Observations of Magnetic Fields and Clustering Functions in Prestellar Cores

Total Page:16

File Type:pdf, Size:1020Kb

Observations of Magnetic Fields and Clustering Functions in Prestellar Cores Observations of Magnetic Fields and Clustering Functions in Prestellar Cores by David Nutter A thesis submitted to the University of Wales for the degree of Doctor of Philosophy January 2004 UMI Number: U584640 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584640 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed ................. Date ............................ STATEMENT 1 The work presented in this thesis is all my own work carried out under the su­ pervision of Dr. D. Ward-Thompson with the exception of the following: I did not take the SCUBA scan-map observations at the telescope, although I carried out all of the data reduction, calibration and analysis. I did not take the original SCUBA polarimetry observations of L1544, L43 and L183, taken in 1999. These data have previously been published (Ward-Thompson et al., 2000). I did take the subsequent observations of LI83 in 2002, and I carried out the data reduction and analysis for all of the L183 polarimetry data. I undertook the analysis of the LI544 and L43 data, based on the previously published data. The SCUBA scan-map work has been carried out in collaboration with Dr. Philippe Andre at the CEA Service d’Astrophysique, Saclay. The polarimetry work has been car­ ried in collaboration with Prof. R. M. Crutcher at the University of Illinois. A bibliography is appended. ] Signed . fA av ., Date ...A.. kS./.k STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. ACKNOWLEDGMENTS First and foremost, I would like to thank Hannah for her love, support and friend­ ship over the last three years. I thank Dr. Derek Ward-Thompson for giving me the opportunity to take part in this exciting research, and for all his help and support over the course of the PhD. I would also like to thank the members past and present, of the Star Formation research group here at Cardiff, especially Dr. Simon Goodwin, Dr. Jason Kirk, and Prof. Ant Whitworth. Many thanks must also go out to the friends I have made here over the years, especially Iain Brown and Emma Pearce, and all the guys in the terminal room who have kept me sane. An extra note of thanks to Tim Waskett for his help over the years. I would like to acknowledge and thank the collaborators I have worked with during my PhD, including Prof. Dick Crutcher, Dr. Philippe Andre, Dr. Jonathan Rawlings and Dr. Matt Redman. A special note of thanks to Dr. Jane Greaves for putting up with many emails on Friday afternoons asking ‘Exactly how does polarimetry work again?’ A big thank-you to the computing support staff here at Cardiff, especially Dr. Rodney Smith, and also the support staff of the JCMT, for support during and after many observing runs. Finally, a thank-you to my parents, for their love and support both before and during the PhD, without which, I would never have made it here in the first place. Figures 4.2 and 4.10 include photographic data obtained using The UK Schmidt Telescope. The UK Schmidt Telescope was operated by the Royal Observatory Edin­ burgh, with funding from the UK Science and Engineering Research Council, until 1988 June, and thereafter by the Anglo-Australian Observatory. Original plate material is copyright © the Royal Observatory Edinburgh and the Anglo-Australian Observatory. The plates were processed into the present compressed digital form with their permis­ sion. The Digitized Sky Survey was produced at the Space Telescope Science Institute under US Government grant NAG W-2166. IRAS 100 /im data in Figures 3.3, 4.1, 4.2 and 4.10 courtesy of NASA IPAC/Jet Propulsion Laboratory. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. ABSTRACT In this thesis, I present SCUBA polarimetry data of three prestellar cores, L1544, L43 and L183. I also present SCUBA scan-map observations of three molecular clouds, Orion B, L1689, and RCrA. I use the Chandrasekhar-Fermi technique to measure the magnetic field strength in LI544, L43 and LI83, and find that each core is approximately magnetically critical or slightly supercritical. I measure the core mass function for prestellar cores in the Orion B molecular cloud and find that above 1 M0 , the data are best fitted by a power-law of the form diV/dlog M oc M ~15. The mass function has a peak at approximately 1 M©. This core mass function is comparable with the Salpeter slope of A/-1,35. I also determine the mean surface density of companions £ c(0) for the Orion B region, and find that it is best fitted by a power law of the form £ c(0) oc 0~0-3. This is smaller than the slope of 0-0 6 that is typically found for young stars in most molecular clouds. However, this slope is consistent with my data at the extreme limits of my lcr error bars. My value of T,c(0) oc 0~° 3 is comparable with the slope of 9~0 2 that is found for the nearby Orion Trapezium association. I find that the LI689 molecular cloud has a comparable rate of star formation to the neighbouring and more massive LI688. In addition, the star formation in LI689 occurs in a number of filaments that are parallel both to each other, and to similar filaments in L1688. I conclude that these observations indicate that the star formation is being influenced by the nearby Sco OB2 association. I compare the RCrA data to previous surveys of the region, and discover a previously unknown Class 0 source. Contents 1 An Introduction to Star Formation 1 1.1 Introduction ................................................................................................. 1 1.2 Protostellar Evolution .............................................................................. 3 1.2.1 The Birthplace of Stars ............................................ 3 1.2.2 The Youngest S ta rs ....................................................................... 4 1.2.3 Class 0 Protostars ....................................................................... 5 1.2.4 Protostellar Evolution ................................................................ 8 1.2.5 Decreasing Accretion Rate with T im e ....................................... 11 1.2.6 Protostellar L ife tim e .................................................................... 11 1.3 Prestellar c o r e s .......................................................................................... 12 1.3.1 History ............................................................................................. 13 1.3.2 Density Profile ............................................................................. 14 1.3.3 Core Temperature ....................................................................... 17 1.3.4 Prestellar Core L ife tim e ............................................................. 18 1.3.5 Magnetic F ie ld s ............................................................................. 19 1.4 Theories of Prestellar Evolution .............................................................. 20 i ii_________________________________________________________________________ CONTENTS 1.4.1 Similarity Solutions ....................................................................... 21 1.4.2 Additional Cloud Support Mechanisms .................................... 24 1.4.3 Magnetic Fields and Ambipolar Diffusion ................................. 24 1.4.4 Turbulent Cloud Support .......................................................... 27 1.4.5 Molecular Cloud Lifetimes .......................................................... 29 1.5 Measuring Interstellar Magnetic F ield s ................................................ 29 1.5.1 Polarimetry ..................................................................................... 30 1.5.2 Grain A lig n m e n t ........................................................................... 31 1.5.3 Zeeman e ffe c t .................................................................................. 34 1.5.4 Chandrasekhar-Fermi m e th o d .................................................... 36 1.6 Mass Estimates of Molecular Clouds and Cores ................................ 39 1.6.1 Determining Masses from Submillimetre Observations .... 40 1.6.2 Virial M a s s e s ................................................................................. 44 1.7 The Initial Mass F u n c tio n ....................................................................... 46 1.8 Summary and Thesis Overview ............................................................. 49 2 Data Acquisition and Reduction 51 2.1 Instrumentation .........................................................................................
Recommended publications
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • 277 — 18 January 2016 Editor: Bo Reipurth ([email protected]) List of Contents
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 277 — 18 January 2016 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 3 Abstracts of Newly Accepted Papers ........... 5 Editor: Bo Reipurth [email protected] Abstracts of Newly Accepted Major Reviews . 30 Technical Editor: Eli Bressert Dissertation Abstracts ........................ 31 [email protected] New Jobs ..................................... 32 Technical Assistant: Hsi-Wei Yen Meetings ..................................... 33 [email protected] Summary of Upcoming Meetings ............. 36 Editorial Board Joao Alves Alan Boss Jerome Bouvier Cover Picture Lee Hartmann Thomas Henning The Rosette Nebula is a large HII region in Mono- Paul Ho ceros at a distance of about 1.6 - 1.7 kpc. It is Jes Jorgensen illuminated by the OB cluster NGC 2244, which Charles J. Lada contains seven O-stars, dominated by the O4V star Thijs Kouwenhoven HD 46223. The northwestern edge of the HII region Michael R. Meyer contains a large complex of globules and elephant Ralph Pudritz trunks. Luis Felipe Rodr´ıguez Ewine van Dishoeck Image courtesy Don Goldman http://astrodonimaging.com Hans Zinnecker ( ). The Star Formation Newsletter is a vehicle for fast distribution of information of interest for as- tronomers working on star and planet formation and molecular clouds. You can submit material for the following sections: Abstracts of recently Submitting your abstracts accepted papers (only for papers sent to refereed journals), Abstracts of recently accepted major re- Latex macros for submitting abstracts views (not standard conference contributions), Dis- and dissertation abstracts (by e-mail to sertation Abstracts (presenting abstracts of new [email protected]) are appended to Ph.D dissertations), Meetings (announcing meet- each Call for Abstracts.
    [Show full text]
  • Celebrating 30 Years of Science from the James Clerk Maxwell Telescope Rsos.Royalsocietypublishing.Org Ian Robson1,2, Wayne S
    Celebrating 30 Years of Science from the James Clerk Maxwell Telescope rsos.royalsocietypublishing.org Ian Robson1;2, Wayne S. Holland1;2 and Per Friberg3 Review 1UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK Article submitted to journal 2Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK Subject Areas: 3East Asian Observatory, 660 N. A‘ohok¯ u¯ Place, Observational astronomy University Park, Hilo, HI 96720, USA Keywords: The James Clerk Maxwell Telescope (JCMT) has Galaxies, stars, planets been the world’s most successful single dish telescope at submillimetre wavelengths since it began operations Author for correspondence: in 1987. From the pioneering days of single-element Ian Robson photometers and mixers, through the first modest imaging arrays, leading to the state-of-the-art wide- e-mail: [email protected] field camera SCUBA-2 and the spectrometer array HARP, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of “SCUBA” galaxies, which are responsible for a large fraction of the far-infrared background, to the first images of huge discs of cool debris around nearby stars, possibly giving us clues to the evolution of planetary systems, the JCMT has pushed the sensitivity limits more than any other facility in this most difficult of wavebands in which to observe. Now approaching the 30th anniversary of the first observations the telescope continues to carry out unique and innovative science. In this review article we look back on just some of the scientific highlights from the past 30 years.
    [Show full text]
  • S.I. and Cgs Units
    Some Notes on SI vs. cgs Units by Jason Harlow Last updated Feb. 8, 2011 by Jason Harlow. Introduction Within “The Metric System”, there are actually two separate self-consistent systems. One is the Systme International or SI system, which uses Metres, Kilograms and Seconds for length, mass and time. For this reason it is sometimes called the MKS system. The other system uses centimetres, grams and seconds for length, mass and time. It is most often called the cgs system, and sometimes it is called the Gaussian system or the electrostatic system. Each system has its own set of derived units for force, energy, electric current, etc. Surprisingly, there are important differences in the basic equations of electrodynamics depending on which system you are using! Important textbooks such as Classical Electrodynamics 3e by J.D. Jackson ©1998 by Wiley and Classical Electrodynamics 2e by Hans C. Ohanian ©2006 by Jones & Bartlett use the cgs system in all their presentation and derivations of basic electric and magnetic equations. I think many theorists prefer this system because the equations look “cleaner”. Introduction to Electrodynamics 3e by David J. Griffiths ©1999 by Benjamin Cummings uses the SI system. Here are some examples of units you may encounter, the relevant facts about them, and how they relate to the SI and cgs systems: Force The SI unit for force comes from Newton’s 2nd law, F = ma, and is the Newton or N. 1 N = 1 kg·m/s2. The cgs unit for force comes from the same equation and is called the dyne, or dyn.
    [Show full text]
  • CAR-ANS Part 5 Governing Units of Measurement to Be Used in Air and Ground Operations
    CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES Part 5 Governing UNITS OF MEASUREMENT TO BE USED IN AIR AND GROUND OPERATIONS CIVIL AVIATION AUTHORITY OF THE PHILIPPINES Old MIA Road, Pasay City1301 Metro Manila UNCOTROLLED COPY INTENTIONALLY LEFT BLANK UNCOTROLLED COPY CAR-ANS PART 5 Republic of the Philippines CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES (CAR-ANS) Part 5 UNITS OF MEASUREMENTS TO BE USED IN AIR AND GROUND OPERATIONS 22 APRIL 2016 EFFECTIVITY Part 5 of the Civil Aviation Regulations-Air Navigation Services are issued under the authority of Republic Act 9497 and shall take effect upon approval of the Board of Directors of the CAAP. APPROVED BY: LT GEN WILLIAM K HOTCHKISS III AFP (RET) DATE Director General Civil Aviation Authority of the Philippines Issue 2 15-i 16 May 2016 UNCOTROLLED COPY CAR-ANS PART 5 FOREWORD This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was formulated and issued by the Civil Aviation Authority of the Philippines (CAAP), prescribing the standards and recommended practices for units of measurements to be used in air and ground operations within the territory of the Republic of the Philippines. This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was developed based on the Standards and Recommended Practices prescribed by the International Civil Aviation Organization (ICAO) as contained in Annex 5 which was first adopted by the council on 16 April 1948 pursuant to the provisions of Article 37 of the Convention of International Civil Aviation (Chicago 1944), and consequently became applicable on 1 January 1949. The provisions contained herein are issued by authority of the Director General of the Civil Aviation Authority of the Philippines and will be complied with by all concerned.
    [Show full text]
  • Project Physics Reader 4, Light and Electromagnetism
    DOM/KEITRESUME ED 071 897 SE 015 534 TITLE Project Physics Reader 4,Light and Electromagnetism. INSTITUTION Harvard 'Jail's, Cambridge,Mass. Harvard Project Physics. SPONS AGENCY Office of Education (DREW), Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 PUB DATE 67 CONTRACT 0M-5-107058 NOTE . 254p.; preliminary Version EDRS PRICE MF-$0.65 HC-49.87 DESCRIPTORS Electricity; *Instructional Materials; Li ,t; Magnets;, *Physics; Radiation; *Science Materials; Secondary Grades; *Secondary School Science; *Supplementary Reading Materials IDENTIFIERS Harvard Project Physics ABSTRACT . As a supplement to Project Physics Unit 4, a collection. of articles is presented.. in this reader.for student browsing. The 21 articles are. included under the ,following headings: _Letter from Thomas Jefferson; On the Method of Theoretical Physics; Systems, Feedback, Cybernetics; Velocity of Light; Popular Applications of.Polarized Light; Eye and Camera; The laser--What it is and Doe0; A .Simple Electric Circuit: Ohmss Law; The. Electronic . Revolution; The Invention of the Electric. Light; High Fidelity; The . Future of Current Power Transmission; James Clerk Maxwell, ., Part II; On Ole Induction of Electric Currents; The Relationship of . Electricity and Magnetism; The Electromagnetic Field; Radiation Belts . .Around the Earth; A .Mirror for the Brain; Scientific Imagination; Lenses and Optical Instruments; and "Baffled!." Illustrations for explanation use. are included. The work of Harvard. roject Physics haS ...been financially supported by: the Carnegie Corporation ofNew York, the_ Ford Foundations, the National Science Foundation.the_Alfred P. Sloan Foundation, the. United States Office of Education, and Harvard .University..(CC) Project Physics Reader An Introduction to Physics Light and Electromagnetism U S DEPARTMENT OF HEALTH.
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • The Young Cluster and Star Forming Region NGC 2264
    Handbook of Star Forming Regions Vol. I Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. The Young Cluster and Star Forming Region NGC 2264 S. E. Dahm Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125, USA Abstract. NGC2264 is a young Galactic cluster and the dominant component of the Mon OB1 association lying approximately 760 pc distant within the local spiral arm. The cluster is hierarchically structured, with subclusters of suspected members spread across several parsecs. Associated with the cluster is an extensive molecular cloud complex spanning more than two degrees on the sky. The combined mass of the remaining molecular cloud cores upon which the cluster is superposed is estimated to 4 be at least ∼3.7×10 M⊙. Star formation is ongoing within the region as evidenced by the presence of numerous embedded clusters of protostars, molecular outflows, and Herbig-Haro objects. The stellar population of NGC2264 is dominated by the O7 V multiple star, S Mon, and several dozen B-type zero-age main sequence stars. X-ray imaging surveys, Hα emission surveys, and photometric variability studies have iden- tified more than 600 intermediate and low-mass members distributed throughout the molecular cloud complex, but concentrated within two densely populated areas between S Mon and the Cone Nebula. Estimates for the total stellar population of the cluster range as high as 1000 members and limited deep photometric surveys have identified ∼230 substellar mass candidates. The median age of NGC2264 is estimated to be ∼3 Myr by fitting various pre-main sequence isochrones to the low-mass stellar population, but an apparent age dispersion of at least ∼5 Myr can be inferred from the broadened sequence of suspected members.
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]
  • The International System of Units (SI) - Conversion Factors For
    NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v
    [Show full text]
  • Physical Quantities: Dimensions and Units
    METR 201: Physical Processes Dr. Dave Dempsey in the Atmosphere Physical Quantities: Dimensions and Units Quantities Dimensions MKS and CGS Units MKS: kilograms (kg) mass mass CGS: grams (gm or g) distance, depth, length, MKS: meters (m) height, width distance CGS: centimeters (cm) time time seconds (sec or s) temperature temperature Kelvin (K) and Centigrade (degrees C) MKS: m2 area distance × distance CGS: cm2 distance × distance MKS: m3 volume × distance 3 (i.e., distance3) CGS: cm mass/volume MKS: kg/m3 density (i.e., mass/distance3) CGS: gm/cm3 speed; velocity (motion) (rate of change of distance/time MKS: m/s position) CGS: cm/s acceleration (distance/time)/time (rate of change of an MKS: m/s2 2 object’s velocity with 2 CGS: cm/s respect to time) (i.e., distance/time ) force (“push” or “pull” that can MKS: kg × m/s2 change an object’s mass × acceleration motion) or (Newton) CGS: gm × cm/s2 (Note that weight is just a mass × distance/time2 special case of a force— (dyne) the force of gravity) 1 METR 201: Physical Processes Dr. Dave Dempsey in the Atmosphere Quantities (cont’d) Dimensions MKS and CGS Units pressure force/area MKS: N/ m2 (collective force exerted or 2 2 by random molecular col- (mass or (kg × m/s )/m (Pascal) lisions against each unit of × distance/time2)/area area of an object’s or 2 surroundings) energy/volume CGS: dyne/cm work MKS: Newton x m (force times distance over force × distance or kg × m2/s2 which the force is applied or or Pa × m3 to an object as the object mass × acceleration (Joule) moves under the influence × distance of the force); or CGS: dyne × cm energy pressure × volume or gm × cm2/s2 (the capacity to do work) (erg) energy/time MKS: J/s power or or N × m/s (energy transferred or force × distance/time or kg × (m/s2) x m/s gained or lost per unit or (Watt) time) force × velocity etc.
    [Show full text]
  • A Star's Birth Holds Early Clues to Life Potential 25 July 2016, by Elizabeth Howell, Astrobiology Magazine
    A star's birth holds early clues to life potential 25 July 2016, by Elizabeth Howell, Astrobiology Magazine serpent). Their goal was to see how light scattering affects the view of the cloud at the mid-infrared wavelength of 8 microns (?m). Ultimately, the astronomers hope to use this data to get a better look inside the clouds. "One thing we have to do is evaluate the mass that is sitting in the center of the cloud, which is ready to collapse to make a star," said co-author Laurent Pagani, a researcher at the National Center for Scientific Research (CNRS) in Paris, France. His former doctoral student, Charlène Lefèvre, led the research. Their work was recently published in the journal Astronomy and Astrophysics under the title, "On the importance of scattering at 8 ?m: Brighter than you think." Funding for the research The dust cloud L183, identified as a likely region of came from CNRS and the French government. future solar systems, was imaged by the Spitzer Space Telescope for research published in 2010. Credit: NASA/JPL-Caltech/Observatoire de Paris/CNRS Our solar system began as a cloud of gas and dust. Over time, gravity slowly pulled these bits together into the Sun and planets we recognize today. While not every system is friendly to life, astronomers want to piece together how these systems are formed. A challenge to this research is the opacity of dust clouds to optical wavelengths (the ones that humans can see). So, astronomers are experimenting with different wavelengths, such as infrared light, to better see the center of dense dust clouds, where young stars typically form.
    [Show full text]