introduction The study of foliation dynamics seeks to understand the asymptotic properties of leaves of foliated manifolds, their statistical properties such as orbit growth rates and geometric entropy, and to classify geometric and topological \structures" which are associated to the dynamics, such as the minimal sets of the foliation. The study is inspired by the seminal work of Smale [189] (see also arXiv:1104.4852v2 [math.DS] 25 Aug 2014 the comments by Anosov [13]) outlining a program of study for the differentiable dynamics for a Cr-diffeomorphism f : N ! N of a closed manifold N, r ≥ 1. The themes of this approach included: (1) Classify dynamics as hyperbolic, or otherwise; (2) Describe the minimal/transitive closed invariant sets and attractors; (3) Understand when the system is structurally stable under Cr-perturbations, for r ≥ 1; (4) Find invariants (such as cohomology, entropy or zeta functions) characterizing the system. Smale also suggested to study these topics for large group actions, which leads directly to the topics of these notes. The study of the dynamics of foliations began in ernest in the 1970's with the research programs of Georges Reeb, Stephen Smale, Itiro Tamura, and their students. 2000 Mathematics Subject Classification.
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • (November 12-13)- Page 545
    College Park Program (October 30-31) - Page 531 Baton Rouge Program (November 12-13)- Page 545 Notices of the American Mathematical Society < 2.. c: 3 ('1) ~ z c: 3 C" ..,('1) 0'1 October 1982, Issue 220 Volume 29, Number 6, Pages 497-616 Providence, Rhode Island USA ISSN 0002-9920 Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· ing. Abstracts should be submitred on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below.
    [Show full text]
  • Hodge Theory on Metric Spaces
    Hodge Theory on Metric Spaces Laurent Bartholdi∗ Georg-August-Universit¨atG¨ottingen Deutschland Thomas Schick∗ Nat Smale Georg-August-Universit¨atG¨ottingen University of Utah Deutschland Steve Smaley City University of Hong Kong With an appendix by Anthony W. Baker z Mathematics and Computing Technology The Boeing Company. Last compiled December 1, 2009; last edited December 1, by LB Abstract Hodge theory is a beautiful synthesis of geometry, topology, and anal- ysis, which has been developed in the setting of Riemannian manifolds. On the other hand, spaces of images, which are important in the math- ematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step towards understanding the geometry of vision. The appendix by Anthony Baker provides a separable, compact metric space with infinite dimensional α-scale homology. 1 Introduction Hodge Theory [21] studies the relationships of topology, functional analysis and geometry of a manifold. It extends the theory of the Laplacian on domains of Euclidean space or on a manifold. ∗email: [email protected] and [email protected] www: http://www.uni-math.gwdg.de/schick Laurent Bartholdi and Thomas Schick were partially supported by the Courant Research Center \Higher order structures in Mathematics" of the German Initiative of Excellence ySteve Smale was supported in part by the NSF, and the Toyota Technological Institute, Chicago zemail: [email protected] 1 2 Laurent Bartholdi, Thomas Schick, Nat Smale, Steve Smale However, there are a number of spaces, not manifolds, which could ben- efit from an extension of Hodge theory, and that is the motivation here.
    [Show full text]
  • RM Calendar 2019
    Rudi Mathematici x3 – 6’141 x2 + 12’569’843 x – 8’575’752’975 = 0 www.rudimathematici.com 1 T (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 W (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 F (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2004, A1 (1871) Federigo Enriques RM084 Basketball star Shanille O’Keal’s team statistician (1871) Gino Fano keeps track of the number, S( N), of successful free 6 S (1807) Jozeph Mitza Petzval throws she has made in her first N attempts of the (1841) Rudolf Sturm season. Early in the season, S( N) was less than 80% of 2 7 M (1871) Felix Edouard Justin Émile Borel N, but by the end of the season, S( N) was more than (1907) Raymond Edward Alan Christopher Paley 80% of N. Was there necessarily a moment in between 8 T (1888) Richard Courant RM156 when S( N) was exactly 80% of N? (1924) Paul Moritz Cohn (1942) Stephen William Hawking Vintage computer definitions 9 W (1864) Vladimir Adreievich Steklov Advanced User : A person who has managed to remove a (1915) Mollie Orshansky computer from its packing materials. 10 T (1875) Issai Schur (1905) Ruth Moufang Mathematical Jokes 11 F (1545) Guidobaldo del Monte RM120 In modern mathematics, algebra has become so (1707) Vincenzo Riccati important that numbers will soon only have symbolic (1734) Achille Pierre Dionis du Sejour meaning.
    [Show full text]
  • Coll032-Endmatter.Pdf
    http://dx.doi.org/10.1090/coll/032 AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME 32 Topology of Manifolds Raymond Louis Wilder American Mathematical Society Providence, Rhode Island International Standard Seria l Numbe r 0065-925 8 International Standar d Boo k Number 0-8218-1032- 4 Library o f Congress Catalog Card Numbe r 49-672 2 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s actin g for them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customary acknowledgmen t o f the source i s given. Republication, systematic copying, or multiple reproduction o f any material i n this publicatio n (including abstracts ) i s permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Requests fo r suc h permissio n shoul d b e addresse d t o th e Assistan t t o th e Publisher , America n Mathematical Society , P.O . Bo x 6248 , Providence , Rhod e Islan d 02940-6248 . Request s ca n als o be mad e b y e-mail t o reprint-permissionQmath.ams.org . Copyright © 1949 , 196 3 by the American Mathematica l Societ y Revised edition, 196 3 Revised edition , fourt h printing , with corrections, 197 9 The America n Mathematica l Societ y retain s al l right s except thos e grante d to the United States Government .
    [Show full text]
  • Symplectic Foliations, Currents, and Local Lie Groupoids
    c 2018 Daan Michiels SYMPLECTIC FOLIATIONS, CURRENTS, AND LOCAL LIE GROUPOIDS BY DAAN MICHIELS DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Doctoral Committee: Professor Susan Tolman, Chair Professor Rui Loja Fernandes, Director of Research Professor Ely Kerman Professor James Pascaleff Abstract This thesis treats two main topics: calibrated symplectic foliations, and local Lie groupoids. Calibrated symplectic foliations are one possible generalization of taut foliations of 3-manifolds to higher dimensions. Their study has been popular in recent years, and we collect several interesting results. We then show how de Rham’s theory of currents, and Sullivan’s theory of structure currents, can be applied in trying to understand the calibratability of symplectic foliations. Our study of local Lie groupoids begins with their definition and an exploration of some of their basic properties. Next, three main results are obtained. The first is the generalization of a theorem by Mal’cev. The original theorem characterizes the local Lie groups that are part of a (global) Lie group. We give the corresponding result for local Lie groupoids. The second result is the generalization of a theorem by Olver which classifies local Lie groups in terms of Lie groups. Our generalization classifies, in terms of Lie groupoids, those local Lie groupoids that have integrable algebroids. The third and final result demonstrates a relationship between the associativity of a local Lie groupoid, and the integrability of its algebroid. In a certain sense, the monodromy groups of a Lie algebroid manifest themselves combinatorially in a local integration, as a lack of associativity.
    [Show full text]
  • The Branch Set of Minimal Disks in Metric Spaces
    THE BRANCH SET OF MINIMAL DISKS IN METRIC SPACES PAUL CREUTZ AND MATTHEW ROMNEY Abstract. We study the structure of the branch set of solutions to Plateau’s problem in metric spaces satisfying a quadratic isoperimetric inequality. In our first result, we give examples of spaces with isoperimetric constant arbitrarily close to the Euclidean isoperimetric constant (4π)−1 for which solutions have large branch set. This complements recent results of Lytchak–Wenger and Stadler stating, respectively, that any space with Euclidean isoperimetric con- stant is a CAT(0) space and solutions to Plateau’s problem in a CAT(0) space have only isolated branch points. We also show that any planar cell-like set can appear as the branch set of a solution to Plateau’s problem. These results answer two questions posed by Lytchak and Wenger. Moreover, we investigate several related questions about energy-minimizing parametrizations of metric disks: when such a map is quasisymmetric, when its branch set is empty, and when it is unique up to a conformal diffeomorphism. 1. Introduction 1.1. Branch sets of minimal disks. Plateau’s problem asks for the existence of a disk of minimal area whose boundary is a prescribed Jordan curve of finite length. While the problem has a longer history, the first rigorous general solu- tions of Plateau’s problem in Euclidean space were given independently by Douglas [Dou31] and Radó [Rad30] in the 1930s. This has since been generalized to various other settings, including homogeneously regular Riemannian manifolds [Mor48], CAT(κ) spaces [Nik79], Alexandrov spaces [MZ10], and certain Finsler manifolds [OvdM14, PvdM17].
    [Show full text]
  • Arxiv:2009.06344V2 [Math.GT] 8 Dec 2020 Ojcue Hc Eeete Omltdb Hrtno Who Or Thurston by Formulated Either Were Which Conjectures Thinking Was Thurston Simultaneously
    A GLIMPSE INTO THURSTON’S WORK KEN’ICHI OHSHIKA AND ATHANASE PAPADOPOULOS Abstract. We present an overview of some significant results of Thur- ston and their impact on mathematics. The final version of this article will appear as Chapter 1 of the book In the tradition of Thurston: Geo- metry and topology, ed. K. Ohshika and A. Papadopoulos, Springer Verlag, 2020. Keywords foliation, contact structure, symplectic structure, conformal geometry, holomorphic motion, Kleinian groups, circle packing, auto- matic groups, tiling, mapping class groups, Teichm¨uller space, fash- ion design, linkage, Anti-de Sitter geometry, higher Teichm¨uller theory, Grothendieck–Thurston theory, asymmetric metric, Schwarzian deriv- ative, computer science, Ehrenpreis conjecture, transitional geometry, 3-manifolds, geometric structures, (G,X)-structures, Dehn surgery, hy- perbolic geometry, Thurston norm, Smith conjecture, Cannon–Thurston map, discrete conformal geometry, discrete Riemann mapping theorem. AMS codes 57N10, 57M50, 20F34, 20F65, 22E40, 30F20, 32G15, 30F60, 30F45, 37D40, 57M25, 53A40, 57D30, 58D05, 57A35, 00A30, 01A60, 20F10, 68Q70, 57M05, 57M07, 57Q15, 57D15, 58A10, 58F10, 65Y25. Contents 1. Introduction 1 2. On Thurston’s works 2 3. On Thurston’s impact 34 4. In guise of a conclusion 46 References 46 1. Introduction arXiv:2009.06344v2 [math.GT] 8 Dec 2020 In this chapter, we present an overview of some significant results of Thurston and their impact on mathematics. The chapter consists of two parts. In the first part, we review some works of Thurston, grouped in topics. The choice of the topics reflects our own taste and our degree of knowledge. The choice of the order of these topics was almost random.
    [Show full text]
  • Kongresa Pred in Po Drugi Svetovni Vojni
    Kongres v Oslu Prvi mednarodni matematicniˇ kongresi 6. del: Kongresa pred in po drugi svetovni vojni Milan Hladnik Seminar za zgodovino matematicnihˇ znanosti 8. maj 2012 Kongres v Oslu Organizator: Univerza v Oslu Slika: Centralna zgradba Univerze v Oslu, danes Pravna fakulteta, kjer od leta 1989 podeljujejo Nobelove nagrade za mir Kongres v Oslu Priprave na kongres Kongres je organiziral Carl Størmer (1874-1957). Slika: Fredrik Carl Mülertz Størmer Norveški matematik (teorija števil) in fizik (pojavi v magnetosferi), študiral v Oslu in Parizu, obiskal tudi Göttingen 1902, profesor na univerzi v Oslu od 1903 do 1946, prvi predsednik norveškega matematicnegaˇ društva, ustanovljenega 1918. Kongres v Oslu Težave z udeležbo Težave zaradi nacizma, fašizma in stalinizma: veliko znanih nemških matematikov je do takrat že emigriralo, drugi so ostali doma, v Oslo so prišli oboji. Iz Italije sta menda prišli le dve matematicarki.ˇ Ker je Norveška leta 1936 podprla izkljucitevˇ Italije iz Lige narodov zaradi napada na Etiopijo, se noben italijanski matematik ni smel udeležiti kongresa v Oslu. Tudi Stalin ni dovolil ruskim matematikom potovanja v Oslo (menda zato, ker je takrat tam živel Lev Trocki). Nekateri so sicer bili prijavljeni, npr. Aleksander Gelfond in Aleksander Hincin,ˇ a jih ni bilo. Iz teh in drugih vzrokov je bilo vseh udeležencev manj kot prej, samo 487. Kongres v Oslu Vodstvo kongresa Kongres je trajal je od ponedeljka 13. do sobote 18. julija 1936. Predsednik castnegaˇ odbora: prestolonaslednik Olav, ki pa se na samem kongresu ni pojavil. Predsednik kongresa: Carl Størmer, Podpredsednik: Vigo Brun Claniˇ odbora: Poul Heegaard, Fr. Lange-Nielsen, Thoralf Skolem Generalni sekretar: Edgar B.
    [Show full text]
  • RM Calendar 2013
    Rudi Mathematici x4–8220 x3+25336190 x2–34705209900 x+17825663367369=0 www.rudimathematici.com 1 T (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose (1912) Boris Gnedenko 2 W (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 F (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 1998-A1 (1871) Federigo Enriques RM084 (1871) Gino Fano A right circular cone has base of radius 1 and height 3. 6 S (1807) Jozeph Mitza Petzval A cube is inscribed in the cone so that one face of the (1841) Rudolf Sturm cube is contained in the base of the cone. What is the 2 7 M (1871) Felix Edouard Justin Emile Borel side-length of the cube? (1907) Raymond Edward Alan Christopher Paley 8 T (1888) Richard Courant RM156 Scientists and Light Bulbs (1924) Paul Moritz Cohn How many general relativists does it take to change a (1942) Stephen William Hawking light bulb? 9 W (1864) Vladimir Adreievich Steklov Two. One holds the bulb, while the other rotates the (1915) Mollie Orshansky universe. 10 T (1875) Issai Schur (1905) Ruth Moufang Mathematical Nursery Rhymes (Graham) 11 F (1545) Guidobaldo del Monte RM120 Fiddle de dum, fiddle de dee (1707) Vincenzo Riccati A ring round the Moon is ̟ times D (1734) Achille Pierre Dionis du Sejour But if a hole you want repaired 12 S (1906) Kurt August Hirsch You use the formula ̟r 2 (1915) Herbert Ellis Robbins RM156 13 S (1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart The future science of government should be called “la (1876) Erhard Schmidt cybernétique” (1843 ).
    [Show full text]
  • RM Calendar 2015
    Rudi Mathematici x4–8228 x3+25585534 x2–34806653332 x+17895175197705=0 www.rudimathematici.com 1 G (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 V (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 S (1917) Yuri Alexeievich Mitropolsky Gennaio 4 D (1643) Isaac Newton RM071 2 5 L (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2000, A1 (1871) Federigo Enriques RM084 Sia A un numero reale positivo. Quali sono i possibili (1871) Gino Fano ∞ 6 M (1807) Jozeph Mitza Petzval valori di x , se x0, x1, … sono numeri positivi per cui ∑ i2 (1841) Rudolf Sturm =i 0 7 M (1871) Felix Edouard Justin Emile Borel ∞ ? (1907) Raymond Edward Alan Christopher Paley ∑ i A=x 8 G (1888) Richard Courant RM156 =i 0 (1924) Paul Moritz Cohn (1942) Stephen William Hawking Barzellette per élite 9 V (1864) Vladimir Adreievich Steklov È difficile fare giochi di parole con i cleptomani. (1915) Mollie Orshansky Prendono tutto alla lettera . 10 S (1875) Issai Schur (1905) Ruth Moufang 11 D (1545) Guidobaldo del Monte RM120 Titoli da un mondo matematico (1707) Vincenzo Riccati Con il passaggio ai nuovi test, le valutazioni crollano. (1734) Achille Pierre Dionis du Sejour Mondo matematico: Con il passaggio ai nuovi test, i 3 12 L (1906) Kurt August Hirsch risultati non sono più confrontabili. (1915) Herbert Ellis Robbins RM156 13 M (1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart Alice rise: “È inutile che ci provi”, disse; “non si può (1876) Erhard Schmidt credere a una cosa impossibile”.
    [Show full text]