(12) United States Patent (10) Patent No.: US 8,224.290 B2 Reddy Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,224.290 B2 Reddy Et Al USOO8224290B2 (12) United States Patent (10) Patent No.: US 8,224.290 B2 Reddy et al. (45) Date of Patent: Jul. 17, 2012 (54) APPARATUS AND METHOD OF CIPHERING (56) References Cited IN WIRELESS COMMUNICATIONS USER EQUIPMENT OPERATIVE WITH A U.S. PATENT DOCUMENTS PLURALITY OF RADIO ACCESS NETWORKS 6,643,513 B2 * 1 1/2003 Timonen et al. .............. 455,438 7,065,340 B1* 6/2006 Einola et al. ... ... 455,410 7,233,671 B2* 6/2007 Wu ............. ... 380,270 (75) Inventors: Giri Narayana Reddy, Birmingham 2004/0228491 A1* 11, 2004 Wu ......... ... 380,272 (GB); Andrew Farnsworth, Marlbrook 2007, OO72635 A1* 3, 2007 Zhao et al. .. ... 455,5O2 (GB) 2009/01 19190 A1* 5/2009 Realini ........................... 705/30 OTHER PUBLICATIONS (73) Assignee: Research In Motion Limited, Waterloo (CA) 3GPP TS 25.331 v5.19.0 (Dec. 2006), full specification. * cited by examiner (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 Primary Examiner — Wen Huang U.S.C. 154(b) by 642 days. (74) Attorney, Agent, or Firm — Novak Druce + Quigg LLP (21) Appl. No.: 12/179,728 (57) ABSTRACT A method in a wireless telecommunications device operative (22) Filed: Jul. 25, 2008 with a plurality of radio access networks, the method com prising: when operating with a first radio access network (65) Prior Publication Data reading at least one ciphering variable applicable in the sec ond radio access network (e.g. in UMTS reading the value of US 201O/OO22235A1 Jan. 28, 2010 a variable START from the USIM of the device). When at (51) Int. C. least one ciphering variable applicable in the second radio H04M I/66 (2006.01) access network renders ciphering in the second radio access HO4M I/68 (2006.01) network infeasible without further authentication (e.g. in UMTS when the value of START in USIM is equal to a value (52) U.S. Cl. ..................... 455/410; 455/411; 455/432.1; THRESHOLD), using a substitute value for the ciphering 455/432.2:455/432.3:455/425; 455/552.1 parameter (e.g. START) when establishing a connection with (58) Field of Classification Search .................. 455/410, the second radio access network. 455/411,432.1, 432.2, 432.3, 425,552.1 See application file for complete search history. 12 Claims, 5 Drawing Sheets Start ciphered GSM call on multimode device 200 202 Read START from USIM 204 TART-THRESHOLD 222 Send START Send a substitute 206 value for START 207 giphered and handed over sy all terminateds Write THRESHOLD To START in USIM 208 217 Carry out ciphered 3G call and increment START 218 210 212 220 Write START to USM 216 U.S. Patent Jul. 17, 2012 Sheet 1 of 5 US 8,224.290 B2 S Fig. 1 U.S. Patent Jul. 17, 2012 Sheet 2 of 5 US 8,224.290 B2 Establish call with 102 first radio access network Read ciphering parameter of Second radio access network 106 Would ciphering in second radio access network be feasible with iphering parameter2 108 d Use a Substitute Use ciphering parameter cipheringg parameter 112 110 Fig. 2 U.S. Patent Jul. 17, 2012 Sheet 3 of 5 US 8,224.290 B2 Start ciphered GSM call on multimode device 200 202 Read START from USIM 204 TART=THRESHOLD2 N Y 222 Send a substitute 206 -Send START value for START 207 N Y all terminated? N Write THRESHOLD TO START in USIM Y 208 217 Carry out ciphered 3G call and increment START 218 210 Termi 220 Write START to USIM 214 Fig. 3 216 End U.S. Patent Jul. 17, 2012 Sheet 4 of 5 US 8,224.290 B2 -,-.…--.•?---,=• -…• Layer 1 - Physical Layer Fig. 4 U.S. Patent Jul. 17, 2012 Sheet 5 of 5 US 8,224.290 B2 Ogg]]JOd[BIJÐS ZZSKeIds[GI JOSS000Id 899 099 Z99 US 8,224,290 B2 1. 2 APPARATUS AND METHOD OF CPHERING There are thus proposed strategies for apparatus and a IN WIRELESS COMMUNICATIONS USER method of ciphering in wireless telecommunications devices EQUIPMENT OPERATIVE WITH A operative with a plurality of radio access networks. A number PLURALITY OF RADIO ACCESS NETWORKS of such strategies are detailed below. Other aspects and features of the proposed strategy will BACKGROUND become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments 1. Technical Field of apparatus and methods of ciphering in wireless telecom This application relates to mobile telecommunications sys munications user equipment operative with a plurality of tems in general, having particular application in UMTS (Uni 10 radio access networks. Versal Mobile Telecommunications System) in general, and in particular relates to an apparatus and method of ciphering BRIEF DESCRIPTION OF THE DRAWINGS in wireless telecommunications user equipment operative with a plurality of radio access networks. Embodiments will now be described, by way of example 2. Description of the Related Art 15 only, with reference to the attached drawings, in which: In a typical cellular radio system, a wireless telecommuni FIG. 1 shows an overview of two radio access networks and cation device communicates via one or more radio access a wireless telecommunications device; radio networks (RANs) to one or more core networks. In FIG. 2 is a flow diagram illustrating a first embodiment of UMTS system such devices are typically referred to as User a method applicable to a wireless telecommunications device Equipment (UE) and in GSM such devices are typically operative with a plurality of radio access technologies; referred to as Mobile Stations (MS). Such devices comprise FIG.3 is a flow diagram illustrating a second embodiment various types of equipment Such as mobile telephones (also of a method applicable to a wireless telecommunications known as cellular or cell phones), lap tops with wireless device operative with a plurality of radio access technologies; communication capability, personal digital assistants (PDAS) FIG. 4 is a block diagram illustrating an embodiment of a etc. These may be portable, hand held, pocket sized, installed 25 UMTS protocol stack apparatus provided with a RRC block, in a vehicle etc and communicate Voice and/or data signals in accordance with the present application; with the radio access network. FIG. 5 is a block diagram illustrating a wireless telecom In the following, reference will be made to UMTS, GSM munications device. and to particular standards. However it should be understood The same reference numerals are used in different figures that the invention is not intended to be limited to any particu 30 to denote similar elements. lar mobile telecommunications system. A radio access network covers a geographical area typi DETAILED DESCRIPTION OF THE DRAWINGS cally divided into a plurality of cell areas. Each cell area is served by at least one base station, which in UMTS may be An apparatus and method of ciphering in a wireless tele referred to as a Node B. Each cell is typically identified by a 35 communications device operative with a plurality of radio unique identifier which is broadcast in the cell. The base access networks are described. In the following description, stations communicate at radio frequencies over an air inter for the purposes of explanation, numerous specific details are face with the UEs within range of the base station. Several set forth in order to provide a thorough understanding of the base stations may be connected to a radio network controller present invention. It will be apparent, however, to one skilled (RNC) which controls various activities of the base stations. 40 in the art that the technique may be practised without these The radio network controllers are typically connected to a specific details. In other instances, well-known structures and core network. devices are shown in block diagram form in order to avoid GSM is a so-called second generation public land mobile unnecessarily obscuring the proposed method. telecommunications system. UMTS is a third generation pub The needs identified in the foregoing Background, and lic land mobile telecommunication system. Various standard 45 other needs and objects that will become apparent from the ization bodies are known to publish and set standards for following description, are achieved by, in one aspect, a UMTS, each in their respective areas of competence. For method of ciphering in a wireless telecommunications device instance, the 3GPP (Third Generation Partnership Project) operative with a plurality of radio access networks. In other has been known to publish and set standards for GSM (Global aspects, the invention encompasses apparatus and a com System for Mobile Communications) based UMTS, and the 50 puter-readable medium configured to carry out the foregoing 3GPP2 (Third Generation Partnership Project 2) has been actions. In particular, the method may be implemented in a known to publish and set standards for CDMA (Code Divi mobile telecommunications device, with or without voice sion Multiple Access) based UMTS. Within the scope of a capabilities, or other electronic devices such as handheld or particular standardization body, specific partners publish and portable devices. set standards in their respective areas. 55 FIG. 1 shows an overview of a telecommunications net In telecommunications, typically ciphering is used to work and a multimode wireless telecommunications device reduce the likelihood of unauthorised interception and exami 500. Clearly in practice there may be many such devices nation of the content of data transmitted between the mobile operating with the network but, for the sake of simplicity, device and the network. Signalling protocols are typically FIG. 1 only shows a single wireless telecommunications used to set up ciphering within radio connections and cipher 60 device 500. For the purposes of illustration, FIG.
Recommended publications
  • Access to Locked Functions
    (19) TZZ 45__¥9AT (11) EP 2 451 139 A9 (12) CORRECTED EUROPEAN PATENT APPLICATION (15) Correction information: (51) Int Cl.: Corrected version no 1 (W1 A1) H04M 1/67 (2006.01) Corrections, see Description Paragraph(s) 16, 20, 22, 31 (48) Corrigendum issued on: 13.02.2013 Bulletin 2013/07 (43) Date of publication: 09.05.2012 Bulletin 2012/19 (21) Application number: 10189894.8 (22) Date of filing: 03.11.2010 (84) Designated Contracting States: (72) Inventor: Hymel, James Allen AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Waterloo Ontario N2L 5Z5 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Roberts, Gwilym Vaughan et al Designated Extension States: Kilburn & Strode LLP BA ME 20 Red Lion Street London WC1R 4PJ (GB) (71) Applicant: Research In Motion Limited Waterloo, ON N2L 3W8 (CA) Remarks: Amended claims in accordance with Rule 137(2) EPC. (54) Access to locked functions (57) A mobile communications device can have a locked mode in which the mobile communications device is protected against unauthorized use. A mobile commu- nications device includes device applications implement- ed by a software program or firmware program that en- ables an application to be temporarily operable or oper- able under certain conditions when the mobile commu- nications device is locked. Device applications can in- clude a camera enabled for image data acquisition and a microphone or an audio recorder or a microphone and an audio recorder enabled for audio data acquisition.
    [Show full text]
  • A Survey of Mobile Data Networks
    A SURVEY OF MOBILE DATA NETWORKS APOSTOLIS K. SALKINTZIS THE UNIVERSITY OF BRITISH COLUMBIA ABSTRACT The proliferation and development of cellular voice systems over the past several years has exposed the capabilities and the effectiveness of wireless communications and, thus, has paved the way for wide-area wireless data applications as well. The demand for such applications is currently experiencing a significant increase and, therefore, there is a strong call for advanced and efficient mobile data technologies. This article deals with these mobile data technologies and aims to exhibit their potential. It provides a thorough survey of the most important mobile packet data services and technologies, including MOBITEX, CDPD, ARDIS, and the emerging GPRS. For each technology, the article outlines its main technical characteristics, discusses its architectural aspects, and explains the medium access protocol, the services provided, and the mobile routing scheme. istorically, wireless data communications was princi- and have access to external data, wireless data technology pally the domain of large companies with special- plays a significant part because it can offer ubiquitous con- ized needs; for example, large organizations that nectivity, that is, connectivity at any place, any time. For this needed to stay in touch with their mobile sales reason, wireless data technology can be of real value to the Hforce, or delivery services that needed to keep track of their business world since computer users become more productive vehicles and packages. However, this situation is steadily when they exploit the benefits of connectivity. The explosive changing and wireless data communications is becoming as growth of local area network (LAN) installations over the commonplace as its wired counterpart.
    [Show full text]
  • Michael Steer
    Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.
    [Show full text]
  • Smart Energy Network
    Smart TheThe FutureFuture ofof….…. Smart Energy Network Alliance presentation from Energy Motorola, OZZ & NERTEC For Union Gas UtilityUtility DataData July 12, 2004 Connectivity Connectivity Network FromFrom OZZOZZ EnergyEnergy SolutionsSolutions Inc.Inc. OZZ Corporation Ontario Energy Board Smart Meter Implementation Initiative September 17, 2004 Open System Platform z Open Infrastructure Standards – ANSI meter communications – IEEE communications – Internet – e.g. W3C – Data Exchange – e.g. SQL, EDI – Application – e.g. Java z Shared Use Networks – Published protocols – Multi-source of connectivity – Multiple application uses z Information Exchange SMI Proposition z Smart Metering Infrastructure is Not Meter Reading – Smart Point-of-Service Device z Cost and Quality – Integral Part of the Distribution Grid – Opportunity to serve the consumer Smart Energy Value Ontario – Responsive Distribution Infrastructure: SmartGrid Integrated networks Unified Infrastructure using intelligent device zSmartMeters Infrastructure automation zSmartControls –SmartPipes –SmartWires –SmartAssets SmartGrid Integrated demand Smart Solutions Solutions response, efficiency & zCustomer participation reliability zPeak response zReliability response Alliance Difference 1. ECONOMIC FLEXIBILITY 2. RISK MITIGATION z Shared Infrastructure z Smart Network Solutions – Mobile asset utilization Solutions – Wireless – Fixed data applications z For the North American grid – Mobile voice & data applications Systems – Wired z For addressable applications z Scalable Solutions
    [Show full text]
  • Boomer-III Mobitex OEM Modem
    Boomer-III Mobitex OEM Modem BM3-900M – Mobitex 900MHz BM3-800M – Mobitex 800MHz BM3-400ME – Mobitex 400MHz BM3-400MU – Mobitex 400MHz Th e Wavenet family of Boomer-III Mobitex modems are high-performance wireless transceivers developed specifi cally for integration by original equipment manufacturers (OEM). Th is wireless module can be incorporated into various vertical solutions ranging from Business Benefi ts handheld terminals (HHT) for public safety, High Reliability Small Compact Design • Capable of operating 24-hours a day, 7-days a week (24/7). transport and logistics, to machine-to-machine • Rugged small form factor suitable for handheld devices or machines. (M2M) applications for meter reading, vending • Unique LED indicator window (TX, RX PWR) for visual diagnostic feedback. machines and point-of-sale. Connectivity Plus • High sensitivity receiver for connectivity in-building and fringe areas. Th e Boomer-III family off er integrators • High effi ciency transmitter. Effi cient Power Management superior performance in critical areas of • Advanced power management for long operating life. reliability, receiver sensitivity, noise immunity, • Compatibility with 3.6V lithium battery technology. power effi ciency and simplicity of integration. Flexible Architecture • On-board Application Software capable to allow product customisation. Th e On-Board Application (OBA) capability • Eliminate external componentry to reduce complexity and system cost. • Comprehensive Developer Support including SDK and test hardware. allows you to run your wireless application Future-Proof Your Design directly on the modem’s internal processor • Network fl exibility through family range of interchangeable modules. eliminating an external processor, memory • Th e BM3 family includes multi-band DataTAC, GPRS, CDMA and 3G networks.
    [Show full text]
  • Mobile Computing: the Enetwork Wireless Solution Juan R
    Mobile Computing: The eNetwork Wireless Solution Juan R. Rodriguez, Werner Schollenberger, Muchsin Anzib, Bhaktianto Widyarso International Technical Support Organization http://www.redbooks.ibm.com SG24-5299-00 International Technical Support Organization SG24-5299-00 Mobile Computing: The eNetwork Wireless Solution March 1999 Take Note! Before using this information and the product it supports, be sure to read the general information in Appendix B, “Special Notices” on page 243. First Edition (March 1999) This edition applies to Version 4.1.2 of IBM eNetwork Wireless Gateway for use with the AIX Operating System, Version 4.1.3 of IBM eNetwork Emulator Express for Windows and AIX, and Version 2.1.1 of IBM eNetwork Web Express for Windows and AIX. Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. HZ8 Building 678 P.O. Box 12195 Research Triangle Park, NC 27709-2195 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 1999. All rights reserved Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Contents Figures . vii Tables . xi Preface . xiii The Team That Wrote This Redbook . xiii Comments Welcome . xiv Part 1. Introduction . .1 Chapter 1. Introduction. .3 1.1 eNetwork Wireless Gateway and Client. .4 1.2 eNetwork Emulator Express . .5 1.3 eNetwork Web Express. .6 1.4 Putting It All Together .
    [Show full text]
  • Wireless Data Networks by Kostas Pentikousis, VTT
    Wireless Data Networks by Kostas Pentikousis, VTT ost IPJ readers are familiar with Wireless Local-Area Net- works (WLANs; see, for example, IPJ Volume 5, No. 1). M Some may even be familiar with recent developments in Wireless Metropolitan-Area Networks (WMANs), such as WiMAX. Although nonproprietary WMAN technologies are still in the standard- ization phase, the IEEE 802.11 family of protocols has reached maturity and rendered inexpensive (and often free) WLAN access increasingly popular. Both WLANs and WMANs provide high-speed connectivity (in the order of tens of Mbps), but user mobility is restricted. In fact, it is probably more appropriate to talk about “portability” rather than “mobility”[1] when referring to WLANs and WMANs. Wireless wide-area networks (WWANs), on the other hand, allow full user mobility but at data rates typically in the order of tens of kbps. This will change to some extent when third-generation (3G) cellular net- works are fully deployed. Still, 3G deployment is slower than originally anticipated, a development often attributed to the combination of high spectrum license costs, the recent economic downturn, and high equip- ment costs. As a result, both population and geographical coverage tend to be uneven. For example, in Finland, a forerunner in wireless commu- nications, population coverage is well below the 35-percent level, and geographical coverage is even smaller This article introduces several wireless network technologies, perhaps not so widely known, which deserve attention when considering how to provide mobile connectivity to field personnel, introduce machine-to- machine (M2M) communication, or deploy applications that require al- ways-on connectivity.
    [Show full text]
  • 4G Technology
    International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 67-73 © International Research Publication House http://www.irphouse.com 4G Technology Komal Roll No. 211208, M.tech (ECE) E-mail: nit kurukshetra Abstract The ever increasing growth of user demand, the limitations of the third generation of wireless mobile communication systems and the emergence of new mobile broadband technologies on the market have brought researchers and industries to a thorough reflection on the fourth generation. A pragmatic definition of 4G derived from a new user-centric methodology that considers the user as the “cornerstone” of the design. In this way, the fundamental user scenarios that implicitly reveal the key features of 4G, which are then expressed explicitly in a new framework—the “user-centric” system that describes the various level of interdependency among them. This approach consequently contributes to the identification of the real technical step-up of 4G with respect to 3G. It is supposed to provide its customers with better speed and all IP based multimedia services. 4G is all about an integrated, global network that will be able to provide a comprehensive IP solution where voice, data and streamed multimedia can be given to users on an "Anytime, Anywhere" basis. Introduction With the deployment of 3G (3rd generation mobile communication systems) in process, the interest of many research bodies shifts towards future systems beyond 3G. Depending on the time such new systems are planned to be introduced and on the characteristic of improving or replacing existing systems they are called B3G (beyond 3G) or 4G (4th generation mobile communication system).
    [Show full text]
  • Moxa Industrial Wireless Guidebook
    Copyright © 2007 by Moxa Technologies Co., Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission from Moxa Technologies Co., Ltd. Trademark Credits The Moxa Technologies logo is a registered trademark of Moxa Technologies Co., Ltd. All other trademarks mentioned in this document are the property of their respective owners. 1st Printing November 2007 Preface The latest development in industrial device networking is the adoption of wireless technology for industrial applications. This is a very exciting development with potentially enormous benefits for system integrators and end users. However, many users may have questions about the different technologies that are available and how best to adapt them to specific applications. Other users may wish to gain a basic understanding of wireless technologies and applications but not know where to begin. The Industrial Wireless Guidebook was conceived as a helpful introduction to the wireless technologies now being used for industrial applications. Readers can learn basic terminology, the strengths and weaknesses of various wireless technologies, and how to decide on a wireless solution for a specific application. Detailed examples are provided to show how wireless technology is being used in different industries, and can serve as a starting point in developing your own project. Having been in the business for over twenty years, Moxa has been both a witness and participant to many developments in device networking technology. As new standards, interfaces, and protocols appear, we have kept pace and developed products that help integrate different technologies into one system.
    [Show full text]
  • (FM 24-2) Army Electromagnetic Spectrum Management Operations
    FMI 6-02.70 (FM 24-2) Army Electromagnetic Spectrum Management Operations SEPTEMBER 2006 EXPIRES SEPTEMBER 2008 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. Headquarters, Department of the Army *FMI 6-02.70 (FM 24-2) Field Manual Interim Headquarters Department of the Army Washington, DC, 5 September 2006 No. 6-02.70 EXPIRES 5 September 2008 Army Electromagnetic Spectrum Management Operations Contents Page PREFACE .............................................................................................................iii Chapter 1 SPECTRUM MANAGEMENT OVERVIEW ....................................................... 1-1 What is Spectrum Management?....................................................................... 1-1 Enabling the Force ............................................................................................. 1-1 Chapter 2 INTERNATIONAL, NATIONAL, AND HOST NATION SPECTRUM MANAGMENT.................................................................................................... 2-1 International Spectrum Management ................................................................. 2-1 National Spectrum Management........................................................................ 2-2 The Federal Communications Commission ....................................................... 2-4 Host Nation Spectrum Management .................................................................. 2-5 Chapter 3 DEPARTMENT OF DEFENSE SPECTRUM MANAGEMENT.......................... 3-1 Overview............................................................................................................
    [Show full text]
  • COV ITRM Glossary)
    Commonwealth of Virginia Information Technology Resource Management Glossary (COV ITRM Glossary) Version 1.0, January 15, 2010 Virginia Information Technologies Agency COV ITRM Glossary January 15, 2010 v 1.0 ii COV ITRM Glossary January 15, 2010 v 1.0 Table of Contents COV ITRM Glossary Updating..................................................................................................... iv Introduction..................................................................................................................................... 1 Non-alpha........................................................................................................................................ 2 A...................................................................................................................................................... 3 B.................................................................................................................................................... 10 C.................................................................................................................................................... 15 D.................................................................................................................................................... 25 E.................................................................................................................................................... 30 F ...................................................................................................................................................
    [Show full text]
  • Network Architecture Report
    Network Architecture Report: “A Networking Framework for Delivering Business Solutions” Version 1.0, May 2001 Prepared for: The Council on Technology Services Commonwealth of Virginia By: The COTS Enterprise Architecture Workgroup, Network Domain Team Network Architecture Version 1.0 Revision: 5-18-01 Network Domain Team Members John Eagle, Co-Chair City of Hampton, Co-Chair Bob Pontius, Co-Chair Virginia Employment Commission, Ric Anderson Department of Information Technology Bethann Canada Department of Education Jay Epperson Department of Education Karen Hardwick Department of Corrections Gary Post City of Alexandria Bobby Wattlington Department of Motor Vehicles Diane Wresinski Department of Technology Planning (Domain Team Staff) Paul Lubic Department of Technology Planning (EA Manager) Brian Mason Department of Technology Planning (Consultant) COTS Enterprise Architecture Workgroup David Molchany, Co-Chair Fairfax County, Local Government Representation Murali Rao, Co-Chair Department of Transportation, Secretariat of Transportation Representation Tim Bass Virginia Retirement System, Independent Agency Representative Bethann Canada Department of Education, Secretariat of Education Representative Troy DeLung, Department of Environmental Quality, Secretariat of Natural Resources Representative Linda Foster Department of Taxation, Secretariat of Finance Representative Bob Haugh Department of Corrections, Secretariat of Public Safety & Large Agency Representative Randy Horton Department of Rehabilitative Services, Secretariat of Health
    [Show full text]