<<

!"#"#$%

!"#$%&'"'()*(+",#-."'/(!$%0(1#&"23#,(4#&"( 5$"2(*($%0(676('"#$%&'"'(".%,."8(

@A(?1%>'5/B?A% C/D<)/E%/77?%F/1G//6%5/)H'0%B6?% KA<1%13<'1?%I(%1A/%D/DF/3?% (L%1A'?%L

4A(31A/'5/B?A% J(I'B/I%L3(D%O/?P/%Q% J<)/E%/77?%(6%/1/3?/6%% &/A/3/7<3

4%9:#&"(3$"(3&"26'(72(3$"(9#,"(;&%%6(:%<=$( @"'=&7;"(3$"(A<2=-%2(%A(B"C(9#,"($%&9%2"'D(( 6"'7>2'(72('"#$%&'"'(*(:7:"?'$( ZM5(1A/?'V/I%5'12'1<3M%Q%?1/3('I%A(3D(6/?%'6%F3//I'67%D<)/%?M676<1A'I%% 4/'5/B?A%

S3(5A(3'E% 1<')%F3((I/3%

@'5/B?A% UFI(D'6<)% F3((I/3%

@A(?1%>'5/B?A% A[5E""G6*0(D"?/

#% !"#"#$%

E<,-:,"(9#3"&273C(0#'(&#&"(72(:&">2#23(9#,"( G&"(3$"&"( @(60<)H/?-%UA6/?-%Q%;H<36/D(-%89#$% F%&3$"&2(17:"?'$(!"#$#%&'()*+(),()( #6.#23#>"'(3%( ;&%%672>( =%9:#&39"23'( A%&(3$"(">>'8(

4

_(3D(c'<%d#99b%`8%?<1*e% ZM5(c'<%d+9b%`8%?<1*e%

`6)M%8ab%D<1/I% G'1A%8%L/D<)/?%

><0V()1-%J<3T6-%]<[/3D<6-%Q%^(6/?-%89#$%

5$#3(#&"(3$"(=%'3'( I%0(#&"(">>'(A"&-,7J"6(*(3'A"&&"6( 723%(3$"(9#,"('"#$%&'"K'(:%<=$8( %A(;&%%672>(A%&( g/))(G%?/`%X%5(20A%(5/6'67*%%

><0V()1%Q%^(6/?-%89#!%

><0V()1%Q%^(6/?-%89#!%

=<3)'/3%G(3P%FM%><0V()1%Q%^(6/?-%89#9E% J<)/?%I'I6f1%G<61%1(%D<1/%G'1A%?D<))% L/D<)/?%Q%D(3/%/77?%L3(D%)<37/% L/D<)/?%?23H'H/I%F3((I'67*% W<6%.((P-%:VM2F<-%h)'i/-%/1%<)*%899,%

8% !"#"#$%

I%0(7'(#('"#$%&'"(;&%%6(:%<=$(6"'7>2"6(3%(#76( I%0(6%"'('7J"(#L"=3(&":&%6<=-."('<=="''( "9;&C%(>&%03$(*('<&.7.#,8( 72(3$"(M72"6(!"#$%&'"8( >3'(3%1(%'602F

4/

Q%:7='(3%(&".7"0(*(<26"&'3#26( ( N9;&C%'(*(O<."27,"'P #*! :'<73'5/B?A%/DF3M(% % A[5E""GGG*<3P'H/*(37")/'5/B?A% a*! :'<73

a% !"#"#$%

!","=3"6(+"A"&"2="'(

1.! Goncalves IB, Ahnesjo I, & Kvarnemo C. 2011. The relationship between body size and size in . J Biol. 78:1847–1854. 2.! Goncalves IB, Ahnesio I, & Kvarnemo C. 2016. Evolutionary ecology of brooding structures: embryo survival and growth do not improve with a pouch. Early View doi: 10.1002/ece3.2139 3.! Jones AG, Avise JC. 2001 systems and in male-pregnant pipefishes and insights from microsatellite-based studies of maternity. Amer Genetic Assoc. 92:150–158. 4.! Jones AG, Walker D, & Avise JC. 2001. Genetic evidence for extreme polyandry and extraordinary -role reversal in a pipefish. Proc R Soc Lond B 268:2531-2535. 5.! Kvarnemo C, Mobley KB, Partridge C, et al. 2011. Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish typhle. J Fish Biol. 78:1725–1737. 6.! Lin Q, Li G, Qin G, et al. 2012. The dynamics of reproductive rate, offspring survivorship and growth in the lined , Hippocampus erectus Perry, 1810. Biology Open 1:391– 396. 7.! McCoy EE, Jones AG, & Avise JC. 2001. The genetic and tests for cuckoldry in a pipefish species in which males fertilize and brood offspring externally. Mol Ecol. 10:1793 –1800. 8.! Mobley KB, Kvarnemo C, Ahnesjö I, et al. 2011. The effect of maternal body size on embryo survivorship in the broods of pregnant male pipefish. Behav Ecol Sociobiol. 65:1169– 1177. 9.! Paczolt KA, & Jones AG. 2010. Post-copulatory sexual selection and sexual conflict in the of . Nature 464:401-404. 10.! Paczolt KA, & Jones AG. 2015. The effects of food limitation on life history tradeoffs in pregnant male . PLoS ONE 10(5):e0124147. 11.! Paczolt KA, W. Martin WE, Ratterman NL, & Jones AG. 2016. A low rate of multiple maternity for pregnant male Syngnathus fuscus. Journal of Fish Biology 88:1614–1619. 12.! Ripley JL & Foran CM. 2006. Differential parental nutrient allocation in two congeneric pipefish species (: Syngnathus spp.). J Exp Biol 209:1112-1121. 13.! Ripley JL & Foran CM. 2009. Direct evidence for embryonic uptake of paternally-derived nutrients in two pipefishes (Syngnathidae: Syngnathus spp.). J Comp Physiol B 179:325– 333. 14.! Rosenqvist G, & Berglund A. 2011. Sexual signals and mating patterns in Syngnathidae. J Fish Biol. 78:1647–1661. 15.! Sagebakken G, Ahnesjo I, Mobley KB, et al. 2010. Brooding fathers, not siblings, take up nutrients from embryos. Proc R Soc B 277:971–977. 16.! Sanchez-Camara J, Booth DJ, & Turon X. 2005. Reproductive cycle and growth of taeniolatus. J Fish Biol. 67(1):133-148. 17.! Scobell SK, & MacKenzie DS. 2011. Reproductive endocrinology of Syngnathidae. J Fish Biol. 78:1662–1680. 18.! Sogabe A, & Ahnesjo I. 2011. The ovarian structure and mode of egg production in two polygamous pipefishes: a link to mating pattern. J Fish Biol. 78:1833–1846. 19.! Sogabe A, Matsumoto K, Ohashi M. et al. 2008. A monogamous pipefish has the same type of ovary as observed in monogamous seahorses Biol Lett. 4:362–365. 20.! Sommer S, Whittington CM, & Wilson AB. 2012. Standardised classification of pre-release development in male-brooding pipefish, seahorses, and seadragons (Family Syngnathidae). BMC Developmental Biology 12:39 http://www.biomedcentral.com/1471-213X/12/39 21.! Stolting KN, & Wilson AB. 2007. Male pregnancy in seahorses and pipefish: beyond the mammalian model. BioEssays 29:884–896. 22.! Teske PR, Hamilton H, Matthee CA, & Barker NP. 2007. Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage. BMC Evolutionary Biology 7:138 23.! Teske PR, Beheregaray LB. 2009. Evolution of seahorses' upright posture was linked to Oligocene expansion of seagrass . Biol. Lett. 5:521-523. 24.! Van Look KJW, Dzyuba B, Cliffe A, et al.. 2007. Dimorphic sperm and the unlikely route to fertilisation in the yellow seahorse. J Exp Biol. 210:432-437. 25.! Vincent ACJ, Foster SJ, & Koldewey HJ. 2011. Conservation and management of seahorses and other Syngnathidae. J Fish Biol. 78:1681–1724. 26.! Wilson AB, Ahnesjo I, Vincent ACJ, & Meyer A. 2003. The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (Family Syngnathidae). Evolution 57(6):1374–1386. 27.! Whittington CM, Griffith OW, Qi W, et al. 2015. Seahorse brood pouch transcriptome reveals common genes associated with vertebrate pregnancy. Mol Biol Evol. 32(12):3114–3131. 28.! Wilson AB, & Orr JW. 2011. The evolutionary origins of Syngnathidae: pipefishes and seahorses. J Fish Biol. 78(6):1603–1623.

+%