US 2009/0286542 A1 ROBERTS Et Al

Total Page:16

File Type:pdf, Size:1020Kb

US 2009/0286542 A1 ROBERTS Et Al US 20090286542A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0286542 A1 ROBERTS et al. (43) Pub. Date: Nov. 19, 2009 (54) METHOD AND APPARATUS FOR Publication Classification TRANSTONING FROMA FIRST RAT TO A (51) Int. Cl. SECOND RAT H04.736/00 (2009.01) (75) Inventors: Gideon ROBERTS, Surrey (GB); H04M I/00 (2006.01) Sukhdev SAINI, Surrey (GB) (52) U.S. Cl. ...................................... 455/436: 455/552.1 Correspondence Address: CONLEY ROSE, PC. 5601 GRANITE PARKWAY, SUITE 750 (57) ABSTRACT PLANO, TX 75024 (US) A method, in a wireless communications device having a first (73) Assignee: RESEARCH IN MOTION protocol stack for use with a first radio access technology and LIMITED, Waterloo (CA) a second protocol stack for use with a second radio access technology, the method for transitioning from a first radio (21) Appl. No.: 12/463,124 access technology to a second radio access technology, the method comprising: maintaining a list of available commu (22) Filed: May 8, 2009 nication cells associated with the second radio access tech nology, and transferring information associated with more Related U.S. Application Data than one available communication cell associated with the (60) Provisional application No. 61/052,085, filed on May second radio access technology from the first protocol stack 9, 2008. to the second protocol stack. 2O1 Start 2O2 Maintain List of available UMTS cells 2O3 Identify transition from GPRS to UMTS required 2O4. Transfer List of available UMTS cells from GPRS protocol stack to UMTS protocol stack Attempt to connect to a 2O5 first listed available UMTS Cell Attempt to connect 2O7 Attempt to further listed Successful? available UMTS cell END 208 Patent Application Publication Nov. 19, 2009 Sheet 1 of 4 US 2009/0286542 A1 112 110 Fig. 1 Patent Application Publication Nov. 19, 2009 Sheet 2 of 4 US 2009/0286542 A1 Maintain List of available UMTS cells 2O3 ldentify transition from GPRS to UMTS required 204 Transfer List of available UMTS cells from GPRS protocol stack to UMTS protocol stack Attempt to connect to a 205 first listed available UMTS Cell Attempt to connect 2O7 Attempt to further listed Successful? available UMTS Cell Fig. 2 Patent Application Publication Nov. 19, 2009 Sheet 3 of 4 US 2009/0286542 A1 Star" 302 Maintain List of available GPRS Celts 303 identify transition from UMTS to GPRS required 304 Transfer List of available GPRS Cells from UMTS protocol stack to GPRS protocol stack Attempt to connect to a 305 first listed available GPRS cell 306 Attempt to connect 307 Attempt to further listed Successful? available GPRS Cell 308 END Fig. 3 Patent Application Publication Nov. 19, 2009 Sheet 4 of 4 US 2009/0286542 A1 Og6||IOq[B?IÐS -OJO?W JOSS93OJd y'61-I US 2009/0286542 A1 Nov. 19, 2009 METHOD AND APPARATUS FOR 0008 FIG. 1 is a schematic diagram showing an overview TRANSTONING FROMA FIRST RAT TO A of a network and a UE device; SECOND RAT 0009 FIG. 2 is a flow diagram showing, at a high level, a process performed by the UE during an inter-RAT cell rese CROSS-REFERENCE TO RELATED lection as described herein; APPLICATIONS 0010 FIG. 3 is a flow diagram showing, at a high level, a 0001. The present application claims priority to U.S. Pro process performed by the UE during an alternative inter-RAT visional Patent Application No. 61/052,085, filed May 9, cell reselection; and 2008, by Gideon Roberts, et al, entitled “Method and Appa 0011 FIG. 4 is a block diagram illustrating a mobile ratus for Transitioning From a First RAT to a Second RAT device, which can act as a UE in accordance with the (31496-US-PRV 4214-08000), which is incorporated by approach described herein. reference herein as if reproduced in its entirety. DETAILED DESCRIPTION OF THE DRAWINGS TECHNICAL FIELD 0002 This application relates to telecommunication sys 0012 Consider a wireless mobile device, generally tems in general, having for example application in UMTS referred to as user equipment (UE), which complies with the (Universal Mobile Telecommunications System) and in par 3GPP specifications for the UMTS protocol. The 3GPP ticular relates to a method and apparatus for transitioning 25.304 specification, V 7.1.0, incorporated herein by refer from a first Radio Access Technology (RAT) to a second ence and referred to herein as the 25.304 specification, Radio Access Technology (RAT). addresses the subject of User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected BACKGROUND mode. (0013 Section 5.2 of the 25.304 specification defines cell 0003. In a typical cellular radio system, mobile user equip selection and reselection in idle mode. This applies to UES ment (UE) communicates via a radio access radio network that support at least a UMTS (3G) network. Different types of (RAN) to one or more core networks. User equipment (UE) measurements are used in different RATs and modes for cell comprises various types of equipment such as mobile tele selection and reselection. The performance requirements for phones (also known as cellular or cell phones), laptops with the measurements are specified in 3GPP TS 25.133 “Require wireless communication capability, personal digital assis ments for Support of Radio Resource Management (FDD) tants (PDAs) etc. These may be portable, hand held, pocket and 3GPP TS 25.123 “Requirements for Support of Radio sized, installed in a vehicle etc and communicate Voice and/or Resource Management (TDD), both incorporated herein by data signals with the radio access network. reference. The non-access stratum can control the RAT(s) in 0004. In the following, reference will be made to UMTS which the cell selection should be performed, for instance by and to particular standards. However it should be understood indicating RAT(s) associated with the selected Public Land that this disclosure is not intended to be limited to any par Mobile Network (PLMN), and by maintaining a list of for ticular mobile telecommunications system or standard. bidden registration area(s) and a list of equivalent PLMNs. 0005. The radio access network covers a geographical area The UE selects a suitable cell and the radio access mode based divided into a plurality of cell areas. Each cell area is served on idle mode measurements and cell selection criteria. by at least one base station, which in UMTS may be referred 0014. In order to speed up the cell selection process, stored to as a Node B. Each cell is identified by a unique identifier information for several RATs may be available in the UE. which is broadcast in the cell. The base stations communicate When camped on a cell, the UE shall regularly search for a at radio frequencies over an air interface with the UEs within better cell according to the cell reselection criteria. If a better range of the base station. Several base stations may be con cell is found, that cell is selected. The change of cell may nected to a radio network controller (RNC) which controls imply a change of RAT. The non-access stratum is informed various activities of the base stations. The radio network if the cell selection and reselection results in changes in the controllers are typically connected to a core network. received system information. For normal service, the UE has 0006 UMTS is a third generation public land mobile tele to camp on a suitable cell, tune to that cell's control channel(s) communication system. Various standardization bodies are so that the UE can receive system information from the known to publish and set standards for UMTS, each in their PLMN. respective areas of competence. For instance, the 3GPP (0015 Section 5.2.5.1 of the 25.304 specification defines (Third Generation Partnership Project) has been known to the UE activity in a camped normally state for the case of publish and set standards for GSM (Global System for connection to a UMTS cell. When camped normally, the UE Mobile Communications) based UMTS, and the 3GPP2 performs necessary measurements for the cell reselection (Third Generation Partnership Project 2) has been known to evaluation procedure. The UE also executes the cell reselec publish and set standards for CDMA (Code Division Multiple tion evaluation process when appropriately triggered. The Access) based UMTS. Within the scope of a particular stan cell reselection evaluation process may be triggered by a UE dardization body, specific partners publish and set standards internal trigger or when information on the broadcast control in their respective areas. channel (BCCH) used for the cell reselection evaluation pro cedure has been modified. BRIEF DESCRIPTION OF THE DRAWINGS 0016. Problems with inter-RAT cell reselection in a UE 0007 Embodiments will now be described, by way of have been identified, particularly in the case of an inter-RAT example only, with reference to the attached drawings, in cell reselection from a 2GRAT (such as GSM or GPRS) to a which: 3GRAT (such as UMTS). There are thus proposed strategies US 2009/0286542 A1 Nov. 19, 2009 for a method and apparatus for transitioning from a first RAT GPRS protocol stack to the UMTS protocol stack. At 205 the to a second RAT. A number of such strategies are detailed UE attempts to connect to a first listed available UMTS cell. below. At 206 a determination is made as to whether the attempt was 0017. Other aspects and features of the proposed strategy successful. If the attempt was not successful, then the UE will become apparent to those ordinarily skilled in the art attempts to connect to a further available UMTS cell as listed upon review of the following description of specific embodi in the list transferred from the GPRS protocol stack to the ments of a method and apparatus for transitioning from a first UMTS protocol stack.
Recommended publications
  • Access to Locked Functions
    (19) TZZ 45__¥9AT (11) EP 2 451 139 A9 (12) CORRECTED EUROPEAN PATENT APPLICATION (15) Correction information: (51) Int Cl.: Corrected version no 1 (W1 A1) H04M 1/67 (2006.01) Corrections, see Description Paragraph(s) 16, 20, 22, 31 (48) Corrigendum issued on: 13.02.2013 Bulletin 2013/07 (43) Date of publication: 09.05.2012 Bulletin 2012/19 (21) Application number: 10189894.8 (22) Date of filing: 03.11.2010 (84) Designated Contracting States: (72) Inventor: Hymel, James Allen AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Waterloo Ontario N2L 5Z5 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Roberts, Gwilym Vaughan et al Designated Extension States: Kilburn & Strode LLP BA ME 20 Red Lion Street London WC1R 4PJ (GB) (71) Applicant: Research In Motion Limited Waterloo, ON N2L 3W8 (CA) Remarks: Amended claims in accordance with Rule 137(2) EPC. (54) Access to locked functions (57) A mobile communications device can have a locked mode in which the mobile communications device is protected against unauthorized use. A mobile commu- nications device includes device applications implement- ed by a software program or firmware program that en- ables an application to be temporarily operable or oper- able under certain conditions when the mobile commu- nications device is locked. Device applications can in- clude a camera enabled for image data acquisition and a microphone or an audio recorder or a microphone and an audio recorder enabled for audio data acquisition.
    [Show full text]
  • A Survey of Mobile Data Networks
    A SURVEY OF MOBILE DATA NETWORKS APOSTOLIS K. SALKINTZIS THE UNIVERSITY OF BRITISH COLUMBIA ABSTRACT The proliferation and development of cellular voice systems over the past several years has exposed the capabilities and the effectiveness of wireless communications and, thus, has paved the way for wide-area wireless data applications as well. The demand for such applications is currently experiencing a significant increase and, therefore, there is a strong call for advanced and efficient mobile data technologies. This article deals with these mobile data technologies and aims to exhibit their potential. It provides a thorough survey of the most important mobile packet data services and technologies, including MOBITEX, CDPD, ARDIS, and the emerging GPRS. For each technology, the article outlines its main technical characteristics, discusses its architectural aspects, and explains the medium access protocol, the services provided, and the mobile routing scheme. istorically, wireless data communications was princi- and have access to external data, wireless data technology pally the domain of large companies with special- plays a significant part because it can offer ubiquitous con- ized needs; for example, large organizations that nectivity, that is, connectivity at any place, any time. For this needed to stay in touch with their mobile sales reason, wireless data technology can be of real value to the Hforce, or delivery services that needed to keep track of their business world since computer users become more productive vehicles and packages. However, this situation is steadily when they exploit the benefits of connectivity. The explosive changing and wireless data communications is becoming as growth of local area network (LAN) installations over the commonplace as its wired counterpart.
    [Show full text]
  • Michael Steer
    Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.
    [Show full text]
  • Smart Energy Network
    Smart TheThe FutureFuture ofof….…. Smart Energy Network Alliance presentation from Energy Motorola, OZZ & NERTEC For Union Gas UtilityUtility DataData July 12, 2004 Connectivity Connectivity Network FromFrom OZZOZZ EnergyEnergy SolutionsSolutions Inc.Inc. OZZ Corporation Ontario Energy Board Smart Meter Implementation Initiative September 17, 2004 Open System Platform z Open Infrastructure Standards – ANSI meter communications – IEEE communications – Internet – e.g. W3C – Data Exchange – e.g. SQL, EDI – Application – e.g. Java z Shared Use Networks – Published protocols – Multi-source of connectivity – Multiple application uses z Information Exchange SMI Proposition z Smart Metering Infrastructure is Not Meter Reading – Smart Point-of-Service Device z Cost and Quality – Integral Part of the Distribution Grid – Opportunity to serve the consumer Smart Energy Value Ontario – Responsive Distribution Infrastructure: SmartGrid Integrated networks Unified Infrastructure using intelligent device zSmartMeters Infrastructure automation zSmartControls –SmartPipes –SmartWires –SmartAssets SmartGrid Integrated demand Smart Solutions Solutions response, efficiency & zCustomer participation reliability zPeak response zReliability response Alliance Difference 1. ECONOMIC FLEXIBILITY 2. RISK MITIGATION z Shared Infrastructure z Smart Network Solutions – Mobile asset utilization Solutions – Wireless – Fixed data applications z For the North American grid – Mobile voice & data applications Systems – Wired z For addressable applications z Scalable Solutions
    [Show full text]
  • Boomer-III Mobitex OEM Modem
    Boomer-III Mobitex OEM Modem BM3-900M – Mobitex 900MHz BM3-800M – Mobitex 800MHz BM3-400ME – Mobitex 400MHz BM3-400MU – Mobitex 400MHz Th e Wavenet family of Boomer-III Mobitex modems are high-performance wireless transceivers developed specifi cally for integration by original equipment manufacturers (OEM). Th is wireless module can be incorporated into various vertical solutions ranging from Business Benefi ts handheld terminals (HHT) for public safety, High Reliability Small Compact Design • Capable of operating 24-hours a day, 7-days a week (24/7). transport and logistics, to machine-to-machine • Rugged small form factor suitable for handheld devices or machines. (M2M) applications for meter reading, vending • Unique LED indicator window (TX, RX PWR) for visual diagnostic feedback. machines and point-of-sale. Connectivity Plus • High sensitivity receiver for connectivity in-building and fringe areas. Th e Boomer-III family off er integrators • High effi ciency transmitter. Effi cient Power Management superior performance in critical areas of • Advanced power management for long operating life. reliability, receiver sensitivity, noise immunity, • Compatibility with 3.6V lithium battery technology. power effi ciency and simplicity of integration. Flexible Architecture • On-board Application Software capable to allow product customisation. Th e On-Board Application (OBA) capability • Eliminate external componentry to reduce complexity and system cost. • Comprehensive Developer Support including SDK and test hardware. allows you to run your wireless application Future-Proof Your Design directly on the modem’s internal processor • Network fl exibility through family range of interchangeable modules. eliminating an external processor, memory • Th e BM3 family includes multi-band DataTAC, GPRS, CDMA and 3G networks.
    [Show full text]
  • Mobile Computing: the Enetwork Wireless Solution Juan R
    Mobile Computing: The eNetwork Wireless Solution Juan R. Rodriguez, Werner Schollenberger, Muchsin Anzib, Bhaktianto Widyarso International Technical Support Organization http://www.redbooks.ibm.com SG24-5299-00 International Technical Support Organization SG24-5299-00 Mobile Computing: The eNetwork Wireless Solution March 1999 Take Note! Before using this information and the product it supports, be sure to read the general information in Appendix B, “Special Notices” on page 243. First Edition (March 1999) This edition applies to Version 4.1.2 of IBM eNetwork Wireless Gateway for use with the AIX Operating System, Version 4.1.3 of IBM eNetwork Emulator Express for Windows and AIX, and Version 2.1.1 of IBM eNetwork Web Express for Windows and AIX. Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. HZ8 Building 678 P.O. Box 12195 Research Triangle Park, NC 27709-2195 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 1999. All rights reserved Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Contents Figures . vii Tables . xi Preface . xiii The Team That Wrote This Redbook . xiii Comments Welcome . xiv Part 1. Introduction . .1 Chapter 1. Introduction. .3 1.1 eNetwork Wireless Gateway and Client. .4 1.2 eNetwork Emulator Express . .5 1.3 eNetwork Web Express. .6 1.4 Putting It All Together .
    [Show full text]
  • Wireless Data Networks by Kostas Pentikousis, VTT
    Wireless Data Networks by Kostas Pentikousis, VTT ost IPJ readers are familiar with Wireless Local-Area Net- works (WLANs; see, for example, IPJ Volume 5, No. 1). M Some may even be familiar with recent developments in Wireless Metropolitan-Area Networks (WMANs), such as WiMAX. Although nonproprietary WMAN technologies are still in the standard- ization phase, the IEEE 802.11 family of protocols has reached maturity and rendered inexpensive (and often free) WLAN access increasingly popular. Both WLANs and WMANs provide high-speed connectivity (in the order of tens of Mbps), but user mobility is restricted. In fact, it is probably more appropriate to talk about “portability” rather than “mobility”[1] when referring to WLANs and WMANs. Wireless wide-area networks (WWANs), on the other hand, allow full user mobility but at data rates typically in the order of tens of kbps. This will change to some extent when third-generation (3G) cellular net- works are fully deployed. Still, 3G deployment is slower than originally anticipated, a development often attributed to the combination of high spectrum license costs, the recent economic downturn, and high equip- ment costs. As a result, both population and geographical coverage tend to be uneven. For example, in Finland, a forerunner in wireless commu- nications, population coverage is well below the 35-percent level, and geographical coverage is even smaller This article introduces several wireless network technologies, perhaps not so widely known, which deserve attention when considering how to provide mobile connectivity to field personnel, introduce machine-to- machine (M2M) communication, or deploy applications that require al- ways-on connectivity.
    [Show full text]
  • 4G Technology
    International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 67-73 © International Research Publication House http://www.irphouse.com 4G Technology Komal Roll No. 211208, M.tech (ECE) E-mail: nit kurukshetra Abstract The ever increasing growth of user demand, the limitations of the third generation of wireless mobile communication systems and the emergence of new mobile broadband technologies on the market have brought researchers and industries to a thorough reflection on the fourth generation. A pragmatic definition of 4G derived from a new user-centric methodology that considers the user as the “cornerstone” of the design. In this way, the fundamental user scenarios that implicitly reveal the key features of 4G, which are then expressed explicitly in a new framework—the “user-centric” system that describes the various level of interdependency among them. This approach consequently contributes to the identification of the real technical step-up of 4G with respect to 3G. It is supposed to provide its customers with better speed and all IP based multimedia services. 4G is all about an integrated, global network that will be able to provide a comprehensive IP solution where voice, data and streamed multimedia can be given to users on an "Anytime, Anywhere" basis. Introduction With the deployment of 3G (3rd generation mobile communication systems) in process, the interest of many research bodies shifts towards future systems beyond 3G. Depending on the time such new systems are planned to be introduced and on the characteristic of improving or replacing existing systems they are called B3G (beyond 3G) or 4G (4th generation mobile communication system).
    [Show full text]
  • Moxa Industrial Wireless Guidebook
    Copyright © 2007 by Moxa Technologies Co., Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission from Moxa Technologies Co., Ltd. Trademark Credits The Moxa Technologies logo is a registered trademark of Moxa Technologies Co., Ltd. All other trademarks mentioned in this document are the property of their respective owners. 1st Printing November 2007 Preface The latest development in industrial device networking is the adoption of wireless technology for industrial applications. This is a very exciting development with potentially enormous benefits for system integrators and end users. However, many users may have questions about the different technologies that are available and how best to adapt them to specific applications. Other users may wish to gain a basic understanding of wireless technologies and applications but not know where to begin. The Industrial Wireless Guidebook was conceived as a helpful introduction to the wireless technologies now being used for industrial applications. Readers can learn basic terminology, the strengths and weaknesses of various wireless technologies, and how to decide on a wireless solution for a specific application. Detailed examples are provided to show how wireless technology is being used in different industries, and can serve as a starting point in developing your own project. Having been in the business for over twenty years, Moxa has been both a witness and participant to many developments in device networking technology. As new standards, interfaces, and protocols appear, we have kept pace and developed products that help integrate different technologies into one system.
    [Show full text]
  • (FM 24-2) Army Electromagnetic Spectrum Management Operations
    FMI 6-02.70 (FM 24-2) Army Electromagnetic Spectrum Management Operations SEPTEMBER 2006 EXPIRES SEPTEMBER 2008 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. Headquarters, Department of the Army *FMI 6-02.70 (FM 24-2) Field Manual Interim Headquarters Department of the Army Washington, DC, 5 September 2006 No. 6-02.70 EXPIRES 5 September 2008 Army Electromagnetic Spectrum Management Operations Contents Page PREFACE .............................................................................................................iii Chapter 1 SPECTRUM MANAGEMENT OVERVIEW ....................................................... 1-1 What is Spectrum Management?....................................................................... 1-1 Enabling the Force ............................................................................................. 1-1 Chapter 2 INTERNATIONAL, NATIONAL, AND HOST NATION SPECTRUM MANAGMENT.................................................................................................... 2-1 International Spectrum Management ................................................................. 2-1 National Spectrum Management........................................................................ 2-2 The Federal Communications Commission ....................................................... 2-4 Host Nation Spectrum Management .................................................................. 2-5 Chapter 3 DEPARTMENT OF DEFENSE SPECTRUM MANAGEMENT.......................... 3-1 Overview............................................................................................................
    [Show full text]
  • COV ITRM Glossary)
    Commonwealth of Virginia Information Technology Resource Management Glossary (COV ITRM Glossary) Version 1.0, January 15, 2010 Virginia Information Technologies Agency COV ITRM Glossary January 15, 2010 v 1.0 ii COV ITRM Glossary January 15, 2010 v 1.0 Table of Contents COV ITRM Glossary Updating..................................................................................................... iv Introduction..................................................................................................................................... 1 Non-alpha........................................................................................................................................ 2 A...................................................................................................................................................... 3 B.................................................................................................................................................... 10 C.................................................................................................................................................... 15 D.................................................................................................................................................... 25 E.................................................................................................................................................... 30 F ...................................................................................................................................................
    [Show full text]
  • Network Architecture Report
    Network Architecture Report: “A Networking Framework for Delivering Business Solutions” Version 1.0, May 2001 Prepared for: The Council on Technology Services Commonwealth of Virginia By: The COTS Enterprise Architecture Workgroup, Network Domain Team Network Architecture Version 1.0 Revision: 5-18-01 Network Domain Team Members John Eagle, Co-Chair City of Hampton, Co-Chair Bob Pontius, Co-Chair Virginia Employment Commission, Ric Anderson Department of Information Technology Bethann Canada Department of Education Jay Epperson Department of Education Karen Hardwick Department of Corrections Gary Post City of Alexandria Bobby Wattlington Department of Motor Vehicles Diane Wresinski Department of Technology Planning (Domain Team Staff) Paul Lubic Department of Technology Planning (EA Manager) Brian Mason Department of Technology Planning (Consultant) COTS Enterprise Architecture Workgroup David Molchany, Co-Chair Fairfax County, Local Government Representation Murali Rao, Co-Chair Department of Transportation, Secretariat of Transportation Representation Tim Bass Virginia Retirement System, Independent Agency Representative Bethann Canada Department of Education, Secretariat of Education Representative Troy DeLung, Department of Environmental Quality, Secretariat of Natural Resources Representative Linda Foster Department of Taxation, Secretariat of Finance Representative Bob Haugh Department of Corrections, Secretariat of Public Safety & Large Agency Representative Randy Horton Department of Rehabilitative Services, Secretariat of Health
    [Show full text]