Multireference Approaches for Excited States of Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Multireference Approaches for Excited States of Molecules Multireference Approaches for Excited States of Molecules Hans Lischka, Dana Nachtigallova, Adélia Aquino, Peter Szalay, Felix Plasser, Francisco Machado, Mario Barbatti To cite this version: Hans Lischka, Dana Nachtigallova, Adélia Aquino, Peter Szalay, Felix Plasser, et al.. Multireference Approaches for Excited States of Molecules. Chemical Reviews, American Chemical Society, 2018, 118 (15), pp.7293-7361. 10.1021/acs.chemrev.8b00244. hal-01965456 HAL Id: hal-01965456 https://hal-amu.archives-ouvertes.fr/hal-01965456 Submitted on 26 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multireference Approaches for Excited States of Molecules † Hans Lischkaa,b,c*, Dana Nachtigallovád,e, Adélia J. A. Aquinoa,b,f, Péter G. Szalayg, Felix Plasserc,h, Francisco B. C. Machadoi, Mario Barbattih aSchool of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China bDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States cInstitute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria ORCID: 0000-0002-5656-3975 dInstitute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 160610 Prague 6, Czech Republic eRegional Centre of Advanced Technologies and Materials, Palacký University, 77146 Olomouc, Czech Republic ORCID: 0000-0002-9588-8625 fInstitute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan- Strasse 82, A-1190 Vienna, Austria ORCID: 0000-0003-4891-6512 gELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary ORCID: 0000-0003-1885-3557 hDepartment of Chemistry, Loughborough University, LE11 3TU, United Kingdom ORCID: 0000-0003-0751-148X iDepartamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil ORCID: 0000-0002-2064-3463 hAix Marseille Univ, CNRS, ICR, Marseille, France ORCID: 0000-0001-9336-6607; ResearchID: F-5647-2014 † Cite this paper as: Lischka, H.; Nachtigallová, D.; Aquino, A. J. A.; Szalay, P. G.; Plasser, F.; Machado, F. B. C.; Barbatti, M. Multireference Approaches for Excited States of Molecules. Chem. Rev. 2018, DOI: 10.1021/acs.chemrev.8b00244. This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Chemical Reviews, copyright © American Chemical Society after peer review. To access the final edited and published work see dx.doi.org/10.1021/acs.chemrev.8b00244 * Corresponding author: [email protected] 1 ABSTRACT .............................................................................................................................................................. 4 1. INTRODUCTION ............................................................................................................................................ 5 2. THEORY AND METHODS ............................................................................................................................... 9 2.1. CONFIGURATION INTERACTION ........................................................................................................................... 9 2.1.1. Basic concepts ........................................................................................................................................ 9 2.1.2. Single- and Multireference Spaces ....................................................................................................... 10 2.1.3. Size-extensivity Problem ...................................................................................................................... 14 2.1.4. Contracted CI ....................................................................................................................................... 16 2.1.5. Calculation of Excited States ................................................................................................................ 18 2.1.6. Individual Selection Schemes ............................................................................................................... 19 2.1.7. Local MRCI Approaches ....................................................................................................................... 19 2.1.8. Natural Orbitals for Use in MRCI ......................................................................................................... 20 2.2. MULTICONFIGURATION SELF-CONSISTENT FIELD METHOD .................................................................................... 21 2.2.1. Multiple MCSCF Solutions and Symmetry Breaking ............................................................................. 24 2.3. COUPLED CLUSTER METHODS: .......................................................................................................................... 28 2.3.1. Single reference coupled cluster methods to describe excited states .................................................. 28 2.3.2. Multireference coupled cluster Methods ............................................................................................. 32 2.3.2.1. MRCC methods based on the Jeziorski-Monkhorst ansatz ........................................................................ 34 2.3.2.2. Using multideterminantal vacuum state: internally contracted MRCC methods ...................................... 37 2.3.2.3. MRCC based on SR formalism .................................................................................................................... 41 2.3.2.4. Outlook on MRCC for excited states .......................................................................................................... 42 2.4. MUTIREFERENCE PERTURBATION THEORY ........................................................................................................... 43 2.5. MRCI WITH SEMIEMPIRICAL HAMILTONIANS ...................................................................................................... 52 2.6. MULTIREFERENCE DENSITY FUNCTIONAL THEORY ................................................................................................ 56 2.6.1. Nondynamical electron correlation in DFT........................................................................................... 56 2.6.2. Semiempirical MRCI with DFT .............................................................................................................. 57 2.6.3. Hybrid wavefunction and DFT .............................................................................................................. 59 2.6.4. Multiconfigurational DFT ..................................................................................................................... 61 2.6.5. Ensemble DFT ....................................................................................................................................... 62 2.7. EMERGING ALGORITHMS: DMRG, FCIQMC ...................................................................................................... 64 2.7.1. DMRG ................................................................................................................................................... 64 2.7.2. FCIQMC ................................................................................................................................................ 69 2.8. ASPECTS OF ANALYTIC GRADIENTS AND NONADIABATIC COUPLINGS .......................................................................... 74 2 2.9. DIAGNOSTICS OF MULTIREFERENCE CHARACTER, ANALYSIS OF EXCITED STATES ........................................................... 78 3. APPLICATIONS OF MULTIREFERENCE METHODS TO MOLECULAR EXCITED STATES ..................................... 82 3.1. DIATOMICS AND SMALL MOLECULES .................................................................................................................. 82 3.2. SINGLET OXYGEN PHOTOSENSITIZATION .............................................................................................................. 89 3.3. CONJUGATED Π SYSTEMS ................................................................................................................................. 97 3.3.1. Excited States of Polyenes: ................................................................................................................... 97 3.3.2. Protonated Schiff bases: .................................................................................................................... 107 3.3.3. Nucleic acids: from nucleobases to double strands ........................................................................... 111 3.3.3.1. Nucleobases and derivatives.................................................................................................................... 111 3.3.3.2. Interacting nucleobases and DNA/RNA fragments .................................................................................. 115 3.3.4. Aminoacids and proteins ..................................................................................................................
Recommended publications
  • Appendix 1 Some Astrophysical Reminders
    Appendix 1 Some Astrophysical Reminders Marc Ollivier 1.1 A Physics and Astrophysics Overview 1.1.1 Star or Planet? Roughly speaking, we can say that the physics of stars and planets is mainly governed by their mass and thus by two effects: 1. Gravitation that tends to compress the object, thus releasing gravitational energy 2. Nuclear processes that start as the core temperature of the object increases The mass is thus a good parameter for classifying the different astrophysical objects, the adapted mass unit being the solar mass (written Ma). As the mass decreases, three categories of objects can be distinguished: ∼ 1. if M>0.08 Ma ( 80MJ where MJ is the Jupiter mass) the mass is sufficient and, as a consequence, the gravitational contraction in the core of the object is strong enough to start hydrogen fusion reactions. The object is then called a “star” and its radius is proportional to its mass. 2. If 0.013 Ma <M<0.08 Ma (13 MJ <M<80 MJ), the core temperature is not high enough for hydrogen fusion reactions, but does allow deuterium fu- sion reactions. The object is called a “brown dwarf” and its radius is inversely proportional to the cube root of its mass. 3. If M<0.013 Ma (M<13 MJ) the temperature a the center of the object does not permit any nuclear fusion reactions. The object is called a “planet”. In this category one distinguishes giant gaseous and telluric planets. This latter is not massive enough to accrete gas. The mass limit between giant and telluric planets is about 10 terrestrial masses.
    [Show full text]
  • "High Accuracy Rotation--Vibration Calculations on Small Molecules" In
    High Accuracy Rotation–Vibration Calculations on Small Molecules Jonathan Tennyson Department of Physics and Astronomy, University College London, London, UK 1 INTRODUCTION comprehensive understanding requires the knowledge of many millions, perhaps even billions, of individual transi- High-resolution spectroscopy measures the transitions bet- tions (Tennyson et al. 2007). It is not practical to measure ween energy levels with high accuracy; typically, uncer- this much data in the laboratory and therefore a more real- tainties are in the region of 1 part in 108. Although it is istic approach is the development of an accurate theoretical possible, under favorable circumstances, to obtain this sort model, benchmarked against experiment. of accuracy by fitting effective Hamiltonians to observed The incompleteness of most experimental datasets means spectra (see Bauder 2011: Fundamentals of Rotational that calculations are useful for computing other properties Spectroscopy, this handbook), such ultrahigh accuracy is that can be associated with spectra. The partition functions largely beyond the capabilities of purely ab initio proce- and the variety of thermodynamic properties that are linked dures. Given this, it is appropriate to address the question to this (Martin et al. 1991) are notable among these. Again, of why it is useful to calculate the spectra of molecules ab calculations are particularly useful for estimating these initio (Tennyson 1992). quantities at high temperature (e.g., Neale and Tennyson The concept of the potential energy surfaces, which in 1995). turn is based on the Born–Oppenheimer approximation, Other more fundamental reasons for calculating spectra underpins nearly all of gas-phase chemical physics. The include the search for unusual features, such as clustering of original motivation for calculating spectra was to provide energy levels (Jensen 2000) or quantum monodromy (Child stringent tests of potential energy surfaces.
    [Show full text]
  • Stabilization of Anti-Aromatic and Strained Five-Membered Rings with A
    ARTICLES PUBLISHED ONLINE: 23 JUNE 2013 | DOI: 10.1038/NCHEM.1690 Stabilization of anti-aromatic and strained five-membered rings with a transition metal Congqing Zhu1, Shunhua Li1,MingLuo1, Xiaoxi Zhou1, Yufen Niu1, Minglian Lin2, Jun Zhu1,2*, Zexing Cao1,2,XinLu1,2, Tingbin Wen1, Zhaoxiong Xie1,Paulv.R.Schleyer3 and Haiping Xia1* Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8p-electron anti- aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hu¨ckel anti-aromaticity into Craig-type Mo¨bius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal–carbon triple bond. Moreover, these metal–aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement. romaticity is a fascinating topic that has long interested Results and discussion both experimentalists and theoreticians because of its ever- Synthesis, characterization and reactivity of osmapentalynes. Aincreasing diversity1–5. The Hu¨ckel aromaticity rule6 applies Treatment of complex 1 (ref. 32) with methyl propiolate to cyclic circuits of 4n þ 2 mobile electrons, but Mo¨bius topologies (HC;CCOOCH3) at room temperature produced osmapentalyne favour 4n delocalized electron counts7–10.
    [Show full text]
  • Cycloalkanes, Cycloalkenes, and Cycloalkynes
    CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter.
    [Show full text]
  • Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides
    Top Curr Chem (Z) (2016) 374:16 DOI 10.1007/s41061-016-0016-4 REVIEW Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides 1 1 Jan Dommerholt • Floris P. J. T. Rutjes • Floris L. van Delft2 Received: 24 November 2015 / Accepted: 17 February 2016 / Published online: 22 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A nearly forgotten reaction discovered more than 60 years ago—the cycloaddition of a cyclic alkyne and an organic azide, leading to an aromatic triazole—enjoys a remarkable popularity. Originally discovered out of pure chemical curiosity, and dusted off early this century as an efficient and clean bio- conjugation tool, the usefulness of cyclooctyne–azide cycloaddition is now adopted in a wide range of fields of chemical science and beyond. Its ease of operation, broad solvent compatibility, 100 % atom efficiency, and the high stability of the resulting triazole product, just to name a few aspects, have catapulted this so-called strain-promoted azide–alkyne cycloaddition (SPAAC) right into the top-shelf of the toolbox of chemical biologists, material scientists, biotechnologists, medicinal chemists, and more. In this chapter, a brief historic overview of cycloalkynes is provided first, along with the main synthetic strategies to prepare cycloalkynes and their chemical reactivities. Core aspects of the strain-promoted reaction of cycloalkynes with azides are covered, as well as tools to achieve further reaction acceleration by means of modulation of cycloalkyne structure, nature of azide, and choice of solvent. Keywords Strain-promoted cycloaddition Á Cyclooctyne Á BCN Á DIBAC Á Azide This article is part of the Topical Collection ‘‘Cycloadditions in Bioorthogonal Chemistry’’; edited by Milan Vrabel, Thomas Carell & Floris P.
    [Show full text]
  • The Rotational Spectrum of Protonated Sulfur Dioxide, HOSO+
    A&A 533, L11 (2011) Astronomy DOI: 10.1051/0004-6361/201117753 & c ESO 2011 Astrophysics Letter to the Editor The rotational spectrum of protonated sulfur dioxide, HOSO+ V. Lattanzi1,2, C. A. Gottlieb1,2, P. Thaddeus1,2, S. Thorwirth3, and M. C. McCarthy1,2 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA e-mail: [email protected] 2 School of Engineering & Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA 3 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany Received 21 July 2011 / Accepted 19 August 2011 ABSTRACT Aims. We report on the millimeter-wave rotational spectrum of protonated sulfur dioxide, HOSO+. Methods. Ten rotational transitions between 186 and 347 GHz have been measured to high accuracy in a negative glow discharge. Results. The present measurements improve the accuracy of the previously reported centimeter-wave spectrum by two orders of magnitude, allowing a frequency calculation of the principal transitions to about 4 km s−1 in equivalent radial velocity near 650 GHz, or one linewidth in hot cores and corinos. Conclusions. Owing to the high abundance of sulfur-bearing molecules in many galactic molecular sources, the HOSO+ ion is an excellent candidate for detection, especially in hot cores and corinos in which SO2 and several positive ions are prominent. Key words. ISM: molecules – radio lines: ISM – molecular processes – molecular data – line: identification 1. Introduction abundant in hot regions; (6) and radio observations of SH+ and SO+ (Menten et al. 2011; Turner 1994) have established that pos- Molecules with sulfur account for about 10% of the species iden- itive ions of sulfur-bearing molecules are surprisingly abundant tified in the interstellar gas and circumstellar envelopes.
    [Show full text]
  • WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/089962 Al 20 June 2013 (20.06.2013) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every B01J 31/04 (2006.01) B01J 31/18 (2006.01) kind of national protection available): AE, AG, AL, AM, B01J 31/14 (2006.01) B01J 31/22 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 12/065285 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 15 November 2012 (15.1 1.2012) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 13/323,328 12 December 201 1 (12. 12.201 1) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): CHEV¬ GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, RON PHILLIPS CHEMICAL COMPANY LP UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 10001 Six Pines Drive, The Woodlands, Texas TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 77380 (US).
    [Show full text]
  • Highly Accelerated Inverse Electron-Demand Cycloaddition of Electron-Deficient Azides with Aliphatic Cyclooctynes
    ARTICLE Received 22 Jul 2014 | Accepted 25 Sep 2014 | Published 10 Nov 2014 DOI: 10.1038/ncomms6378 Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes Jan Dommerholt1, Olivia van Rooijen2, Annika Borrmann1,Ce´lia Fonseca Guerra2, F. Matthias Bickelhaupt1,2 & Floris L. van Delft1 Strain-promoted azide–alkyne cycloaddition (SPAAC) as a conjugation tool has found broad application in material sciences, chemical biology and even in vivo use. However, despite tremendous effort, SPAAC remains fairly slow (0.2–0.5 M À 1 s À 1) and efforts to increase reaction rates by tailoring of cyclooctyne structure have suffered from a poor trade-off between cyclooctyne reactivity and stability. We here wish to report tremendous acceleration of strain-promoted cycloaddition of an aliphatic cyclooctyne (bicyclo[6.1.0]non-4-yne, BCN) with electron-deficient aryl azides, with reaction rate constants reaching 2.0–2.9 M À 1 s À 1. A remarkable difference in rate constants of aliphatic cyclooctynes versus benzoannulated cyclooctynes is noted, enabling a next level of orthogonality by a judicious choice of azide– cyclooctyne combinations, which is inter alia applied in one-pot three-component protein labelling. The pivotal role of azide electronegativity is explained by density-functional theory calculations and electronic-structure analyses, which indicates an inverse electron-demand mechanism is operative with an aliphatic cyclooctyne. 1 Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands. 2 Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
    [Show full text]
  • Rapid Calculation of the Number of Π-Bonds, Σ-Bonds, Single and Triple Bonds in Aliphatic Unsaturated Open Chain and Cycloalkynes
    World Journal of Chemical Education, 2014, Vol. 2, No. 1, 1-3 Available online at http://pubs.sciepub.com/wjce/2/1/1 © Science and Education Publishing DOI:10.12691/wjce-2-1-1 Rapid Calculation of the Number of π-bonds, σ-bonds, Single and Triple Bonds in Aliphatic Unsaturated Open Chain and Cycloalkynes Arijit Das1,*, Suman Adhikari1, Debapriya Pal2, Bijaya Paul3, R. Sanjeev4, V. Jagannadham5 1Department of Chemistry, Govt. Degree College, Dharmanagar, Tripura(N), India 2Department of Science, Netaji Vidyapith Institute, Unakoti, Tripura, India 3Department of Chemistry, Tripura University, Suryamaninagar, Tripura(W), India 4Department of Chemistry, Avanthi Degree and PG College, Hyderabad, India 5Department of Chemistry, Osmania University, Hyderabad, India *Corresponding author: [email protected] Received September 20, 2013; Revised December 15, 2013; Accepted December 30, 2013 Abstract Prediction of number of π-bonds, σ-bonds, single and triple bonds of aliphatic unsaturated open chain and cycloalkynes is a vitally important tool for students of chemistry at undergraduate and graduate level for solving different kinds of problems regarding different chemical reactions. In this manuscript, we try to present a simple and innovative method for easy calculation of number of π-bonds, σ-bonds, single and triple bonds with the help of completely 8 (eight) new formulae. Keywords: open chain and cycloalkynes, π and σ-bond, triple and single bond, number of carbon, hydrogen atoms Cite This Article: Arijit Das, Suman Adhikari, Debapriya Pal, Bijaya Paul, R. Sanjeev, and V. Jagannadham, “Rapid Calculation of the Number of π-bonds, σ-bonds, Single and Triple Bonds in Aliphatic Unsaturated Open Chain and Cycloalkynes.” World Journal of Chemical Education 2, no.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0068738A1 BERTOZZ Et Al
    US 20090068738A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0068738A1 BERTOZZ et al. (43) Pub. Date: Mar. 12, 2009 (54) COMPOSITIONS AND METHODS FOR Related U.S. Application Data MODIFICATION OF BOMOLECULES (63) Continuation-in-part of application No. 1 1/264,463, filed on Oct. 31, 2005. (75) Inventors: CAROLYN RUTH BERTOZZI, (60) Provisional application No. 60/624.202, filed on Nov. BERKELEY, CA (US); 1, 2004. NICHOLAS J. AGARD, BERKELEY, CA (US); Publication Classification JENNIFER A. PRESCHER, (51) Int. Cl. BERKELEY, CA (US): JEREMY CI2N 5/06 (2006.01) MICHAEL BASKIN, C07D 495/04 (2006.01) BERKELEY, CA (US); ELLEN CD7C 65/26 (2006.01) MAYSLETTEN, BERKELEY, CA C7H I/00 (2006.01) (US) (52) U.S. Cl. ...................... 435/375: 548/304.1; 540/480; 562/473; 536/55.3 Correspondence Address: (57) ABSTRACT BOZICEVIC, FIELD & FRANCIS LLP The present invention provides modified cycloalkyne com 1900 UNIVERSITY AVENUE, SUITE 200 pounds; and method of use of Such compounds in modifying EAST PALOALTO, CA 94.303 (US) biomolecules. The present invention features a cycloaddition reaction that can be carried out under physiological condi (73) Assignee: THE REGENTS OF THE tions. In general, the invention involves reacting a modified UNIVERSITY OF cycloalkyne with an azide moiety on a target biomolecule, CALIFORNLA, Oakland, CA (US) generating a covalently modified biomolecule. The selectiv ity of the reaction and its compatibility with aqueous envi ronments provide for its application in Vivo (e.g., on the cell (21) Appl. No.: 12/049,034 Surface or intracellularly) and in vitro (e.g., synthesis of pep tides and other polymers, production of modified (e.g., (22) Filed: Mar.
    [Show full text]
  • IUPAC Nomenclature Rule for Alkyne
    IUPAC nomenclature Rule for Alkyne (1) Select the longest carbon chain containing a triple bond (2) The numbering of the carbon chain is in such a way that the carbon attached to the triple bond should get the lowest possible number (3) The numbering of the triple bond carbon should be mentioned in the nomenclature (4) All other rules of substituents are the same as alkanes and alkenes ethyne 1-propyne 5-methyl-2-hexyne Nomenclature of cycloalkynes: Nomenclature is according to the suffix = cycloalkyne 4-methyl cyclopentyne cyclohexyne 3-methyl cyclobutyne IUPAC nomenclature Rule for Compounds containing both double and triple bonds (1) If the organic compound contains both double and triple bond, then select the longest carbon chain in such a way that the sum of the carbons attached to the double and triple bond should get the lowest possible number. 1-hexene-3-yne 1 + 3 = 4 (Correct numbering - small sum total) 3 + 5 = 8 (Incorrect numbering - large sum total) (2) Nomenclature is always according to the alkene followed by alkyne i.e. Prefix = alkene, Suffix = alkyne (3) If the sum of the carbons attached to double and triple bond is the same (for both LHS to RHS and RHS to LHS), then select the longest carbon chain in such a way that carbon attached to the double bond should get the lowest possible number 1-butene-3-yne 1 + 3 = 4 (Correct numbering - small sum total) 1 + 3 = 4 (Correct numbering - small sum total) (4) Numbering from LHS to RHS is correct because double bond carbon gets the lower possible number .
    [Show full text]
  • Certified by
    Estimation Method for the Thermochemical Properties of Polycyclic Aromatic Molecules by Joanna Yu Bachelor of Science in Engineering, Escola Politcnica-USP, Sao Paulo, Brazil, 2001 Submitted to the Department of Chemical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Practice at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2004 © Massachusetts Institute of Technology 2004. All rights reserved. Author. · epartment of Chemical Engineering September 1, 2004 Certifiedbyby ............... .............. ,f.\.. ................................... (U)William H. Green, Jr. Texaco-Mangelsdorf Associate Professor Thesis Supervisor Acceptedby............ ................... ..... Daniel Blankschtein Professor of Chemical Engineering Chairman, Committee for Graduate Students MASSACHUSETTS INSTTUTE OF TECHNOLOGY F SEP 12 2005 _ 11"C4,1~e- LIBRARIES Estimation Method for the Thermochemical Properties of Polycyclic Aromatic Molecules by Joanna Yu Bachel)or of Science in Engineering, Escola Polit6cnica-USP, So Paulo, Brazil, 2001 Submitted to tle Departmenlt of Chemical Engineering on September 1, 2004, in partial fulfillment of the requiremlents for tle degree of Doctor of Philosophy in Chemical Engineering Practice Abstract Polycy( lic aromatic molecules, icluding polycyclic aromatic hydrocarbons (PAHs) have attracted c(onsiderable attention in the Ipast few decades. They are formed dur- ing the incomipliete combustion of hydrocarbon fuels and are precursors of soot. Some PAHs are known carcilnogens, and control of their emissions is an important issue. These nlolecules uarefound in Ilany materials, including coal, fuel oils, lubricants, andl carton )l lack. They are also ilmpi)licatedi tle formation of fullerenes, one of the Ilost. chemi(( ally versatile class of molecules known. Clearly, models that p)rovide predic- tive cap:,ability for their formation and growth are highly d(esiral)le.
    [Show full text]