Energy Potential a Guide for Teaching Energy in Grades 3 to 8 Energy Comes in Many Forms 1 by Ivan Salinas

Total Page:16

File Type:pdf, Size:1020Kb

Energy Potential a Guide for Teaching Energy in Grades 3 to 8 Energy Comes in Many Forms 1 by Ivan Salinas ENVIRONMENTAL LITERACY TEACHER GUIDE SERIES Energy Potential A Guide for Teaching Energy in Grades 3 to 8 Energy Comes in Many Forms 1 by Ivan Salinas nergy is responsible for the Energy resources have become the off lights. The pros and cons of all energy world as we know it. It runs our cornerstone of our society. Almost sources, renewable and nonrenewable, CHAPTER E homes, our cars, our bodies, everything we do in our daily lives are debated by politicians and citizens and is virtually changing forms every depends upon energy. Even the water we alike and are often the subject of moment of every single day. The sun drink from our faucets and the plastic discussion on news networks. But what is our constant supply of energy, as and glass containers used to store our does energy mean to scientists, the solar radiation allows plants to grow, leftover foods, require energy. While people who define and study energy? water to evaporate, and wind to move. plant-based energy resources dominated This chapter takes a closer look at what Today, our human communities are the energy landscape just hundreds to energy means and how this meaning is so intimately tied to energy resources thousands of years ago, we now have a similar and different from our everyday we could hardly imagine a world myriad of energy options. The potential use of the word. Basic concepts of energy without them. What was life like just for our energy future is great. The time and energy forms are reviewed as well a few hundred years ago when most for discovering new and innovative as the laws that govern the way energy relied only on wood for fuel and a few energy technologies is now. flows through our world. Lastly, energy luxuries of charcoal and wax? What We talk about energy every day. Some resources will be classified as renewable was the world like just a few thousand people are said to spend energy in their and nonrenewable, a common concept years ago, when only the wood was work, to recover energy after a night’s taught in schools. In fact, many of the available? sleep, or to conserve energy by turning basic concepts discussed in this chapter 10 Energy Comes in Many Forms GRADE STANDARD EEI UNIT scientists look at energy as a “capacity,” they do not describe energy as Grade 3 3 1 a-d something that can be “shared,” “used,” “spent,” or “possessed.” A very important Grade 4 4 1 g concept to remember is that energy Grade 5 5 2 f-g is not created; rather, energy is just transformed, from one form to another. Grade 6 6 3 a-d Our experiences of energy are simply 6 4 a-b 6 5 a us witnessing energy flowing from form 6 6 a-b Energy: It’s Not All the Same to You! to form, happening every day in almost Energy and Material Resources: Renewable or Not? everything we do. When we describe energy in this way, Grade 7 7 1 d it is different from the scientifically Grade 8 8 3 a accepted definition, which says that 8 5 c energy is the “capacity of doing work” (work being defined as “the force exerted receive repeated attention in our schools refer to energy as something we have through a distance”). The science and, therefore, deserve special attention stored inside our bodies. We say, “I don’t definition of energy, while sometimes in any study of energy. These concepts have any more energy to finish this test,” easy for students to remember in science are the foundation for additional study or “I’ll have more energy tomorrow to class, does not readily give meaning to on energy resources in our human finish my homework.” Such a view of their everyday experiences. Students communities. energy depicts it as something we gain must relearn everyday words such or lose. Think about all the meanings as work, force, and energy, for science What Is Energy? of the word energy that your students class that do not match the way they Think about a magazine that describes encounter in a single school day! commonly use these words outside of an artist as focusing her “creative energy” Saying that someone or something school. As a consequence, teaching the from one activity, such as painting, to “has” energy is a metaphor. It is the concept of energy can be a challenge for another, such as a sculpture. This use of everyday meaning we give to the word many teachers. the word energy implies that energy is energy. This metaphor is particularly In the scientific definition of energy, stored in a person’s mind. We commonly problematic for science, because while there are four concepts that need to CHAPTER OVERVIEW Student Thinking: Explaining Energy 13 In the Classroom: Energy is a difficult concept to define but one that we experience every Defining Energy 14 moment of every day. Energy comes in several basic forms, and most of our experiences of energy can point to one of these forms—movement, light, Pictures of Practice: What Is Energy? 15 heat, electricity, and so on. In the Classroom: Energy forms can be classed into two basic types: kinetic or potential. Watching Energy Flow 22 Potential energy may be chemical energy or gravitational energy. Kinetic Student Thinking: energy is the energy of motion, such as the movement of wind or water or Confusing Energy Concepts 23 a person running. One interesting form of energy is heat. Heat, while some- times useful, is not a useable energy resource. Oftentimes heat is considered a Pictures of Practice: Making Sense of Nuclear waste product. In science we use several laws—laws of thermodynamics—to Energy 24 help us understand the dynamics of energy in our world. In this chapter we review forms of energy and how energy transforms following laws of thermodynamics. Energy Comes in Many Forms 11 electric carts, which do the same thing; they move along the aisles while a person shops. The difference is that the person is not exerting the force. The cart has an electric motor that has the capacity to do work. In both of these examples, energy is changing forms. We call this energy transformation. While your students may remember the definition of energy in science class, energy transformations will be what helps students connect the scientific definition to their real-world experience. Energy changing forms is so common that we can find these transformations anywhere at any time, including when reading these pages! There is an energy transformation in your brain that helps your eyes move to scan the pages. There may be a lamp that illuminates your Kicking a soccer ball is a change from potential energy to kinetic energy. environment, changing electrical energy into light and heat energy. When we be clarified: energy, work, force, and and move it along the aisles while you start looking at events happening in distance (or position). Let’s take a closer shop. If it were not for you pushing the world through the lens of energy look at these concepts in an example. the cart, the cart would not move. You transformations, it becomes easier Think of a soccer ball standing on a exert a force on the cart so it changes to help students find meaning and field or a playground. If someone kicks its position. You have the capacity to connections between energy in science the ball, the ball will move. The ball do work. As an option for people with class and energy in their world outside is no longer standing on the field, but disabilities, supermarkets may have of school. rather moving through the air. Thus, the position of the ball is not the same Teaching before and after someone kicked it. Tip The change in the position happened because a person exerted a force on the Help your students better understand the basics behind energy ball when kicking it. Even though the transformation by trying the following activity. Have each student put force was exerted over a small distance a pencil at the edge of his or her desk so it is not moving. Explain how (the kick), it was enough to change the the pencil is exhibiting one type of energy as it is not moving (potential). ball’s position. Next, have students push their pencils off their desks and onto the floor. Kicking the soccer ball is actually Ask students if the type of energy has changed from when it was still. a change in energy—a change from This moving pencil now exhibits kinetic energy. Also discuss the role of potential energy to kinetic energy in students prior to pushing the pencil off of the desk. Where do students the kicker, then to kinetic energy of the get energy from? Students should respond that they get energy to do ball moving. Heat was probably given everyday activities from food they consume. Discuss with students off along the way. how the energy changed, or transformed, from one type (potential) to Another illustration of energy can be another (kinetic) during this exercise. seen when shopping in a supermarket and using a shopping cart. When you get to the supermarket, you grab a cart 12 Energy Comes in Many Forms Explaining Energy umerous studies have looked at student ideas about energy. Educators know that students describe energy in countless ways, but that some interpretations of energy are more common than others. N Following are a few examples of the most common conceptions about energy.
Recommended publications
  • Printer Tech Tips—Cause & Effects of Static Electricity in Paper
    Printer Tech Tips Cause & Effects of Static Electricity in Paper Problem The paper has developed a static electrical charge causing an abnormal sheet-to- sheet or sheet-to-material attraction which is difficult to separate. This condition may result in feeder trip-offs, print voids from surface contamination, ink offset, Sappi Printer Technical Service or poor sheet jog in the delivery. 877 SappiHelp (727 7443) Description Static electricity is defined as a non-moving, non-flowing electrical charge or in simple terms, electricity at rest. Static electricity becomes visible and dynamic during the brief moment it sparks a discharge and for that instant it’s no longer at rest. Lightning is the result of static discharge as is the shock you receive just before contacting a grounded object during unusually dry weather. Matter is composed of atoms, which in turn are composed of protons, neutrons, and electrons. The number of protons and neutrons, which make up the atoms nucleus, determine the type of material. Electrons orbit the nucleus and balance the electrical charge of the protons. When both negative and positive are equal, the charge of the balanced atom is neutral. If electrons are removed or added to this configuration, the overall charge becomes either negative or positive resulting in an unbalanced atom. Materials with high conductivity, such as steel, are called conductors and maintain neutrality because their electrons can move freely from atom to atom to balance any applied charges. Therefore, conductors can dissipate static when properly grounded. Non-conductive materials, or insulators such as plastic and wood, have the opposite property as their electrons can not move freely to maintain balance.
    [Show full text]
  • Estimation of the Dissipation Rate of Turbulent Kinetic Energy: a Review
    Chemical Engineering Science 229 (2021) 116133 Contents lists available at ScienceDirect Chemical Engineering Science journal homepage: www.elsevier.com/locate/ces Review Estimation of the dissipation rate of turbulent kinetic energy: A review ⇑ Guichao Wang a, , Fan Yang a,KeWua, Yongfeng Ma b, Cheng Peng c, Tianshu Liu d, ⇑ Lian-Ping Wang b,c, a SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, PR China b Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China c Department of Mechanical Engineering, 126 Spencer Laboratory, University of Delaware, Newark, DE 19716-3140, USA d Department of Mechanical and Aeronautical Engineering, Western Michigan University, Kalamazoo, MI 49008, USA highlights Estimate of turbulent dissipation rate is reviewed. Experimental works are summarized in highlight of spatial/temporal resolution. Data processing methods are compared. Future directions in estimating turbulent dissipation rate are discussed. article info abstract Article history: A comprehensive literature review on the estimation of the dissipation rate of turbulent kinetic energy is Received 8 July 2020 presented to assess the current state of knowledge available in this area. Experimental techniques (hot Received in revised form 27 August 2020 wires, LDV, PIV and PTV) reported on the measurements of turbulent dissipation rate have been critically Accepted 8 September 2020 analyzed with respect to the velocity processing methods. Traditional hot wires and LDV are both a point- Available online 12 September 2020 based measurement technique with high temporal resolution and Taylor’s frozen hypothesis is generally required to transfer temporal velocity fluctuations into spatial velocity fluctuations in turbulent flows.
    [Show full text]
  • Turbulence Kinetic Energy Budgets and Dissipation Rates in Disturbed Stable Boundary Layers
    4.9 TURBULENCE KINETIC ENERGY BUDGETS AND DISSIPATION RATES IN DISTURBED STABLE BOUNDARY LAYERS Julie K. Lundquist*1, Mark Piper2, and Branko Kosovi1 1Atmospheric Science Division Lawrence Livermore National Laboratory, Livermore, CA, 94550 2Program in Atmospheric and Oceanic Science, University of Colorado at Boulder 1. INTRODUCTION situated in gently rolling farmland in eastern Kansas, with a homogeneous fetch to the An important parameter in the numerical northwest. The ASTER facility, operated by the simulation of atmospheric boundary layers is the National Center for Atmospheric Research (NCAR) dissipation length scale, lε. It is especially Atmospheric Technology Division, was deployed to important in weakly to moderately stable collect turbulence data. The ASTER sonic conditions, in which a tenuous balance between anemometers were used to compute turbulence shear production of turbulence, buoyant statistics for the three velocity components and destruction of turbulence, and turbulent dissipation used to estimate dissipation rate. is maintained. In large-scale models, the A dry Arctic cold front passed the dissipation rate is often parameterized using a MICROFRONTS site at approximately 0237 UTC diagnostic equation based on the production of (2037 LST) 20 March 1995, two hours after local turbulent kinetic energy (TKE) and an estimate of sunset at 1839 LST. Time series spanning the the dissipation length scale. Proper period 0000-0600 UTC are shown in Figure 1.The parameterization of the dissipation length scale 6-hr time period was chosen because it allows from experimental data requires accurate time for the front to completely pass the estimation of the rate of dissipation of TKE from instrumented tower, with time on either side to experimental data.
    [Show full text]
  • Work and Energy Summary Sheet Chapter 6
    Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process.
    [Show full text]
  • Middle School Physical Science: Kinetic Energy and Potential Energy
    MIDDLE SCHOOL PHYSICAL SCIENCE: KINETIC ENERGY AND POTENTIAL ENERGY Standards Bundle Standards are listed within the bundle. Bundles are created with potential instructional use in mind, based upon potential for related phenomena that can be used throughout a unit. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.] MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.] MS-PS3-5. Engage in argument from evidence to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
    [Show full text]
  • Electricity Production by Fuel
    EN27 Electricity production by fuel Key message Fossil fuels and nuclear energy continue to dominate the fuel mix for electricity production despite their risk of environmental impact. This impact was reduced during the 1990s with relatively clean natural gas becoming the main choice of fuel for new plants, at the expense of oil, in particular. Production from coal and lignite has increased slightly in recent years but its share of electricity produced has been constant since 2000 as overall production increases. The steep increase in overall electricity production has also counteracted some of the environmental benefits from fuel switching. Rationale The trend in electricity production by fuel provides a broad indication of the impacts associated with electricity production. The type and extent of the related environmental pressures depends upon the type and amount of fuels used for electricity generation as well as the use of abatement technologies. Fig. 1: Gross electricity production by fuel, EU-25 5,000 4,500 4,000 Other fuels 3,500 Renewables 1.4% 3,000 13.7% Nuclear 2,500 TWh Natural and derived 31.0% gas 2,000 Coal and lignite 1,500 19.9% Oil 1,000 29.5% 500 4.5% 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2010 2020 2030 Data Source: Eurostat (Historic data), Primes Energy Model (European Commission 2006) for projections. Note: Data shown are for gross electricity production and include electricity production from both public and auto-producers. Renewables includes electricity produced from hydro (excluding pumping), biomass, municipal waste, geothermal, wind and solar PV.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Clean Electricity Payment Program a Budget-Based Alternative to a Federal Clean Electricity Standard
    Clean Electricity Payment Program A budget-based alternative to a federal Clean Electricity Standard August 2021 Clean energy legislation this year is critical to jumpstart investments in the full set of clean energy solutions required to meet ambitious climate goals. One approach used widely at the state level—a Clean Energy Standard—requires electricity suppliers to use clean energy to meet a growing share of the electricity delivered to their customers. Senator Tina Smith (D-MN) is promoting an alternative approach, the Clean Electricity Payment Program, that relies on incentives to scale-up clean energy investments. What is the Clean Electricity Payment Program (CEPP)? The CEPP is a budget-based alternative to a traditional Clean Electricity Standard (CES) that is designed for passage via the Budget Reconciliation process. It works by providing federal investments and financial incentives to suppliers that deliver electricity directly to retail consumers to supply more clean electricity each year. It is not a regulatory mechanism and does not create a binding mandate. What are the goals of the program? The CEPP is part of an overall package of incentives in the climate portion of the proposed reconciliation package that collectively aims to achieve an 80% nationwide average clean electricity goal by 2030. The CEPP does not require each electricity supplier to achieve this goal. Recognizing that each supplier has a different starting point, the CEPP provides incentives for all suppliers to increase their total clean electricity share each year at an equitable pace. Electricity suppliers that start below the national average are not expected to catch up, and those already meeting very high shares are assigned a smaller annual increase.
    [Show full text]
  • Energy and Energy Transformations Transformations Energy
    Energy and Energy Transformations Energy Transformations Key Concepts • What is the law of conservation of energy? What do you think? Read the three statements below and decide • How does friction affect whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D if you disagree. After you’ve read this energy transformations? lesson, reread the statements to see if you have changed your mind. • How are different types of energy used? Before Statement After 4. Energy can change from one form to another. 5. Energy is destroyed when you apply the brakes on a moving bicycle or a moving car. 6. The Sun releases radiant energy. Identify Main Ideas Highlight the sentences in Changes Between Forms of Energy this lesson that talk about Have you ever made popcorn in a microwave oven to eat how energy changes form. while watching television? Energy changes form when you Use the highlighted make popcorn, as shown in the figure below. A microwave Companies, Inc. The McGraw-Hill of a division © Glencoe/McGraw-Hill, Copyright sentences to review. oven changes electric energy into radiant energy. Radiant energy changes into thermal energy in the popcorn kernels. Visual Check These changes from one form of energy to another are 1. Identify Which energy called energy transformations. As you watch TV, energy transformation pops the transformations occur in the television. A television corn kernels? transforms electric energy into sound energy and radiant energy. Energy Transformation 1 2 Electric energy is transferred from the The microwave oven electrical outlet to the microwave.
    [Show full text]
  • From Atoms to Electricity
    STEM PROJECT STARTER Transform Energy Topic From Atoms to Electricity PROJECT DETAILS Overview Course This project provides students with the opportunity to synthesize what they have Physical Science learned about energy transformation in other power systems to develop a model that describes the energy conversions in a nuclear power plant. Nuclear power Grade Span plants work by using the heat from fission to create mechanical energy, which turns 6-8 an electric generator. This heat is used to make steam, that turns a turbine, and Duration then turns the generator. Nuclear power is the only energy source with near-zero x2 45–60-minute sessions carbon emissions that can sustainably deliver energy to our industrial society. Concept Transformation of Energy Essential Question How does the energy stored in an atom’s nucleus transform into the electricity that powers our lives? Materials • Image of nuclear power plant • Projector to display video • From Atom to Electricity Rubrics student handout • Chart paper for students to sketch their diagram • Nuclear Power Plant Diagram student handout (optional) Procedure Think Energy n Display an image of a nuclear power plant. 1 Transform Energy Microsite | From Atoms to Electricity Encourage students to look closely and try to observe as many details as possible. o Give students five minutes to jot down answers to the following questions: • What do you see? Remind students to only report on things they actually see in the image. • What do you think about that? • What does it make you wonder? • Facilitate a group discussion about the questions. • Ask students to use the following stems when sharing: “I see...,” “I think...,” “I wonder....” Prior to watching/reading/listening to the video below, divide students into teams of four students and assign each a p perspective ‘hat’ to take while watching the content: a.
    [Show full text]
  • Wind Wind Energy Transformation
    Wind Wind Energy Transformation _______________ Æ _______________ Æ _______________ What is wind energy? In reality, wind energy is a converted form of solar energy. The sun's radiation (light) heats different parts of the earth at different rates‐most notably during the day and night, but also when different surfaces (for example, water and land) absorb or reflect at different rates. This in turn causes portions of the atmosphere to warm differently. Hot air rises, reducing the atmospheric pressure at the earth's surface, and cooler air is drawn in to replace it. The result is wind. Air has mass, and when it is in motion, it contains the energy of that motion ("kinetic energy"). The bottom line is that as long as we have sun, we will have wind. And with wind, we have enough available energy to meet all of our electricity needs. Where is the US wind energy? Areas along the Rocky Mountains have outstanding sustainable wind energy. The highest potential for wind energy includes the coastal regions of the Atlantic, Pacific, Gulf of Mexico as well as the Great Lakes. Texas, Kansas, Nebraska, North and South Dakota, Montana, and Wyoming are the best interior locations. Ohio has marginal available wind energy. The price of wind generated electricity is approximately $0.08/kw. What is a wind turbine and how does it work? A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind electric turbines generate electricity for homes and businesses and for sale to utilities.
    [Show full text]
  • New York City's Roadmap to 80 X 50
    New York City’s Roadmap to 80 to City’s Roadmap x 50 York New New York City’s Roadmap to nyc.gov/onenyc The City of New York #OneNYC Mayor Bill de Blasio @NYClimate Anthony Shorris Printed on 100% post-consumer recyled paper First Deputy Mayor New York City’s Roadmap to 80 x 50 is published pursuant to Local Law 66 of 2014. This report was produced by the New York City Mayor’s Office of Sustainability. This document was designed by Elisa Chaudet Cover Photo: Michael Appleton, Mayor’s Photography Office 80 x 50 Table of Contents Letter from the Mayor 3 Executive Summary 5 Introduction 15 Methodology 23 Energy 35 Buildings 55 Transportation 79 Waste 99 Actions New Yorkers Can Do 110 Next Steps 113 Glossary 117 Directory of Abbreviations 127 End Notes 129 nyc.gov/onenyc 80 x 50 1 80 x 50 Letter from the Mayor 2 80 x 50 nyc.gov/onenyc 80 x 50 Friends, Two years ago, I joined 400,000 others as we marched for action on climate change and committed that New York City would continue to lead by reducing greenhouse gases 80 percent by 2050, or 80 x 50. We detailed this commitment in our OneNYC report. Since that time, the nations of the world have come together to agree on a ground- breaking Paris Agreement, and just this month the world’s two biggest emitters, the US and China, committed to joining that agreement, putting it on a path toward ratification. Locally, we have continued to drive down our emissions, but we have much more to do.
    [Show full text]