Identification and Role of MCM3AP Disease Gene in Neurological

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Role of MCM3AP Disease Gene in Neurological (''%'#($ )/)# ""($)%" (#(''%'# $ %)%'"'%'## $ ' $$ $ *").% $ $ +'( ).%"( $! $"$ %&'($), ))&'# (( %$%) *").% $%)$ +'( ). %"( $! %'&*" -# $) %$'#%)".'%#")*'"" %# *#%$) %.)%0"%! "( $! $"$ Supervised by Associate Professor Henna Tyynismaa, Ph.D Research Programs Unit, Faculty of Medicine University of Helsinki Docent Emil Ylikallio, MD, Ph.D Research Programs Unit, Faculty of Medicine University of Helsinki Reviewed by Professor Johanna Uusimaa, MD, Ph.D Faculty of Medicine University of Oulu Doctor Vihandha Wickramasinghe, Ph.D School of Biomedical Sciences University of Melbourne Opponent Professor Marina Kennerson, Ph.D Faculty of Health and Medicine University of Sydney Custos Associate Professor Henna Tyynismaa, Ph.D Research Programs Unit, Faculty of Medicine University of Helsinki The Faculty of Medicine uses the Urkund system (plagiarism recognition) to examine all doctoral dissertations. Cover image: Human neurons differentiated from induced pluripotent stem cells expressing MAP2 (green) and GANP (red). ISBN 978-951-51-7217-4 (print) ISBN 978-951-51-7218-1 (online) ISSN 2342-3161 (print) ISSN 2342-317X (online) Dissertationes Scholae Doctoralis Ad Sanitatem Investigandam Universitatis Helsinkiensis Unigrafia Helsinki 2021 To my husband Dr. Michael Woldegebriel. Rare diseases are a heterogenous group of disorders, which together affect a large number of people. These diseases typically have a genetic cause, which affects various cellular processes and pathways. One of the key processes in the cell is RNA metabolism, which is crucial for gene expression. Defects in RNA processing steps contribute to a variety of human diseases ranging from motor neuron diseases to cancer. Most rare diseases currently have no cure. In this dissertation, biallelic variants in Minichromosome maintenance complex 3 associated protein (MCM3AP) gene were found to underlie a neurological syndrome: early-onset peripheral neuropathy with/without intellectual disability. Through international collaboration, patients from multiple families and the disease variants in MCM3AP were identified. Germinal center associated nuclear protein (GANP), encoded by MCM3AP, is a large scaffold protein in the Transcription and Export 2 (TREX-2) complex, which is responsible for the transport of mRNAs from nucleus to the cytoplasm. The effects of different disease-causing variants on GANP abundance on the nuclear envelope were determined, which led to establishment of a genotype/phenotype correlation regarding the severity of the motor phenotype. This research showed that GANP regulates gene expression in a cell type specific manner. In patient fibroblasts, GANP was found to dysregulate genes depending on intron content. In addition, stem cell-based technology and genome editing was utilized to allow modeling of GANP defects in human cultured motor neurons. We found that GANP is a major regulator of gene expression in developing motor neurons, with GANP defects altering the expression of genes related to synaptic functions and resulting in compensatory induction of protein synthesis and mitochondrial pathways. Understanding of the causes and mechanisms of rare diseases is needed for improving diagnostics, therapeutic development and personalized treatments. In this dissertation, the foundation for understanding the mechanisms of MCM3AP-linked neurological syndrome has been established through identification of the causative gene and description of the disease phenotype. The different cellular models including patient-specific motor neurons used in this study have revealed molecular pathways that may be targets for treatment in preclinical trials. 4 Abstract .................................................................................................. 4 Contents ................................................................................................. 5 List of original publications .................................................................. 9 Abbreviations ...................................................................................... 10 1 Introduction ............................................................................ 14 2 Review of the literature ........................................................... 16 2.1 Introduction to human genetics .......................................... 16 2.1.1 DNA ............................................................................... 16 2.1.2 Human genome organization ........................................ 16 2.1.3 Genes and other elements of the genome ..................... 16 2.1.4 Genetic variation ........................................................... 17 2.1.5 Mendelian inheritance of traits ..................................... 18 2.2 mRNA export is a key step in gene expression .................... 19 2.2.1 Gene expression ............................................................ 19 2.2.2 mRNAs are exported through nuclear pores ............... 20 2.2.3 Pre-mRNA processing and splicing .............................. 21 2.2.4 Macromolecular complexes in gene expression and export 22 2.2.5 mRNA export factor GANP .......................................... 24 2.2.6 Selectivity of mRNA export ........................................... 25 2.2.7 Export and expression of intronless genes .................. 26 2.2.8 Nucleocytoplasmic transport in neurological diseases 27 2.3 Charcot- Marie Tooth disease: from phenotypes to genetics and variant detection .......................................................................... 28 5 2.3.1 Introduction and etiology ............................................. 28 2.3.2 Modes of inheritance .................................................... 28 2.3.3 Classification ................................................................. 29 2.3.4 Clinical features ............................................................ 30 2.3.5 Genetic causes and molecular mechanisms .................. 31 2.3.6 Genetic testing .............................................................. 34 2.3.7 Advances in the identification of disease-causing variants by next generation sequencing ......................................... 35 2.4 Stem cell-based modeling of diseases affecting motor neurons 36 2.4.1 Introduction and stem cell types .................................. 36 2.4.2 Induced pluripotent stem cells ...................................... 37 2.4.3 Modeling neuronal disease in human neurons ............ 38 2.4.4 Assessing local translation in neurons ......................... 39 2.4.5 Editing the genome with CRISPR-Cas9 for disease modeling 40 3 Aims of the study .................................................................... 42 4 Materials and methods ........................................................... 43 4.1 Collection of clinical data (I, II) .......................................... 43 4.2 Ethical permissions (I, II, III) ............................................. 43 4.3 Affected individual and control cells (I, II, III) .................. 43 4.4 Whole exome and genome sequencing (I, II) ..................... 44 4.5 Fibroblast cell culture (I, II) ................................................ 44 4.6 RNA isolation and cDNA synthesis (I, II, III) .................... 44 4.7 Quantitative reverse transcription polymerase chain reaction (qRT-PCR) (I, II, III) ........................................................................... 45 6 4.8 Minigene assay to detect altered mRNA splicing in fibroblasts (I) ........................................................................................ 45 4.9 Mixed neuronal cultures (I) ................................................. 45 4.10 DNA repair assay (I) ............................................................ 45 4.11 Sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) and western blotting (I, II, III) ..................................... 46 4.12 Immunocytochemistry (I, II, III) ........................................ 46 4.13 Microscopy (I, II, III) .......................................................... 46 4.14 RNA in situ hybridization (II, III) ....................................... 47 4.15 Transmission electron microscopy (II) ............................... 47 4.16 Molecular modeling of Sac3 region of GANP (II) ............... 47 4.17 RNA sequencing and bioinformatics (II, III) ...................... 47 4.18 Culture of human induced pluripotent stem cells (hiPSC) (I, III) 48 4.19 Motor neuron differentiation (III) ...................................... 48 4.20 Axon isolation for RNA and protein (III) ........................ 49 4.21 Nuclei isolation for RNA and protein (III) ......................... 49 4.22 CRISPR-Cas9 gene editing (III) .......................................... 50 4.23 Statistics (I, II, III) .............................................................. 50 5 Results and discussion ............................................................ 51 5.1 MCM3AP variants underlie an early-onset neurological disease spectrum (I, II) ........................................................................ 51 5.1.1 Clinical features ............................................................. 51 5.1.2 Genetic features ............................................................. 53 5.2 Distinct effects on GANP by variant location (I-III) ........... 54 5.2.1 Defects in GANP correlate with severity of disease phenotype 54 7 5.3 MCM3AP variants have different effects
Recommended publications
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Neurological Disorders, Genetic Correlations, and the Role of Exome Sequencing
    Journal of Translational Science Review Article ISSN: 2059-268X Neurological disorders, genetic correlations, and the role of exome sequencing Tony L Brown1* and Theresa M Meloche2 1Columbia University, USA 2Advanced Research and Human Development Institute, USA Abstract Genomic information access and utilization by researchers and clinicians have barely begun the journey for fulfillment of their full potential in the research and clinical arenas. Exciting is the potential depth and breadth of research, clinical applications, and more personalized medicine, that remain on the horizon. Exome sequencing has clarified the responsibilities of over 130 genes, greatly expanding the medical genetics database and enabling the development of orphan disease- based pharmaceuticals. The focus of our research efforts was to review several literature sources related to rare genomic disease research and exome sequencing, as well as to review the new research and diagnostic strategies that were utilized. Using a systems approach, under discussion are neurology, neuropathy, and the central nervous and musculoskeletal systems. Also discussed will be the topics of inborn errors of metabolism, and the genetic targets related to developmental delay. Recommendations for future research will also be discussed. Exome sequencing neuronal ceroid lipofuscinoses the most common group of inherited neurological degenerative disorders [6]. Whether examining the A review of new strategies for rare genomic disease research mitochondrial defect implicated in prenatal ventriculomegaly
    [Show full text]
  • Gene Promoter and Exon DNA Methylation Changes in Colon
    Molnár et al. BMC Cancer (2018) 18:695 https://doi.org/10.1186/s12885-018-4609-x RESEARCH ARTICLE Open Access Gene promoter and exon DNA methylation changes in colon cancer development – mRNA expression and tumor mutation alterations Béla Molnár1,2*†, Orsolya Galamb1†, Bálint Péterfia2, Barnabás Wichmann1, István Csabai3, András Bodor3,4, Alexandra Kalmár1, Krisztina Andrea Szigeti2, Barbara Kinga Barták2, Zsófia Brigitta Nagy2, Gábor Valcz1, Árpád V. Patai2, Péter Igaz1,2 and Zsolt Tulassay1,2 Abstract Background: DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. Methods: Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. Results: According to the LINE-1 methylation results, overall hypomethylation was observed along the normal- adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated.
    [Show full text]
  • Binding Specificities of Human RNA Binding Proteins Towards Structured
    bioRxiv preprint doi: https://doi.org/10.1101/317909; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Binding specificities of human RNA binding proteins towards structured and linear 2 RNA sequences 3 4 Arttu Jolma1,#, Jilin Zhang1,#, Estefania Mondragón4,#, Teemu Kivioja2, Yimeng Yin1, 5 Fangjie Zhu1, Quaid Morris5,6,7,8, Timothy R. Hughes5,6, Louis James Maher III4 and Jussi 6 Taipale1,2,3,* 7 8 9 AUTHOR AFFILIATIONS 10 11 1Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden 12 2Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland 13 3Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 14 4Department of Biochemistry and Molecular Biology and Mayo Clinic Graduate School of 15 Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, USA 16 5Department of Molecular Genetics, University of Toronto, Toronto, Canada 17 6Donnelly Centre, University of Toronto, Toronto, Canada 18 7Edward S Rogers Sr Department of Electrical and Computer Engineering, University of 19 Toronto, Toronto, Canada 20 8Department of Computer Science, University of Toronto, Toronto, Canada 21 #Authors contributed equally 22 *Correspondence: [email protected] 23 24 25 SUMMARY 26 27 Sequence specific RNA-binding proteins (RBPs) control many important 28 processes affecting gene expression. They regulate RNA metabolism at multiple 29 levels, by affecting splicing of nascent transcripts, RNA folding, base modification, 30 transport, localization, translation and stability. Despite their central role in most 31 aspects of RNA metabolism and function, most RBP binding specificities remain 32 unknown or incompletely defined.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • The Genetics of Bipolar Disorder
    Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF.
    [Show full text]
  • Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology
    brain sciences Review Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology Andrea Becchetti 1,* , Laura Clara Grandi 1 , Giulia Colombo 1 , Simone Meneghini 1 and Alida Amadeo 2 1 Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; [email protected] (L.C.G.); [email protected] (G.C.); [email protected] (S.M.) 2 Department of Biosciences, University of Milano, 20133 Milano, Italy; [email protected] * Correspondence: [email protected] Received: 13 October 2020; Accepted: 21 November 2020; Published: 25 November 2020 Abstract: Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain.
    [Show full text]
  • Identification and Validation of a Gene Expression Signature That Predicts Outcome in Malignant Glioma Patients
    INTERNATIONAL JOURNAL OF ONCOLOGY 40: 721-730, 2012 Identification and validation of a gene expression signature that predicts outcome in malignant glioma patients ATSUSHI KAWAGUCHI4, NAOKI YAJIMA1, YOSHIHIRO KOMOHARA3, HIROSHI AOKI1, NAOTO TSUCHIYA1, JUMPEI HOMMA1, MASAKAZU SANO1, MANABU NATSUMEDA1, TAKEO UZUKA1, AKIHIKO SAITOH1, HIDEAKI TAKAHASHI1, YUKO SAKAI5, HITOSHI TAKAHASHI2, YUKIHIKO FUJII1, TATSUYUKI KAKUMA4 and RYUYA YAMANAKA5 Departments of 1Neurosurgery and 2Pathology, Brain Research Institute, Niigata University; 3Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University; 4Biostatistics Center, Kurume University; 5Graduate School for Health Care Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan Received August 16, 2011; Accepted October 3, 2011 DOI: 10.3892/ijo.2011.1240 Abstract. Better understanding of the underlying biology approaches, to reveal more clearly the biological features of of malignant gliomas is critical for the development of early glioblastoma, and to identify novel target molecules for diagnosis detection strategies and new therapeutics. This study aimed to and therapy of the disease. Several histological grading schemes define genes associated with survival. We investigated whether exist, and the World Health Organization (WHO) system is genes selected using random survival forests model could be currently the most widely used (3). A high WHO grade correlates used to define subgroups of gliomas objectively. RNAs from 50 with clinical progression and decreased survival. However, there non-treated gliomas were analyzed using the GeneChip Human are still many individual variations within diagnostic categories, Genome U133 Plus 2.0 Expression array. We identified 82 genes resulting in a need for additional prognostic markers. The inad- whose expression was strongly and consistently related to patient equacy of histopathological grading is evidenced, in part, by the survival.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • Peripheral Neuropathy Linked Mrna Export Factor GANP Reshapes Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444636; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Peripheral neuropathy linked mRNA export factor GANP 2 reshapes gene regulation in human motor neurons 3 4 Rosa Woldegebriel1,2, Jouni Kvist1, Matthew White2, Matilda Sinkko1, Satu Hänninen3,4, 5 Markus T Sainio1, Rubén Torregrosa-Munumer1, Sandra Harjuhaahto1, Nadine Huber5, Sanna- 6 Kaisa Herukka6,7, Annakaisa Haapasalo5, Olli Carpen3,4, Andrew Bassett8, Emil Ylikallio1,9, 7 Jemeen Sreedharan2*, Henna Tyynismaa1,10,11* 8 9 1 Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 10 00290 Helsinki, Finland. 11 2 Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and 12 Neuroscience, King's College London, London, UK. 13 3 Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, 14 Finland. 15 4 Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland. 16 5 A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 17 Finland. 18 6 Department of Neurology, Kuopio University Hospital, Kuopio, Finland. 19 7 Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland. 20 8 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. 21 9 Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, 22 00290 Helsinki, Finland. 23 10 Department of Medical and Clinical Genetics, University of Helsinki, 00290 Helsinki, 24 Finland. 25 11 Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 26 Finland.
    [Show full text]
  • The Human Nucleoporin Tpr Protects Cells from RNA-Mediated Replication Stress
    ARTICLE https://doi.org/10.1038/s41467-021-24224-3 OPEN The human nucleoporin Tpr protects cells from RNA-mediated replication stress Martin Kosar 1,2,9, Michele Giannattasio 1,3, Daniele Piccini 1, Apolinar Maya-Mendoza 4, Francisco García-Benítez5, Jirina Bartkova4,6, Sonia I. Barroso 5, Hélène Gaillard 5, Emanuele Martini 1, Umberto Restuccia1, Miguel Angel Ramirez-Otero 1, Massimiliano Garre1, Eleonora Verga1, Miguel Andújar-Sánchez 7, Scott Maynard 4, Zdenek Hodny2, Vincenzo Costanzo1,3, Amit Kumar 8, ✉ ✉ ✉ Angela Bachi 1, Andrés Aguilera 5 , Jiri Bartek 2,4,6 & Marco Foiani 1,3 1234567890():,; Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery. 1 IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy.
    [Show full text]
  • Long Non-Coding RNA MCM3AP-AS1 Promotes Growth and Migration
    Yang et al. Molecular Medicine (2019) 25:55 Molecular Medicine https://doi.org/10.1186/s10020-019-0121-2 RESEARCH ARTICLE Open Access Long non-coding RNA MCM3AP-AS1 promotes growth and migration through modulating FOXK1 by sponging miR-138- 5p in pancreatic cancer Ming Yang1, Shijuan Sun2, Yao Guo1, Junjie Qin2 and Guangming Liu2* Abstract Background: Pancreatic cancer (PC) is a type of malignant gastrointestinal tumor. Long non-coding RNA MCM3AP antisense RNA 1 (MCM3AP-AS1) has been reported to stimulate proliferation, migration and invasion in several types of tumors. However, the role of MCM3AP-AS1 in PC remains unclear. Methods: MCM3AP-AS1, microRNA miR-138-5p (miR-138-5p) and FOXK1 levels were detected using quantitative real time PCR. Cell proliferation, migration and invasion were analyzed. Dual luciferase reporter assay was used to confirm the relationship between MCM3AP-AS1 and miR-138-5p, between miR-138-5p and FOXK1. Protein levels were identified using western blot analysis. Results: MCM3AP-AS1 overexpression promoted proliferation, migration and invasion in PC cells. MCM3AP-AS1 silencing showed a suppressive effect on cell growth in PC cells. Moreover, MCM3AP-AS1 knockdown suppressed tumor growth in mice. Dual luciferase reporter assay demonstrated MCM3AP-AS1 could sponge microRNA-138-5p (miR-138-5p), and FOXK1 could bind with miR-138-5p. Positive correlation between MCM3AP-AS1 and FOXK1 was testified, as well as negative correlation between miR-138-5p and FOXK1. MCM3AP-AS1 promoted FOXK1 expression by targeting miR-138-5p, and MCM3AP-AS1 facilitated growth and invasion in PC cells by FOXK1. Conclusion: MCM3AP-AS1 promoted growth and migration through modulating miR-138-5p/FOXK1 axis in PC, providing insights into MCM3AP-AS1/miR-138-5p/FOXK1 axis as novel candidates for PC therapy from bench to clinic.
    [Show full text]