Exploring the Mechanism of Berberine Intervention in Ulcerative Colitis from the Perspective of Inflammation and Immunity Based on Systemic Pharmacology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptNat Genet Author Manuscript. Author manuscript; Author Manuscript available in PMC 2013 June 01. Published in final edited form as: Nat Genet. 2012 December ; 44(12): 1349–1354. doi:10.1038/ng.2466. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis A full list of authors and affiliations appears at the end of the article. Abstract Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol- related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07. The exocrine pancreas is a simple digestive gland of only two primary cell types, each with a single function (Supplementary Figure 1). Recurrent acute pancreatic inflammation can, but does not always, progress to irreversible damage of the gland, including fibrosis, atrophy, pain, and exocrine and endocrine insufficiency,1-3 known as chronic pancreatitis Different genetic and environmental factors produce the same clinical phenotype4. -
Roles and Mechanisms of Kinesin-6 KIF20A in Spindle Organization During Cell Division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She
European Journal of Cell Biology 98 (2019) 74–80 Contents lists available at ScienceDirect European Journal of Cell Biology journal homepage: www.elsevier.com/locate/ejcb Review Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division T ⁎ Wen-Da Wu, Kai-Wei Yu, Ning Zhong, Yu Xiao, Zhen-Yu She Department of Cell Biology and Genetics/Center for Cell and Developmental Biology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China ARTICLE INFO ABSTRACT Keywords: Mitotic kinesin is crucial for spindle assembly and chromosome segregation in cell division. KIF20A/MKlp2, a Kinesin-6 member of kinesin-6 subfamily, plays important roles in the central spindle organization at anaphase and cy- KIF20A tokinesis. In this review, we briefly introduce the discovery and classification of kinesin-6 motors in model Microtubule organisms, and summarize the biochemical features and mechanics of KIF20A proteins. We emphasize the Anaphase complicated interactions of KIF20A with partner proteins, including MKlp1, Plk1 and Rab6. Particularly, we Spindle assembly highlight the regulation of Cdk1 and chromosomal passenger complex on kinesin-6 KIF20A at late stage of Mitosis mitosis. We summarized the multiple functions of KIF20A in central spindle assembly and the formation of cleavage furrow in both mitosis and meiosis. In addition, we conclude the expression patterns of KIF20A in tumorigenesis and its applications in tumor therapy. 1. Introduction kinesin superfamily proteins (Miki et al., 2005). Kinesin-6 subfamily is comprised of KIF20A (Lawrence et al., 2004), KIF20B (MPP1) Kinesin superfamily proteins (KIFs) are molecular motors that (Kamimoto et al., 2001; Matsumoto-Taniura et al., 1996; Westendorf mediate the transport of various cargos, including the newly synthe- et al., 1994) and MKlp1 (Lawrence et al., 2004; Nislow et al., 1990; sized protein complexes, vesicles and mRNAs along the microtubule Sellitto and Kuriyama, 1988). -
Structural Forms of the Human Amylase Locus and Their Relationships to Snps, Haplotypes, and Obesity
Structural Forms of the Human Amylase Locus and Their Relationships to SNPs, Haplotypes, and Obesity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Usher, Christina Leigh. 2015. Structural Forms of the Human Amylase Locus and Their Relationships to SNPs, Haplotypes, and Obesity. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467224 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity A dissertation presented by Christina Leigh Usher to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Genetics and Genomics Harvard University Cambridge, Massachusetts March 2015 © 2015 Christina Leigh Usher All rights reserved. Dissertation Advisor: Professor Steven McCarroll Christina Leigh Usher Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity Abstract Hundreds of human genes reside in structurally complex loci that elude molecular analysis and assessment in genome-wide association studies (GWAS). One such locus contains the three different amylase genes (AMY2B, AMY2A, and AMY1) responsible for digesting starch into sugar. The copy number of AMY1 is reported to be the genome’s largest influence on obesity, yet has gone undetected in GWAS. -
The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by Β-Glucan
University of Southern Denmark The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan Keating, Samuel T.; Groh, Laszlo; van der Heijden, Charlotte D.C.C.; Rodriguez, Hanah; dos Santos, Jéssica C.; Fanucchi, Stephanie; Okabe, Jun; Kaipananickal, Harikrishnan; van Puffelen, Jelmer H.; Helder, Leonie; Noz, Marlies P.; Matzaraki, Vasiliki; Li, Yang; de Bree, L. Charlotte J.; Koeken, Valerie A.C.M.; Moorlag, Simone J.C.F.M.; Mourits, Vera P.; Domínguez-Andrés, Jorge; Oosting, Marije; Bulthuis, Elianne P.; Koopman, Werner J.H.; Mhlanga, Musa; El-Osta, Assam; Joosten, Leo A.B.; Netea, Mihai G.; Riksen, Niels P. Published in: Cell Reports DOI: 10.1016/j.celrep.2020.107548 Publication date: 2020 Document version: Final published version Document license: CC BY-NC-ND Citation for pulished version (APA): Keating, S. T., Groh, L., van der Heijden, C. D. C. C., Rodriguez, H., dos Santos, J. C., Fanucchi, S., Okabe, J., Kaipananickal, H., van Puffelen, J. H., Helder, L., Noz, M. P., Matzaraki, V., Li, Y., de Bree, L. C. J., Koeken, V. A. C. M., Moorlag, S. J. C. F. M., Mourits, V. P., Domínguez-Andrés, J., Oosting, M., ... Riksen, N. P. (2020). The Set7 Lysine Methyltransferase Regulates Plasticity in Oxidative Phosphorylation Necessary for Trained Immunity Induced by β-Glucan. Cell Reports, 31(3), [107548]. https://doi.org/10.1016/j.celrep.2020.107548 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Gene Expression Profiles in Testis of Pigs with Extreme High and Low
BMC Genomics BioMed Central Research article Open Access Gene expression profiles in testis of pigs with extreme high and low levels of androstenone Maren Moe*1,2, Theo Meuwissen2,3, Sigbjørn Lien2,3, Christian Bendixen4, Xuefei Wang4, Lene Nagstrup Conley4, Ingunn Berget3,5, Håvard Tajet1,2 and Eli Grindflek1,3 Address: 1The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway., 2Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway., 3Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway., 4Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark. and 5MATFORSK, Osloveien 1, Ås, Norway. Email: Maren Moe* - [email protected]; Theo Meuwissen - [email protected]; Sigbjørn Lien - [email protected]; Christian Bendixen - [email protected]; Xuefei Wang - [email protected]; Lene Nagstrup Conley - [email protected]; Ingunn Berget - [email protected]; Håvard Tajet - [email protected]; Eli Grindflek - [email protected] * Corresponding author Published: 7 November 2007 Received: 3 July 2007 Accepted: 7 November 2007 BMC Genomics 2007, 8:405 doi:10.1186/1471-2164-8-405 This article is available from: http://www.biomedcentral.com/1471-2164/8/405 © 2007 Moe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. -
Differential Proteomic Analysis of the Pancreas of Diabetic Db/Db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus
Int. J. Mol. Sci. 2014, 15, 9579-9593; doi:10.3390/ijms15069579 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Differential Proteomic Analysis of the Pancreas of Diabetic db/db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus Victoriano Pérez-Vázquez 1,*, Juan M. Guzmán-Flores 1, Daniela Mares-Álvarez 1, Magdalena Hernández-Ortiz 2, Maciste H. Macías-Cervantes 1, Joel Ramírez-Emiliano 1 and Sergio Encarnación-Guevara 2 1 Depto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico; E-Mails: [email protected] (J.M.G.-F.); [email protected] (D.M.-A.); [email protected] (M.H.M.-C.); [email protected] (J.R.-E.) 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; E-Mails: [email protected] (M.H.-O.); [email protected] (S.E.-G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-477-7143-812; Fax: +52-477-7167-623. Received: 4 April 2014; in revised form: 14 May 2014 / Accepted: 19 May 2014 / Published: 30 May 2014 Abstract: Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins. -
Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database. -
Age-Associated DNA Methylation Changes in Immune Genes, Histone Modifiers and Chromatin Remodeling Factors Within 5 Years After Birth in Human Blood Leukocytes
Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes Acevedo, Nathalie; Reinius, Lovisa E; Vitezic, Morana; Fortino, Vittorio; Söderhäll, Cilla; Honkanen, Hanna; Veijola, Riitta; Simell, Olli; Toppari, Jorma; Ilonen, Jorma; Knip, Mikael; Scheynius, Annika; Hyöty, Heikki; Greco, Dario; Kere, Juha Published in: Clinical Epigenetics DOI: 10.1186/s13148-015-0064-6 Publication date: 2015 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Acevedo, N., Reinius, L. E., Vitezic, M., Fortino, V., Söderhäll, C., Honkanen, H., Veijola, R., Simell, O., Toppari, J., Ilonen, J., Knip, M., Scheynius, A., Hyöty, H., Greco, D., & Kere, J. (2015). Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes. Clinical Epigenetics, 7, [34]. https://doi.org/10.1186/s13148-015-0064-6 Download date: 30. Sep. 2021 Acevedo et al. Clinical Epigenetics (2015) 7:34 DOI 10.1186/s13148-015-0064-6 RESEARCH Open Access Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes Nathalie Acevedo1,2, Lovisa E Reinius2, Morana Vitezic3, Vittorio Fortino4, Cilla Söderhäll2, Hanna Honkanen5, Riitta Veijola6, Olli Simell7, Jorma Toppari8, Jorma Ilonen9, Mikael Knip10,11,13, Annika Scheynius1, Heikki Hyöty5,12, Dario Greco4 and Juha Kere2,13* Abstract Background: Age-related changes in DNA methylation occurring in blood leukocytes during early childhood may reflect epigenetic maturation. We hypothesized that some of these changes involve gene networks of critical relevance in leukocyte biology and conducted a prospective study to elucidate the dynamics of DNA methylation. -
Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed. -
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 SULT2B1 Purified Mouse Monoclonal Antibody (Mab) Catalog # AM8716b Specification SULT2B1 - Product Information Application WB,E Primary Accession O00204 Reactivity Human Predicted Human Host Mouse Clonality monoclonal Isotype IgG1,κ Calculated MW 41308 SULT2B1 - Additional Information Gene ID 6820 Other Names Sulfotransferase family cytosolic 2B member 1, ST2B1, Sulfotransferase 2B1, All lanes : Anti-SULT2B1 at 1:2000 dilution 2.8.2.2, Alcohol sulfotransferase, Lane 1: MCF-7 whole cell lysate Lane 2: Hydroxysteroid sulfotransferase 2, MDA-MB-468 whole cell lysate SULT2B1, HSST2 Lysates/proteins at 20 µg per lane. Secondary Goat Anti-mouse IgG, (H+L), Target/Specificity Peroxidase conjugated at 1/10000 dilution. This antibody is generated from a mouse Predicted band size : 41 kDa immunized with a reconbinant protein from Blocking/Dilution buffer: 5% NFDM/TBST. human. Dilution WB~~1:8000 Format Purified monoclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein G column, followed by dialysis against PBS. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. Precautions SULT2B1 is for research use only and not for use in diagnostic or therapeutic Anti-SULT2B1 at 1:8000 dilution + MCF-7 procedures. whole cell lysate Lysates/proteins at 20 µg per lane. Secondary Goat Anti-mouse IgG, Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 (H+L), Peroxidase conjugated at 1/10000 SULT2B1 - Protein Information dilution. -
Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer
ORIGINAL RESEARCH published: 15 April 2021 doi: 10.3389/fonc.2021.566539 Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer Qinglian He 1, Ziqi Li 1, Jinbao Yin 1, Yuling Li 2, Yuting Yin 1, Xue Lei 1 and Wei Zhu 1* 1 Department of Pathology, Guangdong Medical University, Dongguan, China, 2 Department of Pathology, Dongguan People’s Hospital, Southern Medical University, Dongguan, China Background: Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. Edited by: This work screens autophagy-related markers and signaling pathways that may Fenglin Liu, Fudan University, China participate in the development of CRC, and establishes a prognostic model of CRC Reviewed by: based on autophagy-associated genes. Brian M. Olson, Emory University, United States Methods: Gene transcripts from the TCGA database and autophagy-associated gene Zhengzhi Zou, data from the GeneCards database were used to obtain expression levels of autophagy- South China Normal University, China associated genes, followed by Wilcox tests to screen for autophagy-related differentially Faqing Tian, Longgang District People's expressed genes. Then, 11 key autophagy-associated genes were identified through Hospital of Shenzhen, China univariate and multivariate Cox proportional hazard regression analysis and used to Yibing Chen, Zhengzhou University, China establish prognostic models. Additionally, immunohistochemical and CRC cell line data Jian Tu, were used to evaluate the results of our three autophagy-associated genes EPHB2, University of South China, China NOL3, and SNAI1 in TCGA.