CONASENSE OML Terma

Total Page:16

File Type:pdf, Size:1020Kb

CONASENSE OML Terma “ Communications, Navigation, Sensing and Services” “Mobile, wireless services in the future broadband IP- scenario, with emphasis on mission critical- and Tetra solutions” Professor Ole Lauridsen, Terma & AU CONASENSE, Amsterdam, 13th of February 2012 1 Analog Digital Telephony, 2-wire ISDN CT-0 and CT-1 DECT NMT, E-TACS GSM Paging, Eurosignal, OPS ERMES AM Broadcast DRM PMR TETRA FM Broadcast DAB Analog TV DVB & HDTV Wireless Network R-LAN ISDN GSM ERMES DECT ”Wireless Network” TETRA UMTS ”Wire” The European Telecom dev. In the 1980ths 2 Mobility 2010+ 1995 2000 2005 44 GG B3G ( IMT-A ) High Speed 3G ( IMT2000 ) DV DO/ V 0 E 00 DPA WiBro MA2 HS 2G CD MA/ Medium - CD 802.16e ( Digital ) A W Speed DM M/T /GS MA /g RFID 1G CD 1a High speed 2.1 ( Analog ) 80 WLAN WPAN ZigBee 5 GHz MANet AMPS 802.11b WiMax Low WLAN ETACS 2.4 GHz Speed JTACS WLAN Bluetooth NMT Data ~ 14.4 kbps 144 kbps 384 kbps <50 Mbps <100 Mbps Rates The mobile future vision Leveraging TETRA for Mission Critical Mobile Data If access to public 3G carrier networks are disrupted or congested; how will you exchange mission critical data? 3G TETRA WiFi Congestion Out-of-Range Mobile 3G Users on Scene (single network access) (multi-bearer access) (single network access) 4 CONFIDENTIAL - Enter Presentation Title Here CONFIDENTIAL – BAPCO 2009 - Mission Critical Data over Mission Critical Networks The solution: take advantages of all networks! TETRA (All Terminals) Motorola DataTAC Motorola ASTRO P25 Motorola ASTRO HPD M/A-COM: EDACS M/A-COM: P25 CalAMP Dataradio VHF-UHF-800-900 Satellite (EMS/MSV) WiMAX (802.16e) CDMA 1xEVDO Rev.A GSM GPRS/EDGE GSM UMTS/HSPA Wi-Fi (802.11 a/b/g) MESH 4.9Ghz 700Mhz and more… CONFIDENTIAL - Enter Presentation Title Here Layer 1 – Global Satellite Communication Layer 2 – Global Cellular Communication Layer 3 – Global Wireless LAN Layer 4 – Global Wireless PAN 1 bps – Layer 5 – Global Broadband 1 Gbps PAN We have many Global telecom standards! Problem – Increasing Interdependance Energy Health Water • Cascading Outage Concerns • Interdependencies, as well as the interconnection and Emergency interfacing of similar Fínance ICT Service infrastructures, create the concern for cascading outages, when one or more Law of the infrastructures Transport Enforcement become unavailable. Publice Service Commercial in confidence Public ICT in mission critical jobs is a challenge! 8 Problem – cascading outage For example, a power outage may immediately, or after a period of time, cause telecommunications unavailability. Power Infrastructure This in turn, could cause a disruption in Outage emergency services and response Telecom Infrastructure Outage Emergency Service Outage Commercial in confidence Why we need ”government regulation” 10 PSE - Ambulance Solution Ambulance Applications Hospital / T.react Mobile WLAN Emergency room PC - Hardware T.react Base Preparedness Infrastructure and control rooms Other TETRA GPRS/UMTS Electronic Patient Record T.react Base Control Rooms Commercial in confidence Europe will probably not have same frequency allocations as US. T.react Radio Dispatch T.react Radio Dispatch can be scaled from a single control room to any number of stand alone control rooms distributed geographically across a nation wide TETRA Network. Each installation of T.react Radio Dispatch can be configured to handle any number of TETRA talk groups and terminals available in the network. © 2011 Terma A/S T.react CIP – Early Warning Detection VIRTUAL PERIMETER EARLY WARNING AUTOMATIC TRACKING ACCURATE LIVE POSITIONING COMMON OPERATIONAL PICTURE © 2011 Terma A/S Work items for CONASENSE going forward: • GSM, UMTS/LTE and Tetra to work together with GPS/Galileo and to be enhanced for bad interference! • FM-RDS to work with GPS/Galileo (Ambulances!) • DVB and DAB+ to work with GPS/Galileo • Military radiosystems to be fully SDR implemented • Naval- and air traffic communications to be reinvented! • Inter car (vehicles) and intelligent road com. and telematics • Improved Technology based on std. S/W and opr. Systems! In existing radiotechnologies what do we need? 16 Critical Border & infrastructures Perimeter PSE ( Defense ) PSE Future integration 18 • Mobile services today need : – Reliable communication with enhancement of high speed data – Positioning and navigation GPS & Galileo – Multiple networks to be used and managed together! – PSE, Defence and Private enterprices to use same infrastructure! • Improved Technology via CONASENSE, issues: – Combine existing mobile technologies – Make scenarious for different applications – Design ”bridging protocols” to syncronuosly manage diverse networks – SDR technologies for co-existense in same networks – Licensing policies based on independence of technology! Navcom, PSE , Defense and CONASENSE 19 THANK YOU! Professor Ole Lauridsen Terma and AAU E-mail: [email protected] Mob.: +45 22 64 11 37 Convergence of Navigation and Communication Towards 4G Authors: Ramjee Prasad, Ole Mørk Lauridsen, Albena Mihovska Contact info : Ramjee Prasad, Albena Mihovska , Center for TeleInfrastruktur, AAU, Niels Jernes Vej 12, 9220 Aalborg, Denmark, Ole Lauridsen, Terma, Vasekaer 12, 2730 Herlev, Denmark. E-mail: [email protected] , [email protected], [email protected] References Center for teelInfrastruktur (CTIF), at http://www.ctif.aau.dk. i2010High Level Group, “The Challenges of Convergence,”, A Discussion Paper, European Commission, December 2006. Prasad, R., and O. M. Lauridsen, “Convergence of Navigation and Communication (NavCom) towards 4G,” An AFCEA International Symposium on AEROSPACE TECHNOLOGIES and APPLICATIONS for DUAL USE, Rome, Italy, September 2007. Deneire, L., and R. Prasad, From WPANS to Personalized Communications: Technologies and Applications, Artech House 2006. Kim, Y., K., and R. Prasad, 4G Roadmap and Emerging Technologies, Artech House 2006. German Defense Industry Committee, Position Paper, August 2006. FP6 EU Framework Programme, www.cordis.europa.eu/ist . FP7 EU Framework Programme, http://cordis.europa.eu/fp7/ict/future-networks/home_en.html International Telecommunications Union (ITU) available at http://www.int.org . Clinton, B., “Clinton to Renane DARPA, Expand Emphasis on Dual-Use Technologies,” 2005. EU-Footnotes, Doc FM(01)123 Rev 1, August 17, 2001. • Improve the cooperation between preparedness actors in Denmark – Police – Ambulance – Fire & Rescue services – Defence – Private enterprises • Designed for Prepardness organizations – Secure- and reliable communication – High level of security and reliability – Easy to use – Real time overview • Improved Technology – State of the art platform – Better cooperation • Motorola won the Tetra netw., Terma, won the control room S/W • Intergraph is prime subcontractor on applications Background for the Danish Project SINE 23 Summary Simple, Resilient, Secure Mobile Data Connectivity for Public safety is best archived by taking advantage of all available networks. IP data over TETRA is a good option using appropriate group management and user control Middleware taking advantage of all networks do exist. Mission Critical Data should be over Mission Critical Networks 24 CONFIDENTIAL - Enter Presentation Title Here CONFIDENTIAL – BAPCO 2009 - Mission Critical Data over Mission Critical Networks Cascading Outage Concerns These interdependencies , as well as the interconnection and interfacing of similarinfrastructures across Member State boundaries, create the concern for cascading outages, when one or more of the infrastructures become unavailable. For example, a power outage may immediately, or after a period of time, cause telecommunications unavailability. This in turn, could cause a disruption in emergency services and response The November 2006 European power outage, which started locally and spread regionally, is an example of cascading within a sector.17 Cascading Outage Concerns of society 25 Cascading og Outage 26 – To show how the solutionsproposed by the CHORISTproject allow citizens and authorities to adapt to climate change. Scope for Chorist, EU- FP-7 27 Mobile concept, Dalgaard´s Vision 28 Blå lys Bypass Standby unit CAN Bus GPS GSM Tetra WLAN Touch Keyboard pad Garmin GPS Tetra 12" Touch screen Speaker MIC Camera T.react Mobile system layout 29 • ”Enterprise ICT” will be needed also by the PSED sector as well as the society for continued coherence! • Mobile BB (UMTS/ LTE, with eMLPP) must be ready for this! • Information must be given to the public (MUSE) • Simple text messaging is wanted • TETRA cannot do it alone, but must me supplemented “Mission Critical Data should be over Mission Critical Networks” Thank you Let there be mission critical partnering! 30.
Recommended publications
  • Access to Locked Functions
    (19) TZZ 45__¥9AT (11) EP 2 451 139 A9 (12) CORRECTED EUROPEAN PATENT APPLICATION (15) Correction information: (51) Int Cl.: Corrected version no 1 (W1 A1) H04M 1/67 (2006.01) Corrections, see Description Paragraph(s) 16, 20, 22, 31 (48) Corrigendum issued on: 13.02.2013 Bulletin 2013/07 (43) Date of publication: 09.05.2012 Bulletin 2012/19 (21) Application number: 10189894.8 (22) Date of filing: 03.11.2010 (84) Designated Contracting States: (72) Inventor: Hymel, James Allen AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Waterloo Ontario N2L 5Z5 (CA) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Roberts, Gwilym Vaughan et al Designated Extension States: Kilburn & Strode LLP BA ME 20 Red Lion Street London WC1R 4PJ (GB) (71) Applicant: Research In Motion Limited Waterloo, ON N2L 3W8 (CA) Remarks: Amended claims in accordance with Rule 137(2) EPC. (54) Access to locked functions (57) A mobile communications device can have a locked mode in which the mobile communications device is protected against unauthorized use. A mobile commu- nications device includes device applications implement- ed by a software program or firmware program that en- ables an application to be temporarily operable or oper- able under certain conditions when the mobile commu- nications device is locked. Device applications can in- clude a camera enabled for image data acquisition and a microphone or an audio recorder or a microphone and an audio recorder enabled for audio data acquisition.
    [Show full text]
  • A Survey of Mobile Data Networks
    A SURVEY OF MOBILE DATA NETWORKS APOSTOLIS K. SALKINTZIS THE UNIVERSITY OF BRITISH COLUMBIA ABSTRACT The proliferation and development of cellular voice systems over the past several years has exposed the capabilities and the effectiveness of wireless communications and, thus, has paved the way for wide-area wireless data applications as well. The demand for such applications is currently experiencing a significant increase and, therefore, there is a strong call for advanced and efficient mobile data technologies. This article deals with these mobile data technologies and aims to exhibit their potential. It provides a thorough survey of the most important mobile packet data services and technologies, including MOBITEX, CDPD, ARDIS, and the emerging GPRS. For each technology, the article outlines its main technical characteristics, discusses its architectural aspects, and explains the medium access protocol, the services provided, and the mobile routing scheme. istorically, wireless data communications was princi- and have access to external data, wireless data technology pally the domain of large companies with special- plays a significant part because it can offer ubiquitous con- ized needs; for example, large organizations that nectivity, that is, connectivity at any place, any time. For this needed to stay in touch with their mobile sales reason, wireless data technology can be of real value to the Hforce, or delivery services that needed to keep track of their business world since computer users become more productive vehicles and packages. However, this situation is steadily when they exploit the benefits of connectivity. The explosive changing and wireless data communications is becoming as growth of local area network (LAN) installations over the commonplace as its wired counterpart.
    [Show full text]
  • Michael Steer
    Michael Steer eyond 3G is the official IEEE desig- classified as shown in Table 1. Few first generation (or nation for the next stage of wireless 1G) systems remain, except in the United States, where technology that some people call 4G AMPS (Advanced Mobile Phone System) remains a or fourth-generation radio. Over the background universal service. Most services are now years, every conceptual shift in wire- second generation (or 2G) dominated by Global System Bless technology has been characterized as a for Mobile Communications (GSM) but also with wide- generational change. With a good dose of spread development of code-division multiple access hindsight, the generations of radio and (CDMA). CDMA is a conceptual advance on the 2G major radio systems in each category are systems typified by GSM and so is commonly classified as 2.5G. Third generation (or 3G) offers a sig- nificant increase in capacity and is the opti- mum system for broadband data access. Third generation includes wideband mobile multimedia networks and broadband mixed wireless systems. The mobile systems support vari- able data rates depending on demand and the level of mobili- ty. Typically 144 kb/s is sup- ported for full vehicular mobil- ity and higher bandwidths for pedestrian levels of mobility. Switched packet radio tech- niques and wideband CDMA- like systems (as the physical channel is) rather than assigned physical channel schemes (referred to as circuit switched) are required to support this band- width-on-demand environment. There are two essential concepts beyond 3G. One of these is the provi- sion of data transmission at rates of 100 Mb/s while mobile and 1 Gb/s while station- ary.
    [Show full text]
  • Smart Energy Network
    Smart TheThe FutureFuture ofof….…. Smart Energy Network Alliance presentation from Energy Motorola, OZZ & NERTEC For Union Gas UtilityUtility DataData July 12, 2004 Connectivity Connectivity Network FromFrom OZZOZZ EnergyEnergy SolutionsSolutions Inc.Inc. OZZ Corporation Ontario Energy Board Smart Meter Implementation Initiative September 17, 2004 Open System Platform z Open Infrastructure Standards – ANSI meter communications – IEEE communications – Internet – e.g. W3C – Data Exchange – e.g. SQL, EDI – Application – e.g. Java z Shared Use Networks – Published protocols – Multi-source of connectivity – Multiple application uses z Information Exchange SMI Proposition z Smart Metering Infrastructure is Not Meter Reading – Smart Point-of-Service Device z Cost and Quality – Integral Part of the Distribution Grid – Opportunity to serve the consumer Smart Energy Value Ontario – Responsive Distribution Infrastructure: SmartGrid Integrated networks Unified Infrastructure using intelligent device zSmartMeters Infrastructure automation zSmartControls –SmartPipes –SmartWires –SmartAssets SmartGrid Integrated demand Smart Solutions Solutions response, efficiency & zCustomer participation reliability zPeak response zReliability response Alliance Difference 1. ECONOMIC FLEXIBILITY 2. RISK MITIGATION z Shared Infrastructure z Smart Network Solutions – Mobile asset utilization Solutions – Wireless – Fixed data applications z For the North American grid – Mobile voice & data applications Systems – Wired z For addressable applications z Scalable Solutions
    [Show full text]
  • Boomer-III Mobitex OEM Modem
    Boomer-III Mobitex OEM Modem BM3-900M – Mobitex 900MHz BM3-800M – Mobitex 800MHz BM3-400ME – Mobitex 400MHz BM3-400MU – Mobitex 400MHz Th e Wavenet family of Boomer-III Mobitex modems are high-performance wireless transceivers developed specifi cally for integration by original equipment manufacturers (OEM). Th is wireless module can be incorporated into various vertical solutions ranging from Business Benefi ts handheld terminals (HHT) for public safety, High Reliability Small Compact Design • Capable of operating 24-hours a day, 7-days a week (24/7). transport and logistics, to machine-to-machine • Rugged small form factor suitable for handheld devices or machines. (M2M) applications for meter reading, vending • Unique LED indicator window (TX, RX PWR) for visual diagnostic feedback. machines and point-of-sale. Connectivity Plus • High sensitivity receiver for connectivity in-building and fringe areas. Th e Boomer-III family off er integrators • High effi ciency transmitter. Effi cient Power Management superior performance in critical areas of • Advanced power management for long operating life. reliability, receiver sensitivity, noise immunity, • Compatibility with 3.6V lithium battery technology. power effi ciency and simplicity of integration. Flexible Architecture • On-board Application Software capable to allow product customisation. Th e On-Board Application (OBA) capability • Eliminate external componentry to reduce complexity and system cost. • Comprehensive Developer Support including SDK and test hardware. allows you to run your wireless application Future-Proof Your Design directly on the modem’s internal processor • Network fl exibility through family range of interchangeable modules. eliminating an external processor, memory • Th e BM3 family includes multi-band DataTAC, GPRS, CDMA and 3G networks.
    [Show full text]
  • Mobile Computing: the Enetwork Wireless Solution Juan R
    Mobile Computing: The eNetwork Wireless Solution Juan R. Rodriguez, Werner Schollenberger, Muchsin Anzib, Bhaktianto Widyarso International Technical Support Organization http://www.redbooks.ibm.com SG24-5299-00 International Technical Support Organization SG24-5299-00 Mobile Computing: The eNetwork Wireless Solution March 1999 Take Note! Before using this information and the product it supports, be sure to read the general information in Appendix B, “Special Notices” on page 243. First Edition (March 1999) This edition applies to Version 4.1.2 of IBM eNetwork Wireless Gateway for use with the AIX Operating System, Version 4.1.3 of IBM eNetwork Emulator Express for Windows and AIX, and Version 2.1.1 of IBM eNetwork Web Express for Windows and AIX. Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. HZ8 Building 678 P.O. Box 12195 Research Triangle Park, NC 27709-2195 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 1999. All rights reserved Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Contents Figures . vii Tables . xi Preface . xiii The Team That Wrote This Redbook . xiii Comments Welcome . xiv Part 1. Introduction . .1 Chapter 1. Introduction. .3 1.1 eNetwork Wireless Gateway and Client. .4 1.2 eNetwork Emulator Express . .5 1.3 eNetwork Web Express. .6 1.4 Putting It All Together .
    [Show full text]
  • Wireless Data Networks by Kostas Pentikousis, VTT
    Wireless Data Networks by Kostas Pentikousis, VTT ost IPJ readers are familiar with Wireless Local-Area Net- works (WLANs; see, for example, IPJ Volume 5, No. 1). M Some may even be familiar with recent developments in Wireless Metropolitan-Area Networks (WMANs), such as WiMAX. Although nonproprietary WMAN technologies are still in the standard- ization phase, the IEEE 802.11 family of protocols has reached maturity and rendered inexpensive (and often free) WLAN access increasingly popular. Both WLANs and WMANs provide high-speed connectivity (in the order of tens of Mbps), but user mobility is restricted. In fact, it is probably more appropriate to talk about “portability” rather than “mobility”[1] when referring to WLANs and WMANs. Wireless wide-area networks (WWANs), on the other hand, allow full user mobility but at data rates typically in the order of tens of kbps. This will change to some extent when third-generation (3G) cellular net- works are fully deployed. Still, 3G deployment is slower than originally anticipated, a development often attributed to the combination of high spectrum license costs, the recent economic downturn, and high equip- ment costs. As a result, both population and geographical coverage tend to be uneven. For example, in Finland, a forerunner in wireless commu- nications, population coverage is well below the 35-percent level, and geographical coverage is even smaller This article introduces several wireless network technologies, perhaps not so widely known, which deserve attention when considering how to provide mobile connectivity to field personnel, introduce machine-to- machine (M2M) communication, or deploy applications that require al- ways-on connectivity.
    [Show full text]
  • 4G Technology
    International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 67-73 © International Research Publication House http://www.irphouse.com 4G Technology Komal Roll No. 211208, M.tech (ECE) E-mail: nit kurukshetra Abstract The ever increasing growth of user demand, the limitations of the third generation of wireless mobile communication systems and the emergence of new mobile broadband technologies on the market have brought researchers and industries to a thorough reflection on the fourth generation. A pragmatic definition of 4G derived from a new user-centric methodology that considers the user as the “cornerstone” of the design. In this way, the fundamental user scenarios that implicitly reveal the key features of 4G, which are then expressed explicitly in a new framework—the “user-centric” system that describes the various level of interdependency among them. This approach consequently contributes to the identification of the real technical step-up of 4G with respect to 3G. It is supposed to provide its customers with better speed and all IP based multimedia services. 4G is all about an integrated, global network that will be able to provide a comprehensive IP solution where voice, data and streamed multimedia can be given to users on an "Anytime, Anywhere" basis. Introduction With the deployment of 3G (3rd generation mobile communication systems) in process, the interest of many research bodies shifts towards future systems beyond 3G. Depending on the time such new systems are planned to be introduced and on the characteristic of improving or replacing existing systems they are called B3G (beyond 3G) or 4G (4th generation mobile communication system).
    [Show full text]
  • Moxa Industrial Wireless Guidebook
    Copyright © 2007 by Moxa Technologies Co., Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission from Moxa Technologies Co., Ltd. Trademark Credits The Moxa Technologies logo is a registered trademark of Moxa Technologies Co., Ltd. All other trademarks mentioned in this document are the property of their respective owners. 1st Printing November 2007 Preface The latest development in industrial device networking is the adoption of wireless technology for industrial applications. This is a very exciting development with potentially enormous benefits for system integrators and end users. However, many users may have questions about the different technologies that are available and how best to adapt them to specific applications. Other users may wish to gain a basic understanding of wireless technologies and applications but not know where to begin. The Industrial Wireless Guidebook was conceived as a helpful introduction to the wireless technologies now being used for industrial applications. Readers can learn basic terminology, the strengths and weaknesses of various wireless technologies, and how to decide on a wireless solution for a specific application. Detailed examples are provided to show how wireless technology is being used in different industries, and can serve as a starting point in developing your own project. Having been in the business for over twenty years, Moxa has been both a witness and participant to many developments in device networking technology. As new standards, interfaces, and protocols appear, we have kept pace and developed products that help integrate different technologies into one system.
    [Show full text]
  • (FM 24-2) Army Electromagnetic Spectrum Management Operations
    FMI 6-02.70 (FM 24-2) Army Electromagnetic Spectrum Management Operations SEPTEMBER 2006 EXPIRES SEPTEMBER 2008 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. Headquarters, Department of the Army *FMI 6-02.70 (FM 24-2) Field Manual Interim Headquarters Department of the Army Washington, DC, 5 September 2006 No. 6-02.70 EXPIRES 5 September 2008 Army Electromagnetic Spectrum Management Operations Contents Page PREFACE .............................................................................................................iii Chapter 1 SPECTRUM MANAGEMENT OVERVIEW ....................................................... 1-1 What is Spectrum Management?....................................................................... 1-1 Enabling the Force ............................................................................................. 1-1 Chapter 2 INTERNATIONAL, NATIONAL, AND HOST NATION SPECTRUM MANAGMENT.................................................................................................... 2-1 International Spectrum Management ................................................................. 2-1 National Spectrum Management........................................................................ 2-2 The Federal Communications Commission ....................................................... 2-4 Host Nation Spectrum Management .................................................................. 2-5 Chapter 3 DEPARTMENT OF DEFENSE SPECTRUM MANAGEMENT.......................... 3-1 Overview............................................................................................................
    [Show full text]
  • COV ITRM Glossary)
    Commonwealth of Virginia Information Technology Resource Management Glossary (COV ITRM Glossary) Version 1.0, January 15, 2010 Virginia Information Technologies Agency COV ITRM Glossary January 15, 2010 v 1.0 ii COV ITRM Glossary January 15, 2010 v 1.0 Table of Contents COV ITRM Glossary Updating..................................................................................................... iv Introduction..................................................................................................................................... 1 Non-alpha........................................................................................................................................ 2 A...................................................................................................................................................... 3 B.................................................................................................................................................... 10 C.................................................................................................................................................... 15 D.................................................................................................................................................... 25 E.................................................................................................................................................... 30 F ...................................................................................................................................................
    [Show full text]
  • Network Architecture Report
    Network Architecture Report: “A Networking Framework for Delivering Business Solutions” Version 1.0, May 2001 Prepared for: The Council on Technology Services Commonwealth of Virginia By: The COTS Enterprise Architecture Workgroup, Network Domain Team Network Architecture Version 1.0 Revision: 5-18-01 Network Domain Team Members John Eagle, Co-Chair City of Hampton, Co-Chair Bob Pontius, Co-Chair Virginia Employment Commission, Ric Anderson Department of Information Technology Bethann Canada Department of Education Jay Epperson Department of Education Karen Hardwick Department of Corrections Gary Post City of Alexandria Bobby Wattlington Department of Motor Vehicles Diane Wresinski Department of Technology Planning (Domain Team Staff) Paul Lubic Department of Technology Planning (EA Manager) Brian Mason Department of Technology Planning (Consultant) COTS Enterprise Architecture Workgroup David Molchany, Co-Chair Fairfax County, Local Government Representation Murali Rao, Co-Chair Department of Transportation, Secretariat of Transportation Representation Tim Bass Virginia Retirement System, Independent Agency Representative Bethann Canada Department of Education, Secretariat of Education Representative Troy DeLung, Department of Environmental Quality, Secretariat of Natural Resources Representative Linda Foster Department of Taxation, Secretariat of Finance Representative Bob Haugh Department of Corrections, Secretariat of Public Safety & Large Agency Representative Randy Horton Department of Rehabilitative Services, Secretariat of Health
    [Show full text]