Electrical Design and Operation of Sustainable Business Parks

Total Page:16

File Type:pdf, Size:1020Kb

Electrical Design and Operation of Sustainable Business Parks Electrical design and operation of sustainable business parks Simon De Clercq Supervisor: Prof. dr. ir. Lieven Vandevelde Counsellor: Dr. Brecht Zwaenepoel Master's dissertation submitted in order to obtain the academic degree of Master of Science in Electromechanical Engineering Department of Electrical Energy, Metals, Mechanical Constructions & Systems Chair: Prof. dr. ir. Luc Dupré Faculty of Engineering and Architecture Academic year 2016-2017 Electrical design and operation of sustainable business parks Simon De Clercq Supervisor: Prof. dr. ir. Lieven Vandevelde Counsellor: Dr. Brecht Zwaenepoel Master's dissertation submitted in order to obtain the academic degree of Master of Science in Electromechanical Engineering Department of Electrical Energy, Metals, Mechanical Constructions & Systems Chair: Prof. dr. ir. Luc Dupré Faculty of Engineering and Architecture Academic year 2016-2017 The author gives permission to make this master dissertation available for consultation and to copy parts of this master dissertation for personal use. In the case of any other use, the copyright terms have to be respected, in particular with regard to the obligation to state expressly the source when quoting results from this master dissertation. Ghent, June 2017 The promotor The advisor The author Prof. dr. ir. L. Vandevelde Dr. B. Zwaenepoel Simon De Clercq Preface It is a pleasure to be able to finish my engineering studies by writing this dissertation thesis. This work, and the learning process that preceded it, have allowed me to explore the mul- tidisciplinary world of industrial symbiosis and the integration of renewable power sources. It has taught me to enjoy the freedom of independent research and gave me the opportunity to broaden my vision on renewable energy. I would like to thank my promotors professor Vandevelde and Brecht Zwaenepoel for their support and guidance over the course of this work. I also particularly thank Hendrik Ver- meersch for his input throughout the year; our conversations on the Belgian energy sector were a pleasure. I would like to gratefully acknowledge Christof Deckmyn for his explanation on genetic algorithms. I want to thank Mieke Gevaerts at SOGent for introducing me to Eiland Zwijnaarde and showing me a glimpse of what urban development is. To everyone who took their time to review my writing, Brecht, Hendrik and Samie: thank you very much. Finally, I would like to thank everyone who was there for me, my family, friends, fellow students, house mates, . Thank you for making this year so enjoyable. Summary Electrical design and operation of sustainable business parks Simon De Clercq Supervisor: Prof. dr. ir. Lieven Vandevelde Counsellor: Dr. Brecht Zwaenepoel Faculty of Engineering and Architecture Ghent University Academic Year 2016-2017 Abstract - In this study a techno-economic optimisation is carried out on the design and operation of energy systems on newly-developed industrial parks. An optimal sizing model is constructed that uses a genetic algorithm to find the optimal system configuration of an on- grid power system. The system is evaluated according to its life cycle cost and green house gas emissions. While optimal sizing algorithms have been developed for different types of hybrid power systems, these often do not consider the socio-organisational drivers and limitations for inter-firm energy supply facilities. This work presents a list of recommendations for industrial park developers to determine and implement the park's optimal power system. The current development of the project Eiland Zwijnaarde in Ghent provides the basis for a concrete case study in which the opportunities for an inter-firm power system are identified. The main results suggest that a significant share of renewable generation is part of the optimal configuration under varying mean electricity and gas prices. A medium sized cogeneration unit can compensate the renewables' intermittent behaviour and lower the thermal energy cost. Large scale electrical storage is found not to be profitable under the used control structure and tariff scheme. A gradual ingress of firms in the park and the subsequent sloped annual energy demand has a negative effect on the fraction of shared facilities in the power system's optimal configuration. Keywords - On-grid hybrid power system, Optimal sizing, Eco-industrial Park, Industrial microgrid, Genetic Algorithm, Fuzzy logic Electrical design and operation of sustainable business parks Simon De Clercq Supervisor(s): Prof. dr. ir. Lieven Vandevelde, Dr. Brecht Zwaenepoel Ghent University, Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical constructions & Systems Academic year 2016-2017 Abstract— In this study a techno-economic optimisation is carried out ficantly reduce CO2 emissions and mitigate the effects of global on the design and operation of energy systems on newly-developed indus- warming. trial parks. An optimal sizing model is constructed that uses a genetic algorithm to find the optimal system configuration of an on-grid power An industrial park’s power system is characterised by loc- system. The system is evaluated according to its life cycle cost and green alised electric and thermal loads, high energetic consumption house gas emissions. While optimal sizing algorithms have been developed and spatial opportunities for the integration of renewable en- for different types of hybrid power systems, these often do not consider ergy sources. For these reasons, the prevailing paradigm for the socio-organisational drivers and limitations for inter-firm energy sup- ply facilities. This work presents a list of recommendations for industrial electric distribution on an EIP is that of a microgrid. Accord- park developers to determine and implement the park’s optimal power sys- ing to [6], the microgrid concept assumes a cluster of loads tem. The current development of the project Eiland Zwijnaarde in Ghent and microsources operating as a single controllable system that provides the basis for a concrete case study in which the opportunities for an inter-firm power system are identified. The main results suggest that provides both power and heat to the local area. The compon- a significant share of renewable generation is part of the optimal config- ents in this energy cluster function independently in possible uration under varying mean electricity and gas prices. A medium sized interaction with the surrounding macrogrid [7]. This results in cogeneration unit can compensate the renewables’ intermittent behaviour enhanced local control, which can lower the cost of energy dis- and lower the thermal energy cost. Large scale electrical storage is found not to be profitable under the used control structure and tariff scheme. A tribution, aid the integration of renewable sources and thereby gradual ingress of firms in the park and the subsequent sloped annual en- reduce green house gas emissions [8]. Furthermore, the pos- ergy demand have a negative effect on the fraction of shared facilities in the sibility of islanding improves the system security of supply by power system’s optimal configuration. detaching the microgrid’s reliability from that of the macrogrid. Keywords—On-grid hybrid power system, Optimal sizing, Eco-industrial Park, Industrial microgrid, Genetic Algorithm, Fuzzy logic Several methods for the optimal sizing of hybrid power sys- tems have been developed [9]. In many cases the power sys- tem is a stand-alone microgrid and consists of wind generation, I. INTRODUCTION solar PV, a micro source and electrical storage [10] [11] [12] Limitless economic growth, ecological collapse and resource [13] [14]. An industrial park’s high electrical demand, both in scarcity are forcing industry as a whole to rethink its funda- terms of quantity and quality, makes permanent islanding a com- mental principles and resort to more sustainable practices [1]. plicated design choice [15]. Furthermore, dense electrification As defined in the Brundtland Report [2], sustainable develop- in Flanders means that an industrial park can be connected to ment is development that meets the needs of the present without the macrogrid at a relatively low cost. An on-grid power system compromising the ability of future generations to meet their own is therefore considered in this study. needs. In this discourse, industrial symbiosis has emerged as While cogeneration offers high efficiency and flexibility [16], an approach in which traditionally separate industries collabor- only very few papers dealing with the optimal sizing of hybrid ate in order to find synergies that offer competitive advantages. power system take this feature into account [11]. A CHP model This can involve physical exchange of materials, energy, wa- is developed and included in the system model. ter, etc. [3]. Geographic proximity is an important facilitating A genetic algorithm is selected to carry out the optimisa- factor, which is why eco-industrial parks (EIP), with their col- tion process because of its computational efficiency in multi- lective infrastructure and spatial density of firms, have become objective optimisation problems with a high number of optim- an important topic of study in the field of sustainability [1]. ised variables [10] [11]. It has been used extensively in the op- The transition towards a carbon neutral industrial sector is timisation of hybrid power systems [9] [11]. driven by the global phenomenon of climate change. The IPCC II. HYBRID POWER SYSTEM MODEL warns that the continued emission of greenhouse
Recommended publications
  • The Economics of Solar Power
    The Economics of Solar Power Solar Roundtable Kansas Corporation Commission March 3, 2009 Peter Lorenz President Quanta Renewable Energy Services SOLAR POWER - BREAKTHROUGH OR NICHE OPPORTUNITY? MW capacity additions per year CAGR +82% 2000-08 Percent 5,600-6,000 40 RoW US 40 +43% Japan 10 +35% 2,826 Spain 55 1,744 1,460 1,086 598 Germany 137 241 372 427 2000 01 02 03 04 05 06 07 2008E Demand driven by attractive economics • Strong regulatory support • Increasing power prices • Decreasing solar system prices • Good availability of capital Source: McKinsey demand model; Solarbuzz 1 WE HAVE SEEN SOME INTERESTING CHANGES IN THE U.S. RECENTLY 2 TODAY’S DISCUSSION • Solar technologies and their evolution • Demand growth outlook • Perspectives on solar following the economic crisis 3 TWO KEY SOLAR TECHNOLOGIES EXIST Photovoltaics (PV) Concentrated Solar Power (CSP) Key • Uses light-absorbing material to • Uses mirrors to generate steam characteristics generate current which powers turbine • High modularity (1 kW - 50 MW) • Low modularity (20 - 300 MW) • Uses direct and indirect sunlight – • Only uses direct sunlight – specific suitable for almost all locations site requirements • Incentives widely available • Incentives limited to few countries • Mainly used as distributed power, • Central power only limited by some incentives encourage large adequate locations and solar farms transmission access ~ 10 Global capacity ~ 0.5 GW, 2007 Source: McKinsey analysis; EPIA; MarketBuzz 4 THESE HAVE SEVERAL SUB-TECHNOLOGIES Key technologies Sub technologiesDescription
    [Show full text]
  • Impact of Large Scale Wind Power Integration on Operating Reserves in Spain
    UNIVERSIDAD PONTIFICIA COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) MÁSTER OFICIAL EN EL SECTOR ELÉCTRICO Master in Economics and Management of Network Industries TESIS DE MÁSTER Impact of Large Scale Wind Power Integration on Operating Reserves in Spain AUTOR: Metin INAN MADRID, February 2014 1 | P a g e UNIVERSIDAD PONTIFICIA COMILLAS ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) MÁSTER OFICIAL EN EL SECTOR ELÉCTRICO Master in Economics and Management of Network Industries TESIS DE MÁSTER Impact of Large Scale Wind Power Integration on Operating Reserves in Spain AUTOR: Metin INAN SUPERVISOR: Pablo FRIAS MARIN MADRID, February 2014 2 | P a g e Summary English: Wind power besides its benefits at large scale integration levels brings certain challenges into electricity systems. The most concerned drawbacks are due to the variability of wind energy and the accuracy of forecasting the wind power production. These characteristics of wind power cause some negative effects regarding the operation of power systems both on the long and short-term such as the need of voltage management, transmission or distribution losses, increase in operating reserves, discarded wind energy and system reliability issues. The purpose of this thesis is to demonstrate the impacts of wind power in Spain on operating reserves and to quantify the additional costs -if there is any- due to the integration of large scale wind power. Español: La energía eólica además de sus beneficios en los niveles de integración a gran escala trae algunos retos en los sistemas eléctricos. Los inconvenientes más afectados son debido a la variabilidad de la energía eólica y la exactitud de la predicción de la producción eólica.
    [Show full text]
  • Solar Thermal and Concentrated Solar Power Barometers 1 – EUROBSERV’ER –JUIN 2017 – EUROBSERV’ER BAROMETERS POWER SOLAR CONCENTRATED and THERMAL SOLAR
    1 2 - 4.6% The decrease of the solar thermal market in the European Union in 2016 Evacuated tube solar collectors, solar thermal installation in Ireland SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS A study carried out by EurObserv’ER. solar solar concentrated and thermal power barometers solar solar concentrated and thermal power barometers he European solar thermal market is still losing pace. According to the Tpreliminary estimates from EurObserv’ER, the solar thermal segment dedicated to heat production (domestic hot water, heating and heating networks) contracted by a further 4.6% in 2016 down to 2.6 million m2. The sector is pinning its hopes on the development of the collective solar segment that includes industrial solar heat and solar district heating to offset the under-performing individual home segment. ince 2014 European concentrated solar power capacity for producing Selectricity has been more or less stable. New project constructions have been a long time coming, but this could change at the end of 2017 and in 2018 essentially in Italy. 51 millions m2 2 313.7 MWth The cumulated surfaces of solar thermal Total CSP capacity in operation Glenergy Solar in operation in the European Union in 2016 in the European Union in 2016 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 SOLAR THERMAL AND CONCENTRATED SOLAR POWER BAROMETERS – EUROBSERV’ER – JUIN 2017 3 4 The world largest solar thermal Tabl. n° 1 district heating solution - Silkeborg, Denmark (in operation end 2016) Main solar thermal markets outside European Union Total cumulative capacity Annual Installed capacity (in MWth) in operation (in MWth) 2015 2016 2015 2016 China 30 500 27 664 309 500 337 164 United States 760 682 17 300 17 982 Turkey 1 500 1 467 13 600 15 067 India 770 894 6 300 7 194 Japan 100 50 2 400 2 450 Rest of the world 6 740 6 797 90 944 97 728 Total world 39 640 36 660 434 700 471 360 Source: EurObserv’ER 2017 new build, because of the construction is now causing great concern, where as a water production.
    [Show full text]
  • A Business Model Review for Multiple Regulatory Environments in Europe
    How to Create Value through Aggregation: A Business Model Review for Multiple Regulatory Environments in Europe Simon De Clercq∗, Daniel Schwabenedery, Carlo Corinaldesiy, Odilia Bertetti∗ and Achim Woyte∗ ∗ 3E, Grids, Storage & Markets Kalkkaai 6, 1000 Brussels, Belgium Email: [email protected] y Energy Economics Group, Vienna University of Technology Gusshausstrasse 25-29/E370-3, 1040 Vienna, Austria Abstract—The rising share of distributed generation is as an important facilitator of system flexibility. However, the having a profound impact on European electricity markets. industry is still facing several teething problems that need to Increased variability and price volatility require a more robust be overcome before this new market position can be con- power system that allows alternative forms of production and consumption. Aggregation of renewable energy sources in a solidated. Problems are present both on the regulatory side, combined portfolio can significantly accelerate their market in the form of barriers to market entry, and the operational integration by diversifying revenue mechanisms, offering al- side, where best practices have not been established. A wide ternative ownership options and increasing asset valorisation. variety of aggregation business models exists and it remains Today we see a variety of business models for aggregation, a question which business models create sufficient value in which are largely driven by the national regulatory framework and the distributed resources available for which aggregation the long term to justify an aggregator’s existence in European can create value. This paper reviews three aggregator business power markets. models that were conceived by commercial aggregators in This paper reviews three aggregator business models different regulatory environments in Europe.
    [Show full text]
  • European Short-Term Electricity Market Designs Under High Penetration of Wind Power
    European Short-term Electricity Market Designs under High Penetration of Wind Power European Short-term Electricity Market Designs under High Penetration of Wind Power PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op donderdag 11 september 2014 om 10:00 uur door José Pablo CHAVES ÁVILA Master in Economics and Management of Network Industries Universidad Pontificia de Comillas & Université Paris-Sud geboren te San José, Costa Rica. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. ir. M.P.C. Weijnen Copromotor: Dr. ir. R.A. Hakvoort Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. ir. M.P.C. Weijnen Technische Universiteit Delft, promotor Dr.ir. R.A. Hakvoort Technische Universiteit Delft, copromotor Prof.dr.ir. L. Söder Kungliga Tekniska Högskolan Prof.dr.ir. M. Rivier Abbad Universidad Pontificia de Comillas Prof.ir. M.A.M.M. van der Meijden Technische Universiteit Delft Prof.dr. C. von Hirschhausen Technische Universität Berlin Prof.dr. J.M Glachant European University Institute Prof.dr.ir. P.M. Herder Technische Universiteit Delft, reservelid ISBN 978-90-79787-63-0 Published and distributed by: Next Generation Infrastructures Foundation P.O. Box 5015, 2600 GA Delft, The Netherlands Phone:+31 15 278 2564 Fax: +31 15 278 2563 E-mail: [email protected] Website: http://www.nextgenerationinfrastructures.eu This research was funded by the European Commission through the Erasmus Mundus Joint Doctorate Program, Delft University of Technology and Next Generation In- frastructures Foundation.
    [Show full text]
  • Wind Farm Struggles in Flanders Fields a Sociological Perspective
    Energy Policy 59 (2013) 321–328 Contents lists available at SciVerse ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Wind farm struggles in Flanders fields: A sociological perspective Yves Pepermans n, Ilse Loots University of Antwerp, Sint-Jacobsstraat 2, Antwerpen 2000, Belgium HIGHLIGHTS Flemish wind farm siting is characterized by social, spatial and political distances. These symbolic distances make the legitimacy of new infrastructure less self-evident. The current ‘decide-announce and defend’ siting procedure is a problem for acceptance. We propose a siting procedure for wind farms which allows democratic debate over alternatives between stakeholders article info abstract Article history: In this article we analyse how protests against wind farms reflect symbolic distances or alienations, Received 9 May 2012 typical to Flanders (Belgium), as consequences of wider societal trends. A thorough qualitative study of Accepted 22 March 2013 three wind farm projects in Flanders, including group discussions and interviews with crucial Available online 22 April 2013 stakeholders, shows that the current siting process reinforces disagreements and leads to a stalemate Keywords: between different framings of the wind farms. Using insights from our case studies and the literature, we Social acceptance argue for spatial planning which strives for a negotiation over acceptable solutions rather than Wind energy acceptance of fixed proposals. NIMBY & 2013 Elsevier Ltd. All rights reserved. 1. Introduction continuous exposure to sound or flicker shadow of wind turbines can impact upon people's physical or psychological health Conflicts about the siting of wind farms all over the world has (Blackburn et al., 2009). The perception of the impact of a wind inspired a substantial body of academic literature.
    [Show full text]
  • CPXX802 En.Pdf
    SCIENTIFIC SUPPORT PLAN FOR A SUSTAINABLE DEVELOPMENT POLICY (SPSD II) Part 1: Sustainable production and consumption patterns FINAL REPORT T THE ROLE OF RENEWABLE ENERGY TECHNOLOGIES IN SECURING ELECTRICAL SUPPLY IN BELGIUM CP/XX/802 March 2006 Paula Souto Pérez – Joris Soens – Edwin Haesen Ronnie Belmans - Johan Driesen K. U. Leuven – ESAT / ELECTA Achim Woyte – Geert Palmers 3 E Jo Neyens Imec Pépin Tchouate U. C. L. Rue de la Science 8 Wetenschapsstraat 8 B-1000 Brussels Belgium Tel: +32 (0)2 238 34 11 – Fax: +32 (0)2 230 59 12 http://www.belspo.be Contact person: Mrs. Anne Fierens Secretariat: +32 (0)2 238 36 60 Neither the Belgian Science Policy nor any person acting on behalf of the Belgian Science Policy is responsible for the use which might be made of the following information. The authors are responsible for the content. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without indicating the reference. Project CP/XX/802 – “The role of renewable energy technologies in securing electrical supply in Belgium” Contents CONTENTS........................................................................................................ 3 TECHNICAL REPORT....................................................................................... 6 1 WORK PACKAGE 1: PROJECT COORDINATION (K.U.LEUVEN) ........... 6 2 WORK PACKAGE 2: INVENTORY OF ELECTRICAL ASPECTS INFLUENCING THE SECURITY OF THE SUPPLY (K.U.LEUVEN)
    [Show full text]
  • Etude Du Potentiel Éolien - Repowering Du Parc Éolien De Perwez
    Etude du potentiel éolien - Repowering du parc éolien de Perwez Rapport final Client : Eneco Etude du potentiel éolien – Projet repowering Perwez Version(s) NUMÉRO DATE AUTEUR MODIFICATIONS 1.1 23/05/2019 Loïc Houtart Pierre-Antoine Mali 2.1 19/06/2019 Loïc Houtart - Prise en compte des projets autorisés. Pierre-Antoine Mali - Impact du repowering sur les projets existants et autorisés 2..2 26/06/2019 Pierre-Antoine Mali - Prise en compte de la capacité d’injection maximale au poste de rac- cordement 2 GreenPlug Sprl – Rue Peter Benoit, 26 – 1040 Brussels – BELGIUM Etude du potentiel éolien – Projet repowering Perwez Table des matières SYNTHÈSE DES RÉSULTATS .......................................................................................................... 4 1. INTRODUCTION ...................................................................................................................... 5 2. MÉTHODOLOGIE .................................................................................................................... 6 3. DONNÉES UTILISÉES.............................................................................................................. 7 3.1. Le projet ....................................................................................................................................... 7 3.2. Les éoliennes .............................................................................................................................. 9 3.3. Les données de vent ..................................................................................................................
    [Show full text]
  • Digital Solutions to Optimize PV's LCOE
    小三相最终用户主打广告5.pdf 1 2019/4/22 16:44:37 Special | 2019 | 78538 FusionSolar Residential Smart PV Solution Digital PV Solution for Ultimate Safety & Better Experience Solar grid parity French solar explorers accelerates with AI Next generation solar expands ULTRA SAFETY domestically and to new frontiers AI Powered AFCI to Proactively Mitigate Fire Risk Huawei plays a significant role in digitalization for smart PV Pages 26 – 29 Pages 4 – 7 HIGHER YIELDS The bifacial boost Shedding light Optimizing Each Module's Performance Independently AI algorithms crunch big data on oil kingdom to maximize energy yields Saudi Arabia’s first utility-scale Pages 9 – 11 PV project and the CEO behind it BATTERY READY Pages 32 – 35 Integrated Battery Interface for Future Quick Expansion C M Y CM Digital solutions MY CY CMY K to optimize PV’s LCOE SPECIAL EDITION DEVELOPED IN PARTNERSHIP WITH HUAWEI solar.huawei.com @ Huawei FusionSolar SUN2000-3-10KTL Optimizer Editorial The Force of Digitalization Photo: pv magazine/Thomas Beetz Located high up in the Himalayas, a 20 MW solar PV proj- ect rests upon the mountains. The ground-mounted installa- tion is a challenging one, also for people like Matthias Wagner, not acquainted with such elevations. Wagner is the Executive Director of Global Channel Sales Management in the Smart PV Business Unit at Huawei. In this position, he has to travel to countries around the globe to meet customers and colleagues to handle a wide variety of PV projects. When we met with Wagner in March, he highlighted how such a project poses challenges for the equipment used, be it the solar panels or the inverters.
    [Show full text]
  • Concentrating Solar Power Clean Power on Demand 24/7 Concentrating Solar Power: Clean Power on Demand 24/7
    CONCENTRATING SOLAR POWER CLEAN POWER ON DEMAND 24/7 CONCENTRATING SOLAR POWER: CLEAN POWER ON DEMAND 24/7 © 2020 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW | Washington DC 20433 | USA 202-473-1000 | www.worldbank.org This work is a product of the staff of the World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of the World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries Rights and Permissions The material in this work is subject to copyright. Because the World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for non-commercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to World Bank Publications, World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2625; [email protected]. All images remain the sole property of their source and may not be used for any purpose without written permission from the source. Attribution—Please cite the work as follows: World Bank. 2021. Concentrating Solar Power: Clean Power on Demand 24/7.
    [Show full text]
  • Solar Thermal Electricity Global Outlook 2016 2
    1 SOLAR THERMAL ELECTRICITY GLOBAL OUTLOOK 2016 2 This type of solar thermal power has an inexhaustible energy source, proven technology performance, and it is environmentally safe. It can be generated in remote deserts and transported to big populations who already have power supply problems. So what are we waiting for? Solar Thermal Electricity: Global Outlook 2016 Solar Image: Crescent Dunes, 10,347 tracking mirrors (heliostats), each 115.7 square meters, focus the sun’s energy onto the receiver ©SolarReserve Content 3 For more information, please contact: Foreword ........................................................ 5 [email protected] Executive Summary ......................................... 8 [email protected] 1. Solar Thermal Electricity: The Basics ............. 17 The Concept .........................................................18 Project manager & lead authors: Dr. Sven Requirements for STE .............................................19 Teske (Greenpeace International), Janis Leung How It Works – the STE Technologies.......................21 (ESTELA) Dispatchability and Grid Integration .........................21 Other Advantages of Solar Thermal Electricity ...........23 Co-authors: Dr. Luis Crespo (Protermosolar/ ESTELA), Marcel Bial, Elena Dufour (ESTELA), 2. STE Technologies and Costs ....................... 25 Dr. Christoph Richter (DLR/SolarPACES) Types of Generators ...............................................26 Editing: Emily Rochon (Greenpeace Parabolic Trough ....................................................28
    [Show full text]
  • Evaluation of the Coupling of a Hybrid Power Plant with a Water Generation System
    applied sciences Article Evaluation of the Coupling of a Hybrid Power Plant with a Water Generation System Amanda del Moral and Fontina Petrakopoulou * Department of Thermal and Fluid Engineering, University Carlos III of Madrid, Avda. de la Universidad 30, 28911 Leganés (Madrid), Spain; [email protected] * Correspondence: [email protected] Received: 20 September 2019; Accepted: 11 November 2019; Published: 20 November 2019 Abstract: This paper presents the design and analysis of an energy/water system that combines a 20 MW hybrid concentrated solar/biomass power plant with an advanced wastewater treatment facility. Designed to be installed in one of the most demanding areas of the Iberian Peninsula, the Spanish region of Andalusia, this plant seeks to provide the area with potable water and electricity. The solar block works with a mixture of molten salts, while the biomass backup system of the power plant uses olive pomace. The implementation of a direct potable reuse facility further enhances the sustainability of the project. Urban sewage from the region is collected and passed through a series of purification procedures in order to generate potable water ready to be directly blended into the water distribution system. A sensitivity analysis is conducted to determine the feasibility of the co-generation of electricity and water in the area. With a capacity factor of 85% and an annual operation of 7,446 hours, the hybrid solar/biomass power plant generates 148.92 GWh. Exergetic analyses have been realized for two extreme cases: exclusive use of the solar block and exclusive use of the biomass system. An overall plant exergetic efficiency of 15% is found when the solar block is used and an efficiency of 34% is calculated when the biomass support system is used.
    [Show full text]