Table S1 Extent of Reproduction of Anatomical Features in Digital and 3D Printed Model of the Skull Bone Specimens

Total Page:16

File Type:pdf, Size:1020Kb

Table S1 Extent of Reproduction of Anatomical Features in Digital and 3D Printed Model of the Skull Bone Specimens Supplementary material BMJ Open Table S1 Extent of reproduction of anatomical features in digital and 3D printed model of the skull bone specimens. Digital Digital Anatomic feature print Anatomic feature print model model Parietal foramen (for Frontal bone P P A A emissary vein) Superior Coronal suture A A Lambda A A of the Bregma A A Lambdoid suture P NR skull Parietal bone P P Occipital bone P P Sagittal suture NR NR Mastoid notch (for Maxilla P P P P digastric muscle) Occipital groove (for Incisive fossa P P P P occipital artery) Jugular fossa (jugular Palatine process P P P P foramen in its depth) Intermaxillary suture NR NR Mastoid foramen NR NR Zygomatic process P P Parietal bone P P Zygomatic bone P P Occipital bone P P Frontal bone P P Hypoglossal canal P P Inferior of Sphenoidal bone P P Occipital condyle P P the skull Pterygoid process P P Condylar canal and fossa P P Hamulus NR A Basilar part P P Pterygoid fossa P P Pharyngeal tubercle P P Lateral plate P P Foramen magnum NR NR Greater wing P P Inferior nuchal line P P Foramen ovale P P External occipital crest P P Foramen spinosum LP NR Superior nuchal line P NR External occipital Spine P P P P protuberance Temporal bone P P Palatine bone P P Li Q-Y, et al. BMJ Open 2020; 10:e034900. doi: 10.1136/bmjopen-2019-034900 Supplementary material BMJ Open Zygomatic process P P Horizontal plate P P Articular tubercle P P Greater palatine foramen P NR Mandibular fossa P P Pyramidal process P P Styloid process P P Lesser palatine foramina NR A Petrotympanic fissure P P Posterior nasal spine P P Carotid canal P P Choanae P P (external opening) Tympanic canaliculus NR A Vomer P P External acoustic P P Ala P P meatus Groove for Mastoid process P P pharyngotympanic P P (auditory, eustachian) tube Stylomastoid NR NR Foramen lacerum P P foramen Petrous part P P Frontal bone P P Ethmoidal bone P P Glabella P P Orbital plate P P Supra-orbital notch P P Perpendicular plate P P (foramen) Orbital surface P P Middle nasal concha P NR Anterior Nasal bone P P Inferior nasal concha P NR of the Lacrimal bone P P Vomer P P skull Orbital surface of frontal Zygomatic bone P P P P bone Orbital surface of lesser Frontal process P P P P wing of sphenoidal bone Orbital surface P P Superior orbital fissure P NR Temporal process P P Optic canal (foramen) P P Li Q-Y, et al. BMJ Open 2020; 10:e034900. doi: 10.1136/bmjopen-2019-034900 Supplementary material BMJ Open Zygomaticofacial Orbital surface of greater A A P P foramen wing of sphenoidal hone Orbital surface of Maxilla P P P P zygomatic bone Zygomaticofacial Zygomatic process P P A A foramen Infra-orbital foramen P P Inferior orbital fissure P NR Alveolar process P P Infra-orbital groove P P Anterior nasal spine P P Supra-orbital notch P P Posterior and Anterior Coronal suture A A NR A ethmoidal foramina Orbital plate of Parietal bone P P P P ethmoidal bone Nasion P P Lacrimal bone P P Sphenoidal bone P P Fossa for lacrimal sac P P Orbital process of Lesser wing P P P P palatine bone Orbital surface of Greater wing P P P P maxilla Temporal bone P P lnfra-orbital foramen P P Glabella P P Asterion A A Alveolar process P P Pterygomaxillary fissure P P Temporal process P P Inferior orbital P P Zygomatic arch P P Infratemporal surface of P P Temporal fossa P P Alveolar foramina A A Lateral of Temporal bone the skull P P Tuberosity of maxilla P P squamous part Zygomatic process P P Infratemporal crest P P Lateral plate of pterygoid Articular tubercle P P P P process Supramastoid crest P P Pterygoid hamulus NR A External acoustic P P External acoustic meatus P P Li Q-Y, et al. BMJ Open 2020; 10:e034900. doi: 10.1136/bmjopen-2019-034900 Supplementary material BMJ Open meatus Mastoid process P P Mandibular fossa P P Lambdoid suture P NR Articular tubercle P P Occipital bone P P Sphenopalatine foramen P P Atlas of Human Anatomy, 6th edition (edited by Frank H. Netter, MD) was used as a reference book for anatomical annotations, with all listed anatomical features observed on in original bone specimens. Abbreviations: P: present distinctly, LP: lost partly, NR: not well-resolved. Li Q-Y, et al. BMJ Open 2020; 10:e034900. doi: 10.1136/bmjopen-2019-034900 Supplementary material BMJ Open Table S2 Sample points’ deviation distribution and average deviation of 3D comparison between specimens and 3D printed models. Femur Rib Total Total >=Min <Max >=Min <Max Points % Points % Out of Lower Critical 193 0.1031 Out of Lower Critical 59 0.0164 -2.0000 -1.5000 42 0.0224 -2.0000 -1.5000 310 0.0861 -1.5000 -1.0000 387 0.2067 -1.5000 -1.0000 406 1.1279 -1.0000 -0.5000 4985 2.6630 -1.0000 -0.5000 36183 10.0443 -0.5000 0.5000 165449 88.3881 -0.5000 0.5000 299947 83.2638 0.5000 1.0000 8978 4.7962 0.5000 1.0000 8944 2.4828 1.0000 1.5000 3928 2.0986 1.0000 1.5000 6741 1.8713 1.5000 2.0000 2136 1.1411 1.5000 2.0000 978 0.2715 Out of Upper Critical 1087 0.5807 Out of Upper Critical 3012 0.8361 Total 187185 100.0000 Total 360237 100.0002 Average Positive Average Positive Deviation 0.2523 0.3619 Deviation Average Negative Average Negative -0.1180 -0.3845 Deviation Deviation Cervical vertebra Skull Total Total >=Min <Max >=Min <Max Points % Points % Out of Lower Critical 0 0.0000 Out of Lower Critical 4797 0.2392 -2.0000 -1.5000 1 0.0007 -2.0000 -1.5000 1709 0.0852 -1.5000 -1.0000 0 0.0000 -1.5000 -1.0000 3311 0.1651 -1.0000 -0.5000 34 0.0231 -1.0000 -0.5000 82859 4.1315 -0.5000 0.5000 146810 99.7195 -0.5000 0.5000 1718475 85.6858 0.5000 1.0000 374 0.2540 0.5000 1.0000 168402 8.3968 1.0000 1.5000 3 0.0020 1.0000 1.5000 13610 0.6786 1.5000 2.0000 0 0.0000 1.5000 2.0000 4019 0.2004 Out of Upper Critical 1 0.0007 Out of Upper Critical 8369 0.4173 Total 147223 100.0000 Total 2005554 99.9999 Average Positive Average Positive Deviation 0.0853 0.2522 Deviation Average Negative Average Negative -0.0683 -0.1945 Deviation Deviation Li Q-Y, et al. BMJ Open 2020; 10:e034900. doi: 10.1136/bmjopen-2019-034900 Supplementary material BMJ Open Table S3 Sample points’ deviation distribution and average deviation of 3D comparison between digital models and 3D printed models. Femur Rib Total Total >=Min <Max >=Min <Max Points % Points % Out of Lower Critical 2030 0.2817 Out of Lower Critical 0 0.0000 -2.0000 -1.5000 7 0.0010 -2.0000 -1.5000 5 0.0014 -1.5000 -1.0000 16 0.0022 -1.5000 -1.0000 2847 0.7897 -1.0000 -0.5000 584 0.0810 -1.0000 -0.5000 22353 6.2005 -0.5000 0.5000 716715 99.4490 -0.5000 0.5000 325333 90.2424 0.5000 1.0000 1037 0.1439 0.5000 1.0000 8018 2.2240 1.0000 1.5000 139 0.0193 1.0000 1.5000 1953 0.5417 1.5000 2.0000 120 0.0167 1.5000 2.0000 1 0.0003 Out of Upper Critical 38 0.0053 Out of Upper Critical 0 0.0000 Total 720686 100.0001 Total 360510 100.0000 Average Positive Average Positive 0.1330 0.2730 Deviation Deviation Average Negative Average Negative -0.1622 -0.3334 Deviation Deviation Cervical vertebra Skull Total Total >=Min <Max >=Min <Max Points % Points % Out of Lower Critical 0 0.0000 Out of Lower Critical 1232 0.0614 -2.0000 -1.5000 2 0.0014 -2.0000 -1.5000 520 0.0259 -1.5000 -1.0000 0 0.0000 -1.5000 -1.0000 627 0.0313 -1.0000 -0.5000 5 0.0034 -1.0000 -0.5000 19089 0.9520 -0.5000 0.5000 147014 99.8418 -0.5000 0.5000 1962660 97.8834 0.5000 1.0000 225 0.1528 0.5000 1.0000 6337 0.3160 1.0000 1.5000 0 0.0000 1.0000 1.5000 4015 0.2002 1.5000 2.0000 0 0.0000 1.5000 2.0000 2532 0.1263 Out of Upper Critical 1 0.0007 Out of Upper Critical 8087 0.4033 Total 147247 100.0001 Total 2005099 99.9998 Average Positive Average Positive Deviation 0.0524 0.1561 Deviation Average Negative Average Negative -0.0783 -0.1633 Deviation Deviation Li Q-Y, et al. BMJ Open 2020; 10:e034900. doi: 10.1136/bmjopen-2019-034900.
Recommended publications
  • Direct Sagittal CT in the Evaluation of Temporal Bone Disease
    371 Direct Sagittal CT in the Evaluation of Temporal Bone Disease 1 Mahmood F. Mafee The human temporal bone is an extremely complex structure. Direct axial and coronal Arvind Kumar2 CT sections are quite satisfactory for imaging the anatomy of the temporal bone; Christina N. Tahmoressi1 however, many relationships of the normal and pathologic anatomic detail of the Barry C. Levin2 temporal bone are better seen with direct sagittal CT sections. The sagittal projection Charles F. James1 is of interest to surgeons, as it has the advantage of following the plane of surgical approach. This article describes the advantages of using direct sagittal sections for Robert Kriz 1 1 studying various diseases of the temporal bone. The CT sections were obtained with Vlastimil Capek the aid of a new headholder added to our GE CT 9800 scanner. The direct sagittal projection was found to be extremely useful for evaluating diseases involving the vertical segment of the facial nerve canal, vestibular aqueduct, tegmen tympani, sigmoid sinus plate, sinodural angle, carotid canal, jugular fossa, external auditory canal, middle ear cavity, infra- and supra labyrinthine air cells, and temporo­ mandibular joint. CT has contributed greatly to an understanding of the complex anatomy and spatial relationship of the minute structures of the hearing and balance organs, which are packed into a small pyramid-shaped petrous temporal bone [1 , 2]. In the past 6 years, high-resolution CT scanning has been rapidly replacing standard tomography and has proved to be the diagnostic imaging method of choice for studying the normal and pathologic details of the temporal bone [3-14].
    [Show full text]
  • A Morphological Study of Jugular Foramen
    Vikas. C. Desai et al /J. Pharm. Sci. & Res. Vol. 9(4), 2017, 456-458 A Morphological Study of Jugular Foramen Vikas. C. Desai1, Pavan P Havaldar2 1. Asst. Prof, Department of Dentistry, BLDE University’s,Shri. B. M. Patil Medical College Hospital and Research Centre,Bijapur – 586103, Karnataka State. 2. Assistant Professor of Anatomy, Gadag Institute of Medical Sciences, Mallasamudra, Mulgund Road, Gadag, Karnataka, India. Abstract Jugular foramen is a large aperture in the base of the skull. It is located behind the carotid canal and is formed by the petrous part of the temporal bone and behind by the occipital bone. The jugular foramen is the main route of venous outflow from the skull and is characterised by laterality based on the predominance of one of the sides. Sigmoid sinus continues as internal jugular vein in posterior part of jugular foramen. Ligation of the internal jugular is sometimes performed during radical neck dissection with the risk of venous infarction, which some adduce to be due to ligation of the dominant internal jugular vein. It is generally said that although the Jugular foramen is larger on the right side compared to the left, its size as well as its height and volume vary in different racial groups and sexes. The foramen’s complex shape, its formation by two bones, and the numerous nerves and venous channels that pass through it further compound its anatomy. The present study was undertaken in 263(526 sides) different medical and dental institutions in Karnataka, India. Out of 263 skulls in 61.21% of cases the right foramina were larger than the left, in 13.68% of cases the left foramina were larger than the right and in 25.09% cases were equal on both sides.
    [Show full text]
  • Questions on Human Anatomy
    Standard Medical Text-books. ROBERTS’ PRACTICE OF MEDICINE. The Theory and Practice of Medicine. By Frederick T. Roberts, m.d. Third edi- tion. Octavo. Price, cloth, $6.00; leather, $7.00 Recommended at University of Pennsylvania. Long Island College Hospital, Yale and Harvard Colleges, Bishop’s College, Montreal; Uni- versity of Michigan, and over twenty other medical schools. MEIGS & PEPPER ON CHILDREN. A Practical Treatise on Diseases of Children. By J. Forsyth Meigs, m.d., and William Pepper, m.d. 7th edition. 8vo. Price, cloth, $6.00; leather, $7.00 Recommended at thirty-five of the principal medical colleges in the United States, including Bellevue Hospital, New York, University of Pennsylvania, and Long Island College Hospital. BIDDLE’S MATERIA MEDICA. Materia Medica, for the Use of Students and Physicians. By the late Prof. John B Biddle, m.d., Professor of Materia Medica in Jefferson Medical College, Phila- delphia. The Eighth edition. Octavo. Price, cloth, $4.00 Recommended in colleges in all parts of the UnitedStates. BYFORD ON WOMEN. The Diseases and Accidents Incident to Women. By Wm. H. Byford, m.d., Professor of Obstetrics and Diseases of Women and Children in the Chicago Medical College. Third edition, revised. 164 illus. Price, cloth, $5.00; leather, $6.00 “ Being particularly of use where questions of etiology and general treatment are concerned.”—American Journal of Obstetrics. CAZEAUX’S GREAT WORK ON OBSTETRICS. A practical Text-book on Midwifery. The most complete book now before the profession. Sixth edition, illus. Price, cloth, $6.00 ; leather, $7.00 Recommended at nearly fifty medical schools in the United States.
    [Show full text]
  • Morphometry of Parietal Foramen in Skulls of Telangana Population Dr
    Scholars International Journal of Anatomy and Physiology Abbreviated Key Title: Sch Int J Anat Physiol ISSN 2616-8618 (Print) |ISSN 2617-345X (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com/sijap Original Research Article Morphometry of Parietal Foramen in Skulls of Telangana Population Dr. T. Sumalatha1, Dr. V. Sailaja2*, Dr. S. Deepthi3, Dr. Mounica Katukuri4 1Associate professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 2Assistant Professor, Department of Anatomy, Gandhi Medical College, Secunderabad, Telangana, India 3Assistant Professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 4Post Graduate 2nd year, Gandhi Medical College, Secunderabad, Telangana, India DOI: 10.36348/sijap.2020.v03i10.001 | Received: 06.10.2020 | Accepted: 14.10.2020 | Published: 18.10.2020 *Corresponding author: Dr. V. Sailaja Abstract Aims & Objectives: To study the prevalence, number, location and variations of parietal foramen in human skulls and correlate with the clinical significance if any. Material and Methods: A total of 45 skulls with 90 parietal bones were studied in the Department of Anatomy Govt medical college Mahabubnagar from osteology specimens in the academic year 2018-2019.Various parameters like unilateral or bilateral occurance or total absence of the parietal foramen, their location in relation to sagittal suture and lambda, their shape have been observed using appropriate tools and the findings have been tabulate. Observation & Conclusions: Out of total 45 skulls there were 64 parietal foramina in 90 parietal bones, with foramina only on right side in 10 skulls, only on left side in 7 skulls, bilaterally present in 23 skulls, total absence in 4 skulls and 1 foramen located in the sagittal suture.
    [Show full text]
  • Study of Wormian Bones on Dry Human Skull and Its Sexual Dimorphism in the Region of Andhra Pradesh
    Original Research Article Study of Wormian Bones on Dry human skull and its sexual dimorphism in the region of Andhra Pradesh Shone Vasudeo Durge Assistant Professor, Dept. of Anatomy, Fathima Institute of Medical Sciences, Ramarajupalli, Andhra Pradesh Corresponding Author: E-mail: [email protected] Abstract This study was aimed at identifying the wormian bone and their overall incidence in respect to their number and location in the region of Andhra Pradesh. Overall incidence of wormian bones was more in female (47.72%) than in male skulls (41.66%). They occurred more frequently at lambdoid suture (38%). Wormian bones along the coronal suture, Bregma and Asterion were seen only in male skulls, while intra-orbital wormian bones and wormian bones at Pterion were seen only in female skulls. This study concludes by stating that, there exists a moderate degree of sexual dimorphism among the wormian bones with respect to overall incidence, number and location. Keywords- Skull, Sexual dimorphism, Wormian bones, Lambda, Asterion. Background knowledge of WBs is important in the diagnosis of Wormian bones, also known as intra-sutural bones, these disorders (Cremin, Goodman, Spranger et al., are extra bone pieces that occur within a suture in the 1982). It was reported that their incidence is well suited cranium. These are irregular isolated bones that appear for comparative studies as an anthropological marker or in addition to the usual centers of ossification of the an indicator of population distance (Gumusburun, cranium and, although unusual, are not rare. They occur Sevim, Katkici et al., 1997). Their knowledge is of most frequently in the course of the lambdoid suture, interest to the human anatomy, physical anthropology which is more tortuous than other sutures.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • CLOSURE of CRANIAL ARTICULATIONS in the SKULI1 of the AUSTRALIAN ABORIGINE by A
    CLOSURE OF CRANIAL ARTICULATIONS IN THE SKULI1 OF THE AUSTRALIAN ABORIGINE By A. A. ABBIE, Department of Anatomy, University of Adelaide INTRODUCTION While it is well known that joint closure advances more or less progressively with age, there is still little certainty in matters of detail, mainly for lack of adequate series of documented skulls. In consequence, sundry beliefs have arisen which tend to confuse the issue. One view, now disposed of (see Martin, 1928), is that early suture closure indicates a lower or more primitive type of brain. A corollary, due to Broca (see Topinard, 1890), that the more the brain is exercised the more is suture closure postponed, is equally untenable. A very widespread belief is based on Gratiolet's statement (see Topinard, 1890; Frederic, 1906; Martin, 1928; Fenner, 1939; and others) that in 'lower' skulls the sutures are simple and commence to fuse from in front, while in 'higher' skulls the sutures are more complicated and tend to fuse from behind. This view was disproved by Ribbe (quoted from Frederic, 1906), who substituted the generalization that in dolicocephals synostosis begins in the coronal suture, and in brachycephals in the lambdoid suture. In addition to its purely anthropological interest the subject raises important biological considerations of brain-skull relationship, different foetalization in different ethnological groups (see Bolk, 1926; Weidenreich, 1941; Abbie, 1947), and so on. A survey of the literature reveals very little in the way of data on the age incidence of suture closure. The only substantial contribution accessible here comes from Todd & Lyon (1924) for Europeans, but their work is marred by arbitrary rejection of awkward material.
    [Show full text]
  • 1A. Internal Auditory Meatus
    1a. Internal Auditory Meatus 1. The facial nerve leaves the posterior cranial fossa to enter the facial canal by way of the internal auditory meatus (black wire). The facial canal is within the petrous part of the temporal bone. 1b. Internal Auditory Meatus The facial nerve leaves the posterior cranial fossa to enter the facial canal by way of the internal auditory meatus (black wire). 2. Hiatus of the Canal and Groove for the Greater Superficial Petrosal Nerve The greater superficial petrosal nerve leaves the facial canal to enter the middle cranial fossa by way of the hiatus of the canal for the greater superficial petrosal nerve (black wire). 3. Pterygoid Canal at Anterior Lip of the Lacerate Foramen The greater superficial petrosal nerve is joined by the deep petrosal nerve to form the nerve of the pterygoid canal (black and red wire). This nerve leaves the middle cranial fossa to enter the pterygopalatine fossa by way of the pterygoid canal. The posterior opening of the pterygoid canal is at the anterior lip of the lacerate foramen. The greater superficial nerve and the deep petrosal nerve travel within the cavernous sinus. 4. Pterygopalatine Fossa Seen Through the Pterygomaxillary Fissure The anterior opening of the pterygoid canal is into the pterygopalatine fossa (black wire). The pterygopalatine fossa is located medial to the pterygomaxillary fissure and contains the pterygopalatine ganglion. 5. External Auditory Meatus The chorda tympani nerve leaves the facial canal and crosses the middle ear (black wire). It then leaves the middle ear to arrive in the infratemporal fossa by way of the petrotympanic fissure.
    [Show full text]
  • A Description of the Geological Context, Discrete Traits, and Linear Morphometrics of the Middle Pleistocene Hominin from Dali, Shaanxi Province, China
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 150:141–157 (2013) A Description of the Geological Context, Discrete Traits, and Linear Morphometrics of the Middle Pleistocene Hominin from Dali, Shaanxi Province, China Xinzhi Wu1 and Sheela Athreya2* 1Laboratory for Human Evolution, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 2Department of Anthropology, Texas A&M University, College Station, TX 77843 KEY WORDS Homo heidelbergensis; Homo erectus; Asia ABSTRACT In 1978, a nearly complete hominin Afro/European Middle Pleistocene Homo and align it fossil cranium was recovered from loess deposits at the with Asian H. erectus.Atthesametime,itdisplaysa site of Dali in Shaanxi Province, northwestern China. more derived morphology of the supraorbital torus and It was subsequently briefly described in both English supratoral sulcus and a thinner tympanic plate than and Chinese publications. Here we present a compre- H. erectus, a relatively long upper (lambda-inion) occi- hensive univariate and nonmetric description of the pital plane with a clear separation of inion and opis- specimen and provide comparisons with key Middle thocranion, and an absolute and relative increase in Pleistocene Homo erectus and non-erectus hominins brain size, all of which align it with African and Euro- from Eurasia and Africa. In both respects we find pean Middle Pleistocene Homo. Finally, traits such as affinities with Chinese H. erectus as well as African the form of the frontal keel and the relatively short, and European Middle Pleistocene hominins typically broad midface align Dali specifically with other referred to as Homo heidelbergensis.Specifically,the Chinese specimens from the Middle Pleistocene Dali specimen possesses a low cranial height, relatively and Late Pleistocene, including H.
    [Show full text]
  • Introduction to the Skeletal System and the Axial Skeleton 155
    chapter Introduction to the 7 Skeletal System and the Axial Skeleton CHAPTER OVERVIEW OBJECTIVES 7.1 Introduction to the Skeletal System ……………… 153 1. Describe the gross anatomy and structure of a long 7.2 Bone Structure ………………………………………… 154 bone 7.3 Bone Histology ………………………………………… 155 2. Describe and compare the underlying histology of spongy and compact bone. 7.4 The Human Skeleton: Axial and Appendicular Divisions …………………………………………………… 156 3. List the five general shapes of bones. 7.5 Bone Classification and Markings ………………… 157 4. Describe and compare the different kinds of bone markings visible on the skeleton. 7.6 Axial Skeleton …………………………………………… 159 7.6a Cranium 5. Identify the components of the axial skeleton: cranial, 7.6b Facial facial, hyoid, vertebra, ribs and sternum. 7.6c Hyoid Bone 7.6d Vertebral Column 7.6e Thoracic Cage 7.1 Introduction to the Skeletal System The skeletal system serves to support the body’s soft tissues and to protect the body’s soft internal organs. Another important function that the bones have is to store materials such as calcium, phosphorus and lipids. Additionally, blood cells are synthesized in the red bone marrow to be released into the bloodstream. Bones serve as levers for the muscular system, working with them to produce movement and maintain posture. The human body contains 2 major kinds of bone tissue: compact and spongy. Compact bone (dense bone) is found on the outer surface of bones and serves as a place to absorb most of the stress on the bones. Spongy bone (cancellous tissue) is found on the inside of the compact bone layer.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • Non Metric Traits of the Skull and Their Role in Anthropological Studies
    Original article Non metric traits of the skull and their role in anthropological studies Kaur, J.1*, Choudhry, R.2, Raheja, S.3 and Dhissa, NC.4 1Doctor, Master of Science in Anatomy, Assistant Professor, Department of Anatomy, ESIC Dental College, Rohini, New Delhi 2Doctor, Master of Science in Anatomy, Ex Head of the Department of Anatomy, VMMC & Safdarjung Hospital, New Delhi 3Doctor, Master of Science in Anatomy, Professor, Department of Anatomy, Lady Hardinge Medical College, New Delhi 4Doctor, Master of Science in Anatomy, Associate Professor, Department of Anatomy, ESIC Dental College, New Delhi *E-mail: [email protected] Abstract Anthropological and paleoanthropological studies concerning the so called epigenetic cranial traits or non-metrical cranial traits have been increasing in frequency in last ten years. For this type of study, the trait should be genetically determined, vary in frequency between different populations and should not show age, sex and side dependency. The present study was conducted on hundred dry adult human skulls from Northern India. They were sexed and classified into groups of various non metrical traits. These traits were further studied for sexual and side dimorphism. None of the traits had shown statistically significant side dimorphism. Two of them (Parietal foramen and Exsutural mastoid foramen) however had shown statistically significant sexual dimorphism. Since the dimorphism is exhibited by very less number of traits, it can be postulated that these traits are predominantly under genetic control and can be effectively used for population studies. Keywords: double hypoglossal canal, epigenetic variants, non-metric cranial variants, supraorbital foramen, zygomaticofacial foramen. 1 Introduction 2 Material and methods Anthropological and paleoanthropological studies Hundred dry adult human skulls from Northern India, concerned with the epigenetic traits or non-metrical cranial having no deformity or fracture were examined.
    [Show full text]