Vol58-Issue5-P033-E.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Vol58-Issue5-P033-E.Pdf CERN Courier June 2018 Faces & Places A PPOINTMENTS Tanaka to head SLAC neutrino group Neutrino physicist Hirohisa Tanaka has in 2002 and went on to work on neutrino moved from the University of Toronto experiments at Fermilab (MiniBooNE) and (Canada) to SLAC National Accelerator J-PARC (T2K). The SLAC group’s growing Laboratory in the US to expand the lab’s Harmer/SLACD activities include developing the data role in the Deep Underground Neutrino readout and reconstruction for liquid-argon Experiment (DUNE). The experiment, detectors like those used in DUNE, and the which will study neutrinos produced by design of the near detector at Fermilab. Fermilab’s Long-Baseline Neutrino Facility “If we’re lucky, we may see the first approximately 1300 km away, is due to hints of asymmetries between neutrinos and start up in the mid-2020s and will address antineutrinos with current experiments,” critical issues such as whether CP violation says Tanaka. “In the long run, DUNE exists in the neutrino sector and what is the will give us the definite answers due to hierarchy of the neutrino masses. Tanaka is to head a group studying data its longer baseline and higher-power Tanaka completed his PhD at SLAC from DUNE. neutrino beam.” Light Source, where he is head of the SESAME appoints ILSF accelerator physics group, and will be on leave from the John Adams Institute at the technical director University of Oxford. “It is great to be part of a project that The third-generation light source promotes science and peace, and it is a SESAME in Jordan has appointed privilege to carry on the work done by my Riccardo Bartolini as technical director, predecessors Einfeld, Vignola, Nadji and overseeing the facility’s infrastructure Huttel,” he said. through its start-up phase. Bartolini’s SESAME was established under the experience ranges from synchrotron auspices of UNESCO in 2002 and is light sources to free-electron lasers and modeled closely on CERN. It produced colliders. While serving as SESAME’s “first light” in 2017 and, last month, technical director, he will divide his time Riccardo Bartolini will oversee SESAME’s inaugurated a second beamline between Jordan and the UK’s Diamond infrastructure. (CERN Courier March 2017 p8). A WARDS Four winners of 2018 Edison Volta Prize VACUUM SOLUTIONS The 2018 European Physical Society (EPS) Edison Volta Prize, organised in conjunction with the Fondazione Alessandro Volta and energy firm Edison S.p.A., has been awarded FROM A SINGLE SOURCE to four gravitational-wave researchers. Alain Brillet (Observatoire de la Cote d’Azur, Nice, France), Karsten Danzmann Pfei er Vacuum is proud to have been a supplier of innovative and customized vacuum solutions to the particle accelerator (Max-Planck-Institut für Gravitationsphysik community for more than 50 years. Our complete product portfolio for vacuum technology, our focus on competent and and Leibniz University, Hannover, specialized advice supported by robust and reliable service, makes Pfei er Vacuum the partner of choice for the analytical Germany), Adalberto Giazotto (INFN, Pisa) and research communities worldwide. and Jim Hough (University of Glasgow, UK) were recognised “for the development, ■ Pumps for vacuum generation down to UHV in their respective countries, of key ■ Vacuum measurement and analysis equipment technologies and innovative experimental Gravitational-wave researchers (left to right) Alain Brillet, Karsten Danzmann, Visit us at booth 19 & 20, solutions, that enabled the advanced Adalberto Giazotto and Jim Hough. Image credits (from left to right): M Perciballi, ■ Leak detectors and integrity test systems interferometric gravitational-wave A Hindemith, INFN, University of Glasgow. ■ System technology and contamination management solutions 15th European detectors LIGO and Virgo to detect the first ■ Chambers and components Vacuum Conference, gravitational-wave signals from mergers of Edison Volta Prize is given biennially to Giazatto (CERN Courier April 2018 p55) black holes and of neutron stars.” The EPS individuals or groups of up to three people. was awarded posthumously. Are you looking for a perfect vacuum solution? Please contact us: 17th – 22nd June, Pfeiffer Vacuum (Schweiz) AG · T +41 44 444 22 55 · F +41 44 444 22 66 Geneva, Switzerland [email protected] · www.pfeiffer-vacuum.com 33 CCJun18_Faces&Places_v5.indd 33 18/05/2018 11:18 CERNCOURIER www. V OLUME 5 8 N UMBER 5 J U N E 2 0 1 8 CERN Courier June 2018 CERN Courier June 2018 Faces & Places Faces & Places O UTREACH Accelerator awards presented at IPAC Brazil signs up to IPPOG collaboration On 3 May, during a ceremony at the International Particle Accelerator The International Particle Physics Outreach Ignacio de Bediaga Hickman (left), chair Conference in Vancouver (p36), the Group (IPPOG) has welcomed Brazil as a of the Brazilian national network for American Physical Society (APS) and new member, boosting efforts to expand the Marcelloni C high-energy physics RENAFAE, signing the the Institute of Electrical and Electronics group’s international impact on scientific MoU on 26 April with IPPOG chairs Engineers (IEEE) presented their 2018 outreach. Established 20 years ago as a Hans Peter Beck (right) and Steve Goldfarb. awards recognising excellence in the European network, IPPOG has grown to accelerator field. a global network that involves countries, several countries to formally join the The recipient of the 2018 thesis award laboratories and scientific collaborations collaboration in recent months. In April, granted by the APS division of physics of active in particle physics. It is best known for at the 15th IPPOG collaboration meeting beams is Sergey Antipov of CERN, who From left to right: Hermann Grunder, Sandra Biedron, Martina Martinello and its international masterclasses programme, in Pisa, two further countries – Slovenia was honoured “for experimental studies and Sergey Antipov at the Vancouver ceremony. (Image credits: IPAC18.) which evolved in the late 1990s from and the Czech Republic – confirmed their analysis of the electron cloud build-up and national outreach efforts. Following the membership, while Greece and Austria corresponding instability in accelerators last year (CERN Courier December 2017 of accelerators in medical research. Sandra model of collaboration in experimental are finalising the process to sign IPPOG’s with combined function magnets and for p35), also received his award during the Biedron of the University of New Mexico particle physics, IPPOG became a MoU. That will bring IPPOG’s total the development of an effective mitigation Vancouver ceremony. received the award “for broad impact in formal scientific collaboration based on a Brazil, which will be officially number of members to 26 – including the technique applied in Fermilab’s recycler The IEEE Particle Accelerator Science accelerator science and technology”, which memorandum of understanding (MoU) in represented in IPPOG by Marcelo Munhoz Belle II experiment, which has just started ring”. Also receiving his certificate was and Technology (PAST) award, made includes contributions to the FERMI@ 2017 (CERN Courier March 2017 p5). of the University of São Paulo, is one of operations at KEK in Japan (see p7). last year’s thesis-award recipient Spencer on behalf of IEEE’s nuclear and plasma Elettra free-electron laser in Italy, and R&D Gessner of SLAC National Accelerator sciences society, is given to individuals in advanced controls, novel diagnostics and A NNIVERSARY Laboratory, who was cited for “an original who have made outstanding contributions high-power electron guns. theoretical treatment and an experimental to accelerator science and technology. The 2018 PAST Doctoral Student Award, demonstration of accelerating positrons Hermann Grunder, director emeritus at in recognition of significant and innovative J A Cardoso ALICE marks quarter century in a hollow channel plasma wakefield Argonne National Laboratory in the US, was technical contributions to the field of particle accelerator”. Alexander Wu Chao of SLAC honoured “for his far-reaching contributions accelerator science and technology, was National Accelerator Laboratory, winner of to accelerator science and technology”, presented to Martina Martinello of Fermilab the prestigious 2018 APS Robert R. Wilson which span nuclear physics, high-energy “for contributions to physical understanding Prize for Achievement announced late and heavy-ion accelerators, and applications of limiting factors in SRF cavities”. Panjab University From right to left: Virdee, Venkaiah Naidu, Panjab University vice-president of India and chancellor of the university, and vice-chancellor Arun Grover. honours Virdee Virdee was the deputy spokesperson of CMS and, later, spokesperson for three On 4 March, CMS physicist Tejinder (Jim) years from 2007. He played a crucial role Virdee of Imperial College, London, was in all phases of the CMS experiment since awarded an honorary doctorate by Panjab its formation and, during the experiment’s University, India, in recognition of his early period, travelled widely to engage, outstanding contribution to the LHC’s excite and invite the participation of CMS experiment. Between 1993 and 2006, physicists from around the world. Kaplan has won many accolades for his film Kaplan wins for covering the switch-on of the LHC. A book launched at CERN on 26 April in the presence of Pedro Afonso Comissário, Speakers at the jubilee event, clockwise from top left: Chris Fabjan (ALICE technical follows six physicists
Recommended publications
  • Search for New Particles at LEP
    Search for New Particles at LEP S. Rosier-Lees LAPP (INPPS-CNRS) Annecy-Le-Vieux - France Abstract The LEP energy upgrade up to fi =189 GeV has allowed us to extend substantially the potential of searches for new physics. Results on searches for Higgs bosoms and supersymmetric particles obtained by the ALEPH, DELPHI, L3, and OPAL exper- iments are reported. No evidence of any signal is observed. Therefore, new limits on the Higgs boson masses as well as on the masses of the various supersymmetric particles are derived. They significantly improve those obtained either at LEPl or LEP1.5. The LEPBOO discovery potential for the neutral Higgs bosons is also shown. @ 1998 by S. Rosier-Lees. -409- . be discovered at LEP200 when running at &=200 GeV and assuming an integrated luminosity of 200 pb-’ collected by each experiment. LEP PRELIMINARY Individual Limit LEP Combined 11 Table 1: Individual and LEP combined observed and expected mass limits for the Stan- dard Model Higgs boson [3], up to fi = 183 GeV. 4 _?I: 80 82 84 86 88 90 92 94 10 80 82 84 86 88 90 92 mH(GeV/ z5 k --- HZ-Signal(mn=85GeV) 2 1.5 1 0.5 0 0 20 40 60 80 loo 0 mF(GeV) Figure 1: Mass distribution for the candidate events selected by the OPAL experiment in the searches for e+e- + HZ at center-of-mass energies up to 183 GeV [3]. I,,,I,,,,,,/,I lo 80 82 84 86 88 90 92 94. 80 82 84 86 88 90 92 94 mH(GeV/c’) mH(Ge V/c2) 2.2 The MSSM Higgs Bosons Figure 2: Average expected (dashed lines) and observed (solid lines) confidence levels, CL,, obtained In the MSSM, all SUSY particle masses, their couplings, and their production cross sec- from combining the results of the four LEP Collaborations using the four statistical methods.
    [Show full text]
  • Arxiv:2001.07837V2 [Hep-Ex] 4 Jul 2020 Scale Funding Will Be Requested at Different Stages Across the Globe
    Brazilian Participation in the Next-Generation Collider Experiments W. L. Aldá Júniora C. A. Bernardesb D. De Jesus Damiãoa M. Donadellic D. E. Martinsd G. Gil da Silveirae;a C. Henself H. Malbouissona A. Massafferrif E. M. da Costaa C. Mora Herreraa I. Nastevad M. Rangeld P. Rebello Telesa T. R. F. P. Tomeib A. Vilela Pereiraa aDepartamento de Física Nuclear e Altas Energias, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, CEP 20550-900, Rio de Janeiro, Brazil bUniversidade Estadual Paulista (Unesp), Núcleo de Computação Científica Rua Dr. Bento Teobaldo Ferraz, 271, 01140-070, Sao Paulo, Brazil cInstituto de Física, Universidade de São Paulo (USP), Rua do Matão, 1371, CEP 05508-090, São Paulo, Brazil dUniversidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Caixa Postal 68528, 21941-972 Rio de Janeiro, Brazil eInstituto de Física, Universidade Federal do Rio Grande do Sul , Av. Bento Gonçalves, 9550, CEP 91501-970, Caixa Postal 15051, Porto Alegre, Brazil f Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: This proposal concerns the participation of the Brazilian High-Energy Physics community in the next-generation collider experiments.
    [Show full text]
  • HERA Collisions CERN LHC Magnets
    The Gallex (gallium-based) solar neutrino experiment in the Gran Sasso underground Laboratory in Italy has seen evidence for neutrinos from the proton-proton fusion reaction deep inside the sun. A detailed report will be published in our next edition. again, with particles taken to 26.5 aperture models are also foreseen to GeV and initial evidence for electron- CERN test coil and collar assemblies and a proton collisions being seen. new conductor distribution will further Earlier this year, the big Zeus and LHC magnets improve multipole components. H1 detectors were moved into A number of other models and position to intercept the first HERA With test magnets for CERN's LHC prototypes are being built elsewhere collisions, and initial results from this proton-proton collider regularly including a twin-aperture model at new physics frontier are eagerly attaining field strengths which show the Japanese KEK Laboratory and awaited. that 10 Tesla is not forbidden terri­ another in the Netherlands (FOM-UT- tory, attention turns to why and NIHKEF). The latter will use niobium- where quenches happen. If 'training' tin conductor, reaching for an even can be reduced, superconducting higher field of 11.5 T. At KEK, a magnets become easier to commis­ single aperture configuration was sion. Tests have shown that successfully tested at 4.3 K, reaching quenches occur mainly at the ends of the short sample limit of the cable the LHC magnets. This should be (8 T) in three quenches. This magnet rectifiable, and models incorporating was then shipped to CERN for HERA collisions improvements will soon be reassem­ testing at the superfluid helium bled by the industrial suppliers.
    [Show full text]
  • The Higgs Boson!
    MEET THE TIME MAGAZINE PARTICLE OF THE YEAR: THE HIGGS BOSON! Saptaparna Bhattacharya July 11th - 22nd, 2016 Lets start at the beginning! http://poy.time.com/2012/12/19/the-higgs-boson-particle-of-the-year/ Introduction • I am Saptaparna Bhattacharya, a post-doctoral scholar in the department of Physics and Astronomy at Northwestern University in Chicago. • My research is based on the data from the Large Hadron Collider at CERN. • I have worked on the first published result that uses the Higgs boson as a probe for New Physics. • My interest lies in various models of New Physics, ranging from SuperSymmetry to exploring the possibility of finding microscopic black holes. • I am also interested in exploring interesting techniques for data analysis. But, enough about me, where are you guys from? Current Enrollment We are a class of 17 students! Let me quickly check to see if you are all here! What we did last summer! Di-photon invariant mass h_InvariantMass_PhPh Higgs to ZZ invariant mass h_InvariantMass_HZZ Entries 85893 Entries 13235 30000 Mean 125.9 Mean 124.2 RMS 2.636 RMS 3.147 5000 25000 Events/2.0 GeV Events/2.0 GeV 20000 4000 Higgs boson mass distribution Higgs boson mass distribution 15000 3000 10000 2000 5000 1000 0 0 100 105 110 115 120 125 130 135 140 145 150 100 105 110 115 120 125 130 135 140 145 150 m [GeV] m [GeV] γγ µ µ µ µ Di-muon invariant mass h_InvariantMass_MuMu Tranverse Mass with Muons Entries 37122 h_TransverseMass_Mu Mean 90.66 Entries 37791 RMS 4.506 5000 4000 Mean 65.9 RMS 15.36 3500 4000 Events/GeV Events/1.0 GeV 3000 Z boson mass distribution 3000 2500 W boson transverse 2000 mass distribution 2000 1500 1000 1000 500 0 0 70 75 80 85 90 95 100 105 110 0 50 100 150 200 250 300 m [GeV] mµµ [GeV] T Outline • The course is roughly structured into two parts: • Laying down the fundamentals.
    [Show full text]
  • The ATLAS Pixel Detector
    The ATLAS Pixel Detector Maurice Garcia-Sciveres Lawrence Berkeley National Laboratory DEC 9, 2005 SRI Workshop --- the ATLAS pixel detector --- M. Garcia-Sciveres 1 ATLAS Pixel Collaboration • ~100 collaborators • 17 institutions • 8 countries DEC 9, 2005 SRI Workshop --- the ATLAS pixel detector --- M. Garcia-Sciveres 2 The Large Hadron Colloder will be the world’s most powerful microscope Camera goes here p p 14TeV ~10-19m resolution but… ¾Need high intensity ¾At design intensity LHC beam has 330MJ stored energy Iron yoke ¾1% will blow up dipole ¾Driving factor in vertex detector design 2 beam pipes Channels for superconducting wire DEC 9, 2005 SRI Workshop --- the ATLAS pixel detector --- M. Garcia-Sciveres 3 ATLAS 45m DEC 9, 2005 SRI Workshop --- the ATLAS pixel detector --- M. Garcia-Sciveres 4 ATLAS Pixel Detector p p Along axis 80M pixels (2m2 active area) 1744 parallel modules covering 3 barrels + 6 disks 1.3 m DEC 9, 2005 SRI Workshop --- the ATLAS pixel detector --- M. Garcia-Sciveres 5 Top Quark Photo Zoom in x10 Zoom in again x10 Actual Top Quark Decay Recorded by the CDF experiment with a silicon strip detector DEC 9, 2005 SRI Workshop --- the ATLAS pixel detector --- M. Garcia-Sciveres 6 Hybrid pixel detectors in particle physics • Silicon strip detectors have been used in particle physics for some 20 years (and are here to stay). This is a type of hybrid imager with resolution in only 1 dimension. ISL detector of CDF experiment • A hybrid pixel detector is a conceptually trivial (but technically difficult) generalization of a strip detector to 2 dimensions.
    [Show full text]
  • Information for Guides
    DRAFT 27 February 2014 Information for guides for Underground Visits Document prepared by Gloria Corti 1. Introduction This document is intended to provide you with material on which you can base your discussion with the visitors, along with more detailed background information for those not familiar with LHCb. It is not be intended to provide a word-by-word account of what an ideal visit underground to LHCb (and Delphi) should contain, nor what you should say on the surface. Everyone is specialized in different fields and the best is to convey the key messages from a personal and enthusiastic angle, and react to the response from your group. The main idea while underground is to explain what the visitors can see, at each stopping point of the itinerary. Discussions of more abstract concepts such as particle physics, the Standard Model, etc, should be done on the surface, either before or after the visit underground. Guides at the Exhibit are also encouraged to explain the various detectors on display. Pages 1 to 2 may be useful to all guides, while 2 to 5 are mostly intended for underground guides. The rest gives some general background for the LHCb experiment and detector and on the DELPHI experiment. Some summary facts and numbers are listed at the end. 2. When you first meet the visitors The first thing you should do is to introduce yourself, then check they are all present and they wear closed shoes and don’t have big bags with them. You may have to wait before going underground and you can use this time and that on the lift going underground to give visitors some general information.
    [Show full text]
  • Outreach Activities, Web, Radio&TV, Non-Specialized Conferences And
    1 Laboratoire de Physique des Hautes Energies (LPHE) Outreach activities, web, radio&TV, non-specialized conferences and publications April 2009 { March 2016 We list here activities aiming at making our research known to less specialized audiences, or more generally to the public at large. April 2015 { March 2016 1. C. Fitzpatrick, guide for visit at CERN of students from Campbell College Belfast, March 19, 2016. 2. O. Schneider, visit organized at CERN (at LHCb, CAST, and LHC magnets) for 60 Bachelor students of EPFL, November 17, 2015. 3. I. Komarov, \On the irreversibility of time and Einstein's theory", online lecture for children in the framework of the \Scientists to kids" project, Experimentarium Museum, Moscow, Russia, October 24, 2015. 4. CERN Courier: \LHCb improves trigger in Run 2", September 25, 2015. 5. O. Schneider, participation in an interdisciplinary podium discussion \Le boson de Higgs { architecte de l'Univers ?" after a public screening of the movie \Particle Fever" (flyer), Lyc´ee-Coll`egedes Creusets, Sion, Switzerland, September 25, 2015. 6. LHCb public web site: \First LHC run2 physics results: measurement of J= production cross- sections in pp collisions at 13 TeV", July 24, 2015. 7. EPFL news: \EPFL contributes to breakthrough experiment at CERN"(\L'EPFL contribue `aune d´ecouverte majeure au CERN", May 21, 2015. 8. EPFL news: \Tatsuya Nakada awarded Honorary Doctorate from University of Zurich"(\Tatsuya Nakada honor´epar l'Universit´ede Zurich"), May 4, 2015. 9. V. Battista, \LHCb: tra bellezza e asimmetrie", science popularization article published in \Quaderni di scienza e scienziati molisani", 2015. April 2014 { March 2015 1.
    [Show full text]
  • Speed of Light and Rates of Clocks in the Space Generation Model of Gravitation, Part 1
    GravitationLab.com Speed of Light and Rates of Clocks in the Space Generation Model of Gravitation, Part 1 1 R. BENISH( ) (1) Eugene, Oregon, USA, [email protected] Abstract. — General Relativity’s Schwarzschild solution describes a spherically symmetric gravi- tational field as an utterly static thing. The Space Generation Model (SGM) describes it as an absolutely moving thing. The SGM nevertheless agrees equally well with observations made in the fields of the Earth and Sun, because it predicts almost ex- actly the same spacetime curvature. This success of the SGM motivates deepening the context—especially with regard to the fundamental concepts of motion. The roots of Einstein’s relativity theories thus receive critical examination. A particularly illumi- nating and widely applicable example is that of uniform rotation, which was used to build General Relativity (GR). Comparing Einstein’s logic to that of the SGM, the most significant difference concerns the interpretation of the readings of accelerom- eters and the rates of clocks. Where Einstein infers relativity of motion and space- time symmetry, it is argued to be more logical to infer absoluteness of motion and spacetime asymmetry. This approach leads to reassessments of the essential nature of matter, time, and the dimensionality of space, which lead in turn to some novel cos- mological consequences. Special emphasis is given to the model’s deviations from standard predictions inside matter, which have never been tested, but could be tested by conducting a simple experiment. PACS 04.80.Cc – Experimental tests of gravitational theories. 1. – Introduction; Intended Audience Beware ye, all those bold of spirit who want to suggest new ideas.
    [Show full text]
  • Curating the Collider: Using Place to Engage Museum Visitors with Particle Physics
    Science Museum Group Journal Curating the collider: using place to engage museum visitors with particle physics Journal ISSN number: 2054-5770 This article was written by Alison Boyle, Harry Cliff 10-09-2014 Cite as 10.15180; 140207 Research Curating the collider: using place to engage museum visitors with particle physics Published in Autumn 2014, Issue 02 Article DOI: http://dx.doi.org/10.15180/140207 Abstract CERN’s Large Hadron Collider, the world’s largest particle physics facility, provides museological opportunities and challenges. Visitor interest in cutting-edge physics, with its high media profile, is tempered by anxiety about understanding complex content. The topic does not readily lend itself to traditional museum showcase-dominated displays: the technology of modern particle physics is overwhelmingly large, while the phenomena under investigation are invisible. For Collider, a major temporary exhibition, the Science Museum adopted a ‘visit to CERN’ approach, recreating several of the laboratory’s spaces. We explore the effectiveness of this approach, at a time when historical studies of scientific laboratories and museum reconstructions of spaces are subject to renewed interest. Component DOI: http://dx.doi.org/10.15180/140207/001 Keywords Science Museum, Collider, Large Hadron Collider, CERN, particle physics, place, space, re-creation, room set, museum Introduction Collider: step inside the world’s greatest experiment ran at the Science Museum from November 2013–May 2014 and is touring internationally until 2017. The exhibition covers the work of the Large Hadron Collider (LHC) at CERN, the world’s largest particle physics facility. Strategically, the subject matter had obvious appeal for the Science Museum, with its long term ambitions to tackle complex scientific topics, attract more adult visitors, and raise its international profile (Science Museum, 2012).
    [Show full text]
  • Jan/Feb 2015
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 5 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 5 CERN Courier – digital edition Welcome to the digital edition of the January/February 2015 issue of CERN Courier. CMS and the The coming year at CERN will see the restart of the LHC for Run 2. As the meticulous preparations for running the machine at a new high energy near their end on all fronts, the LHC experiment collaborations continue LHC Run 1 legacy to glean as much new knowledge as possible from the Run 1 data. Other labs are also working towards a bright future, for example at TRIUMF in Canada, where a new flagship facility for research with rare isotopes is taking shape. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. TRIUMF TRIBUTE CERN & Canada’s new Emilio Picasso and research facility his enthusiasm SOCIETY EDITOR: CHRISTINE SUTTON, CERN for rare isotopes for physics The thinking behind DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p26 p19 a new foundation p50 CERNCOURIER www. V OLUME 5 5 N UMBER 1 J AARYN U /F EBRUARY 2 0 1 5 CERN Courier January/February 2015 Contents 4 COMPLETE SOLUTIONS Covering current developments in high-energy Which do you want to engage? physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affi liated with CERN, and to their personnel.
    [Show full text]
  • The Higgs Boson and Big Science Sarah Eno, U. Maryland MASP Lectur
    How many physicists does it take to discover a new particle? The Higgs Boson and Big Science Sarah Eno, U. Maryland MASP lecture 29 April 08 Sarah Eno 1 4 July 2012 CERN Auditorium: announcement of a new particle 8 October 2013 20 May 2014 Sarah Eno, MASP lecture 2 Two Experiments CMS ATLAS 20 May 2014 Sarah Eno, MASP lecture 3 Each with a paper Discoveries are made by people, not by detectors. 20 May 2014 Sarah Eno, MASP lecture 4 CMS: Discovery courtesy of: 20 May 2014 Sarah Eno, MASP lecture 5 20 May 2014 Sarah Eno, MASP lecture 6 20 May 2014 Sarah Eno, MASP lecture 7 20 May 2014 Sarah Eno, MASP lecture 8 20 May 2014 Sarah Eno, MASP lecture 9 20 May 2014 Sarah Eno, MASP lecture 10 20 May 2014 Sarah Eno, MASP lecture 11 2892 authors from 168 institutions This is just the CMS paper. There is a similar list for ATLAS. 20 May 2014 Sarah Eno, MASP lecture 12 Outline • What is the Higgs boson? • How do we know that it was created in proton-proton collisions at the Large Hadron Collider • What do all those people actually do? 20 May 2014 Sarah Eno, MASP lecture 13 Particle Fever Assistant Professor Alberto Belloni 20 May 2014 Sarah Eno, MASP lecture 14 What is a Higgs Boson? 20 May 2014 Sarah Eno, MASP lecture 15 Before we talk about the Higgs, let’s think about forces Is it this? Particle physicists think of it as this: Force boson Matter: Quarks (protons) leptons (electron) matter Some more force bosons 20 May 2014 Sarah Eno, MASP lecture 16 Only four of them, each with a “boson” Electricity and Magnetism (QED) photon Strong Force (QCD) gluon Weak Force 1H + 1H ® 2 H + e+ +n 1 1 1 W&Z bosons 20 May 2014 Sarah Eno, MASP lecturehttp://www.dreamstime.com/powerplant-infrastructure-stock-photo-imagefree242420 17 Fourth is gravity, but since its effects are negligible when considering particle collisions at accelerators, I’ll ignore it.
    [Show full text]
  • Vertex Detector
    FACHBEREICH PHYSIK BERGISCHE UNIVERSITAT¨ GESAMTHOCHSCHULE WUPPERTAL Johann M. Heuser Construction, Operation and Application of the DELPHI Pixel Detector at LEP2 Dissertation zur Erlangung des Doktorgrades des Fachbereichs Naturwissenschaften I { Physik der Bergischen Universit¨at-Gesamthochschule Wuppertal WUB-DIS 99-1 Januar 1999 Kurzub¨ ersicht Die vorliegende Arbeit diskutiert das Projekt des DELPHI Pixeldetektors, die erste Anwendung eines hybriden Silizium-Pixeldetektors in einem Collider-Experiment. Der Pixeldetektor ist Teil des \Very Forward Tracker", einer der neuen und erweiterten Detektorkomponenten des DELPHI Experiments zur optimierten Spurrekonstruktion bei LEP2, der Hochenergieperiode von CERN's \Large Electron Positron"-Collider mit angestrebten e+e−{Schwerpunktenergien von bis zu 200 GeV. Der DELPHI Pixeldetektor wird in Pixeldetektor-Entwicklungen eingeordnet, die ge- genw¨artig bei CERN fur¨ die zukunftigen¨ Experimente am \Large Hadron Collider" durchgefuhrt¨ werden. Die physikalische Motivation fur¨ die Anwendung eines Pixel- detektors bei DELPHI wird dargestellt. Die Entwicklung und Konstruktion des Sili- ziumdetektors werden behandelt und Erfahrungen zusammengefaßt, die w¨ahrend der ersten drei Betriebsjahre gewonnen wurden. Die Leistungsf¨ahigkeit des Pixeldetektors und sein Beitrag zur Spurrekonstruktion in den Endkappen des DELPHI Experiments werden charakterisiert und diskutiert. Die Untersuchung der Produktion von W-Bosonen z¨ahlt zu den wichtigen physikali- schen Forschungszielen bei LEP2. Der Very Forward
    [Show full text]