Access to Locked Functions

Total Page:16

File Type:pdf, Size:1020Kb

Access to Locked Functions (19) TZZ 45__¥9AT (11) EP 2 451 139 A9 (12) CORRECTED EUROPEAN PATENT APPLICATION (15) Correction information: (51) Int Cl.: Corrected version no 1 (W1 A1) H04M 1/67 (2006.01) Corrections, see Description Paragraph(s) 16, 20, 22, 31 (48) Corrigendum issued on: 13.02.2013 Bulletin 2013/07 (43) Date of publication: 09.05.2012 Bulletin 2012/19 (21) Application number: 10189894.8 (22) Date of filing: 03.11.2010 (84) Designated Contracting States: (72) Inventor: Hymel, James Allen AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Waterloo Ontario N2L 5Z5 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Roberts, Gwilym Vaughan et al Designated Extension States: Kilburn & Strode LLP BA ME 20 Red Lion Street London WC1R 4PJ (GB) (71) Applicant: Research In Motion Limited Waterloo, ON N2L 3W8 (CA) Remarks: Amended claims in accordance with Rule 137(2) EPC. (54) Access to locked functions (57) A mobile communications device can have a locked mode in which the mobile communications device is protected against unauthorized use. A mobile commu- nications device includes device applications implement- ed by a software program or firmware program that en- ables an application to be temporarily operable or oper- able under certain conditions when the mobile commu- nications device is locked. Device applications can in- clude a camera enabled for image data acquisition and a microphone or an audio recorder or a microphone and an audio recorder enabled for audio data acquisition. Ac- quired image data and audio data can be stored locally to the mobile communications device or stored externally to the mobile communications device. The mobile com- munications device can be configured to operate appli- cations under different conditions. The mobile commu- nications device can be configured to display a message that applications have been operated while the mobile communications device was locked or in a locked mode. EP 2 451 139 A9 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 451 139 A9 2 Description features described as part of one implementation of the technology can be used on another implementation to FIELD OF THE TECHNOLOGY yield a still further implementation. Thus, it is intended that the present technology cover such modifications and [0001] The present disclosure relates generally to mo- 5 variations that come within the scope of the technology. bile communications devices. More specifically, enabling [0013] In order to facilitate an understanding of envi- implementations relate to mobile communications devic- ronments in which example implementations described es having a lock mode that can be bypassed and incor- herein can operate, reference is made to FIG. 1, which porating a camera assembly. The technology provides shows, in block diagram form, a communication system means and methods whereby a camera assembly in a 10 100 in which implementations of the technology can be mobile communicationsdevice may be utilized under cer- applied. The communication system 100 may comprise tain conditions without compromising security of the mo- a number of mobile communications devices103 that bile communications device. The technology extends the may be connected to the remainder of system 100 in any functionality of device applications in a secure manner. of several different ways. Accordingly, several instances In at least one implementation, the technology provides 15 of mobile communications devices 103 are depicted in for the temporary utilization of one or more mobile com- FIG. 1 employing different example ways of connecting munication device applications without the inputting of to system 100. an otherwise required password. The technology can be [0014] These figures are exemplary only, and those customized dynamically on a per device basis. persons skilled in the art will appreciate that additional 20 elements and modifications may be necessary to make BRIEF DESCRIPTION OF THE DRAWINGS the communications device, e.g., 103 operable in partic- ular network environments. While in the illustrated imple- [0002] FIG. 1 illustrates a communication system in- mentations, the communication devices, e.g., 103 may cluding a mobile communications device to which exam- comprise smart phones, in other implementations, the ple implementations of the technology can be applied. 25 communications devices may comprise personal digital [0003] FIG. 2 illustrates a block diagram of a mobile assistants (PDA), tablet computers, laptop computers, communications device. desktop computers, servers, or other communications [0004] Fig. 3 illustrates the steps of an exemplary devices capable of sending and receiving electronic mes- method within the technology. sages. [0005] FIG. 4 illustrates the steps of an exemplary30 [0015] Mobile communications devices 103 are con- method within the ,technology. nected to a wireless network 101 that may comprise one [0006] FIG. 5 illustrates a front view of a mobile com- or more of a Wireless Wide Area Network (WWAN) 102 munications device to which example implementations and a Wireless Local Area Network (WLAN) 104 or other of the technology can be applied. suitable network arrangements. In some implementa- [0007] FIG. 6 illustrates a rear view of a mobile com- 35 tions, the mobile communications devices 103 are con- munications device to which example implementations figured to communicate over both the WWAN102 and of the technology can be applied. WLAN 104, and to roam between these networks. In [0008] Fig. 7 illustrates an implementation of a front some implementations, the wireless network101 may view of a mobile communications device with a display comprise multiple WWANs 102 and WLANs 104. displaying device options. 40 [0016] The WWAN 102 may be implemented as any [0009] FIG. 8 illustrates a first alternative implementa- suitable wireless access network technology. By way of tion of a mobile communications device display display- example, but not limitation, the WWAN 102 may be im- ing alternative display options. plemented as a wireless network that includes a number [0010] FIG.9 illustrates a second alternative imple- of transceiver base stations 108 where each of the base mentation of a mobile communications device display 45 stations 108 provides wireless Radio Frequency (RF) displaying alternative display options. coverage to a corresponding area or cell. The WWAN [0011] FIG. 10 illustrates a mobile communications de- 102 is typically operated by a mobile network service vice display displaying an exemplary notification within provider that provides subscription packages to users of the technology. the mobile communications devices 103. In some imple- 50 mentations, the WWAN 102 conforms to one or more of DETAILED DESCRIPTION the following wireless network types: Mobitex Radio Net- work, DataTAC, GSM (Global System for Mobile Com- [0012] Reference will now be made in detail to imple- munication), GPRS (General Packet Radio System), TD- mentations of the technology. Each example is provided MA (Time Division Multiple Access), CDMA (Code Divi- by way of explanation of the technology only, not as a 55 sion Multiple Access), CDPD (Cellular Digital Packet Da- limitation of the technology. It will be apparent to those ta), iDEN (integrated Digital Enhanced Network), EvDO skilled in the art that various modifications and variations (Evolution-Data Optimized) CDMA2000, EDGE (En- can be made in the present technology. For instance, hanced Data rates for GSM Evolution), UMTS (Universal 2 3 EP 2 451 139 A9 4 Mobile Telecommunication Systems), HSPDA (High- the access point 114 is part of an enterprise WLAN 104 Speed Downlink Packet Access), IEEE 802.16e (also re- in which the wireless connector system 120 resides), or ferred to as Worldwide Interoperability for Microwave Ac- indirectly, as indicated by the dashed line in FIG. 1, via cess or "WiMAX"), or various other networks. Although the transport facilities 112 if the access point 114 is a WWAN 102 is described as a "Wide- Area" network, that 5 personal Wi-Fi network or Wi-Fi hotspot (in which case term is intended herein also to incorporate wireless Met- a mechanism for securely connecting to the wireless con- ropolitan Area Networks (WMAN) and other similar tech- nector system 120, such as a virtual private network nologies for providing coordinated service wirelessly (VPN), may be used). The AP interface116 provides over an area larger than that covered by typical WLANS. translation and routing services between the access [0017] The WWAN 102 may further comprise a wire- 10 points 114 and the wireless connector system 120 to fa- less network gateway 110 that connects the mobile com- cilitatecommunication, directlyor indirectly, withthe wire- munications devices 103 to transport facilities 112, and less connector system 120. through the transport facilities 112 to a wireless connec- [0021] The wireless connector system 120 may be im- tor system 120. Transport facilities may include one or plemented as one or more servers, and is typically locat- more private networks or lines, the Internet, a virtual pri- 15 ed behind a firewall 113. The wireless connector system vate network, or any other suitable network. The wireless 120 manages communications, including email, Hyper- connector system 120 may be operated, for example, by text Transfer Protocol (HTTP), and HTTP Secure (HT- an organization or enterprise such as a corporation, uni- TPS) communications to and from a set of managed mo- versity, or governmental department, which allows ac- bile communications devices 103. The wireless connec- cess to a network 124 such as an internal or enterprise 20 tor system 120 also provides administrative control and network (e.g., an intranet), and its resources, or the wire- management capabilities over users and mobile commu- less connector system 120 may be operated by a mobile nications devices 103 that might connect to the wireless network provider. In some implementations, the network connector system 120. 124 may be realized using the Internet rather than, or in [0022] The wireless connector system 120 allows the addition to, an internal or enterprise network.
Recommended publications
  • A Survey of Mobile Data Networks
    A SURVEY OF MOBILE DATA NETWORKS APOSTOLIS K. SALKINTZIS THE UNIVERSITY OF BRITISH COLUMBIA ABSTRACT The proliferation and development of cellular voice systems over the past several years has exposed the capabilities and the effectiveness of wireless communications and, thus, has paved the way for wide-area wireless data applications as well. The demand for such applications is currently experiencing a significant increase and, therefore, there is a strong call for advanced and efficient mobile data technologies. This article deals with these mobile data technologies and aims to exhibit their potential. It provides a thorough survey of the most important mobile packet data services and technologies, including MOBITEX, CDPD, ARDIS, and the emerging GPRS. For each technology, the article outlines its main technical characteristics, discusses its architectural aspects, and explains the medium access protocol, the services provided, and the mobile routing scheme. istorically, wireless data communications was princi- and have access to external data, wireless data technology pally the domain of large companies with special- plays a significant part because it can offer ubiquitous con- ized needs; for example, large organizations that nectivity, that is, connectivity at any place, any time. For this needed to stay in touch with their mobile sales reason, wireless data technology can be of real value to the Hforce, or delivery services that needed to keep track of their business world since computer users become more productive vehicles and packages. However, this situation is steadily when they exploit the benefits of connectivity. The explosive changing and wireless data communications is becoming as growth of local area network (LAN) installations over the commonplace as its wired counterpart.
    [Show full text]
  • Michael Steer
    Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.
    [Show full text]
  • Smart Energy Network
    Smart TheThe FutureFuture ofof….…. Smart Energy Network Alliance presentation from Energy Motorola, OZZ & NERTEC For Union Gas UtilityUtility DataData July 12, 2004 Connectivity Connectivity Network FromFrom OZZOZZ EnergyEnergy SolutionsSolutions Inc.Inc. OZZ Corporation Ontario Energy Board Smart Meter Implementation Initiative September 17, 2004 Open System Platform z Open Infrastructure Standards – ANSI meter communications – IEEE communications – Internet – e.g. W3C – Data Exchange – e.g. SQL, EDI – Application – e.g. Java z Shared Use Networks – Published protocols – Multi-source of connectivity – Multiple application uses z Information Exchange SMI Proposition z Smart Metering Infrastructure is Not Meter Reading – Smart Point-of-Service Device z Cost and Quality – Integral Part of the Distribution Grid – Opportunity to serve the consumer Smart Energy Value Ontario – Responsive Distribution Infrastructure: SmartGrid Integrated networks Unified Infrastructure using intelligent device zSmartMeters Infrastructure automation zSmartControls –SmartPipes –SmartWires –SmartAssets SmartGrid Integrated demand Smart Solutions Solutions response, efficiency & zCustomer participation reliability zPeak response zReliability response Alliance Difference 1. ECONOMIC FLEXIBILITY 2. RISK MITIGATION z Shared Infrastructure z Smart Network Solutions – Mobile asset utilization Solutions – Wireless – Fixed data applications z For the North American grid – Mobile voice & data applications Systems – Wired z For addressable applications z Scalable Solutions
    [Show full text]
  • Boomer-III Mobitex OEM Modem
    Boomer-III Mobitex OEM Modem BM3-900M – Mobitex 900MHz BM3-800M – Mobitex 800MHz BM3-400ME – Mobitex 400MHz BM3-400MU – Mobitex 400MHz Th e Wavenet family of Boomer-III Mobitex modems are high-performance wireless transceivers developed specifi cally for integration by original equipment manufacturers (OEM). Th is wireless module can be incorporated into various vertical solutions ranging from Business Benefi ts handheld terminals (HHT) for public safety, High Reliability Small Compact Design • Capable of operating 24-hours a day, 7-days a week (24/7). transport and logistics, to machine-to-machine • Rugged small form factor suitable for handheld devices or machines. (M2M) applications for meter reading, vending • Unique LED indicator window (TX, RX PWR) for visual diagnostic feedback. machines and point-of-sale. Connectivity Plus • High sensitivity receiver for connectivity in-building and fringe areas. Th e Boomer-III family off er integrators • High effi ciency transmitter. Effi cient Power Management superior performance in critical areas of • Advanced power management for long operating life. reliability, receiver sensitivity, noise immunity, • Compatibility with 3.6V lithium battery technology. power effi ciency and simplicity of integration. Flexible Architecture • On-board Application Software capable to allow product customisation. Th e On-Board Application (OBA) capability • Eliminate external componentry to reduce complexity and system cost. • Comprehensive Developer Support including SDK and test hardware. allows you to run your wireless application Future-Proof Your Design directly on the modem’s internal processor • Network fl exibility through family range of interchangeable modules. eliminating an external processor, memory • Th e BM3 family includes multi-band DataTAC, GPRS, CDMA and 3G networks.
    [Show full text]
  • Mobile Computing: the Enetwork Wireless Solution Juan R
    Mobile Computing: The eNetwork Wireless Solution Juan R. Rodriguez, Werner Schollenberger, Muchsin Anzib, Bhaktianto Widyarso International Technical Support Organization http://www.redbooks.ibm.com SG24-5299-00 International Technical Support Organization SG24-5299-00 Mobile Computing: The eNetwork Wireless Solution March 1999 Take Note! Before using this information and the product it supports, be sure to read the general information in Appendix B, “Special Notices” on page 243. First Edition (March 1999) This edition applies to Version 4.1.2 of IBM eNetwork Wireless Gateway for use with the AIX Operating System, Version 4.1.3 of IBM eNetwork Emulator Express for Windows and AIX, and Version 2.1.1 of IBM eNetwork Web Express for Windows and AIX. Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. HZ8 Building 678 P.O. Box 12195 Research Triangle Park, NC 27709-2195 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 1999. All rights reserved Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Contents Figures . vii Tables . xi Preface . xiii The Team That Wrote This Redbook . xiii Comments Welcome . xiv Part 1. Introduction . .1 Chapter 1. Introduction. .3 1.1 eNetwork Wireless Gateway and Client. .4 1.2 eNetwork Emulator Express . .5 1.3 eNetwork Web Express. .6 1.4 Putting It All Together .
    [Show full text]
  • Wireless Data Networks by Kostas Pentikousis, VTT
    Wireless Data Networks by Kostas Pentikousis, VTT ost IPJ readers are familiar with Wireless Local-Area Net- works (WLANs; see, for example, IPJ Volume 5, No. 1). M Some may even be familiar with recent developments in Wireless Metropolitan-Area Networks (WMANs), such as WiMAX. Although nonproprietary WMAN technologies are still in the standard- ization phase, the IEEE 802.11 family of protocols has reached maturity and rendered inexpensive (and often free) WLAN access increasingly popular. Both WLANs and WMANs provide high-speed connectivity (in the order of tens of Mbps), but user mobility is restricted. In fact, it is probably more appropriate to talk about “portability” rather than “mobility”[1] when referring to WLANs and WMANs. Wireless wide-area networks (WWANs), on the other hand, allow full user mobility but at data rates typically in the order of tens of kbps. This will change to some extent when third-generation (3G) cellular net- works are fully deployed. Still, 3G deployment is slower than originally anticipated, a development often attributed to the combination of high spectrum license costs, the recent economic downturn, and high equip- ment costs. As a result, both population and geographical coverage tend to be uneven. For example, in Finland, a forerunner in wireless commu- nications, population coverage is well below the 35-percent level, and geographical coverage is even smaller This article introduces several wireless network technologies, perhaps not so widely known, which deserve attention when considering how to provide mobile connectivity to field personnel, introduce machine-to- machine (M2M) communication, or deploy applications that require al- ways-on connectivity.
    [Show full text]
  • 4G Technology
    International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 67-73 © International Research Publication House http://www.irphouse.com 4G Technology Komal Roll No. 211208, M.tech (ECE) E-mail: nit kurukshetra Abstract The ever increasing growth of user demand, the limitations of the third generation of wireless mobile communication systems and the emergence of new mobile broadband technologies on the market have brought researchers and industries to a thorough reflection on the fourth generation. A pragmatic definition of 4G derived from a new user-centric methodology that considers the user as the “cornerstone” of the design. In this way, the fundamental user scenarios that implicitly reveal the key features of 4G, which are then expressed explicitly in a new framework—the “user-centric” system that describes the various level of interdependency among them. This approach consequently contributes to the identification of the real technical step-up of 4G with respect to 3G. It is supposed to provide its customers with better speed and all IP based multimedia services. 4G is all about an integrated, global network that will be able to provide a comprehensive IP solution where voice, data and streamed multimedia can be given to users on an "Anytime, Anywhere" basis. Introduction With the deployment of 3G (3rd generation mobile communication systems) in process, the interest of many research bodies shifts towards future systems beyond 3G. Depending on the time such new systems are planned to be introduced and on the characteristic of improving or replacing existing systems they are called B3G (beyond 3G) or 4G (4th generation mobile communication system).
    [Show full text]
  • Moxa Industrial Wireless Guidebook
    Copyright © 2007 by Moxa Technologies Co., Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission from Moxa Technologies Co., Ltd. Trademark Credits The Moxa Technologies logo is a registered trademark of Moxa Technologies Co., Ltd. All other trademarks mentioned in this document are the property of their respective owners. 1st Printing November 2007 Preface The latest development in industrial device networking is the adoption of wireless technology for industrial applications. This is a very exciting development with potentially enormous benefits for system integrators and end users. However, many users may have questions about the different technologies that are available and how best to adapt them to specific applications. Other users may wish to gain a basic understanding of wireless technologies and applications but not know where to begin. The Industrial Wireless Guidebook was conceived as a helpful introduction to the wireless technologies now being used for industrial applications. Readers can learn basic terminology, the strengths and weaknesses of various wireless technologies, and how to decide on a wireless solution for a specific application. Detailed examples are provided to show how wireless technology is being used in different industries, and can serve as a starting point in developing your own project. Having been in the business for over twenty years, Moxa has been both a witness and participant to many developments in device networking technology. As new standards, interfaces, and protocols appear, we have kept pace and developed products that help integrate different technologies into one system.
    [Show full text]
  • (FM 24-2) Army Electromagnetic Spectrum Management Operations
    FMI 6-02.70 (FM 24-2) Army Electromagnetic Spectrum Management Operations SEPTEMBER 2006 EXPIRES SEPTEMBER 2008 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. Headquarters, Department of the Army *FMI 6-02.70 (FM 24-2) Field Manual Interim Headquarters Department of the Army Washington, DC, 5 September 2006 No. 6-02.70 EXPIRES 5 September 2008 Army Electromagnetic Spectrum Management Operations Contents Page PREFACE .............................................................................................................iii Chapter 1 SPECTRUM MANAGEMENT OVERVIEW ....................................................... 1-1 What is Spectrum Management?....................................................................... 1-1 Enabling the Force ............................................................................................. 1-1 Chapter 2 INTERNATIONAL, NATIONAL, AND HOST NATION SPECTRUM MANAGMENT.................................................................................................... 2-1 International Spectrum Management ................................................................. 2-1 National Spectrum Management........................................................................ 2-2 The Federal Communications Commission ....................................................... 2-4 Host Nation Spectrum Management .................................................................. 2-5 Chapter 3 DEPARTMENT OF DEFENSE SPECTRUM MANAGEMENT.......................... 3-1 Overview............................................................................................................
    [Show full text]
  • COV ITRM Glossary)
    Commonwealth of Virginia Information Technology Resource Management Glossary (COV ITRM Glossary) Version 1.0, January 15, 2010 Virginia Information Technologies Agency COV ITRM Glossary January 15, 2010 v 1.0 ii COV ITRM Glossary January 15, 2010 v 1.0 Table of Contents COV ITRM Glossary Updating..................................................................................................... iv Introduction..................................................................................................................................... 1 Non-alpha........................................................................................................................................ 2 A...................................................................................................................................................... 3 B.................................................................................................................................................... 10 C.................................................................................................................................................... 15 D.................................................................................................................................................... 25 E.................................................................................................................................................... 30 F ...................................................................................................................................................
    [Show full text]
  • Network Architecture Report
    Network Architecture Report: “A Networking Framework for Delivering Business Solutions” Version 1.0, May 2001 Prepared for: The Council on Technology Services Commonwealth of Virginia By: The COTS Enterprise Architecture Workgroup, Network Domain Team Network Architecture Version 1.0 Revision: 5-18-01 Network Domain Team Members John Eagle, Co-Chair City of Hampton, Co-Chair Bob Pontius, Co-Chair Virginia Employment Commission, Ric Anderson Department of Information Technology Bethann Canada Department of Education Jay Epperson Department of Education Karen Hardwick Department of Corrections Gary Post City of Alexandria Bobby Wattlington Department of Motor Vehicles Diane Wresinski Department of Technology Planning (Domain Team Staff) Paul Lubic Department of Technology Planning (EA Manager) Brian Mason Department of Technology Planning (Consultant) COTS Enterprise Architecture Workgroup David Molchany, Co-Chair Fairfax County, Local Government Representation Murali Rao, Co-Chair Department of Transportation, Secretariat of Transportation Representation Tim Bass Virginia Retirement System, Independent Agency Representative Bethann Canada Department of Education, Secretariat of Education Representative Troy DeLung, Department of Environmental Quality, Secretariat of Natural Resources Representative Linda Foster Department of Taxation, Secretariat of Finance Representative Bob Haugh Department of Corrections, Secretariat of Public Safety & Large Agency Representative Randy Horton Department of Rehabilitative Services, Secretariat of Health
    [Show full text]
  • Methodology for the Assessment of Pmr Systems in Terms of Spectrum Efficiency, Operation and Implementation
    ERC REPORT 52 European Radiocommunications Committee (ERC) within the European Conference of Postal and Telecommunications Administrations (CEPT) METHODOLOGY FOR THE ASSESSMENT OF PMR SYSTEMS IN TERMS OF SPECTRUM EFFICIENCY, OPERATION AND IMPLEMENTATION Bucharest, December 1997 Copyright 1998 the European Conference of Postal and Telecommunications Administrations (CEPT) ERC REPORT 52 METHODOLOGY FOR THE ASSESSMENT OF PMR SYSTEMS IN TERMS OF SPECTRUM EFFICIENCY, OPERATION AND IMPLEMENTATION 1 INTRODUCTION...........................................................1 2 SCOPE OF THE REPORT....................................................1 3 DEFINITIONS, ACRONYMS & TABLE OF SYMBOLS...............................1 3.1 DEFINITIONS ..........................................................1 3.2 ACRONYMS .............................................................2 3.3 TABLE OF SYMBOLS ......................................................4 4 MAIN CHARACTERISTICS OF PMR............................................5 4.1 LIMITING FACTORS ......................................................5 4.2 PLANNING DIFFICULTIES ..................................................5 4.3 VARIETY OF NETWORK TYPES ................................................5 4.4 OPERATIONAL SCENARIOS ..................................................6 5 OPTIMISING RADIO SPECTRUM RESOURCES....................................6 5.1 GENERAL CONSIDERATIONS..................................................6 5.2 NOISE OR COVERAGE LIMITED SYSTEMS .........................................8
    [Show full text]