Policy Recommendations for Economically and Socially Valuable Asteroid Mineral Resource Exploitation Activities

Total Page:16

File Type:pdf, Size:1020Kb

Policy Recommendations for Economically and Socially Valuable Asteroid Mineral Resource Exploitation Activities Rochester Institute of Technology RIT Scholar Works Theses 5-2016 Policy Recommendations for Economically and Socially Valuable Asteroid Mineral Resource Exploitation Activities Anthony Hennig [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Hennig, Anthony, "Policy Recommendations for Economically and Socially Valuable Asteroid Mineral Resource Exploitation Activities" (2016). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Policy Recommendations for Economically and Socially Valuable Asteroid Mineral Resource Exploitation Activities By Anthony Hennig Masters of Science Science, Technology and Public Policy Thesis Submitted in Partial Fulfillment of the Graduation Requirements for the College of Liberal Arts/Public Policy Program at ROCHESTER INSTITUTE OF TECHNOLOGY Rochester, New York May 2016 Submitted by: Anthony Hennig Department of Public Policy Signature Date Department of Mechanical Engineering Accepted by: Dr. Eric Hittinger/Assistant Professor Department of Public Policy Signature Date Dr. Thomas Cornell/Professor Department of Science, Technology, and Society Signature Date Dr. Kean Wu/Assistant Professor Department of Accounting Signature Date A. Hennig Policy Recommendations for Space Mineral Mining TABLE OF CONTENTS Abstract ....................................................................................................................................................................................... 6 Acknowledgements ................................................................................................................................................................ 7 1 Introduction ..................................................................................................................................................................... 8 2 Space Resource Exploitation Basics and Risks ................................................................................................ 12 2.1 The Changing Status Quo of Space Mineral Resources ....................................................................... 12 2.1.1 Growing Body of Knowledge on Asteroid Composition and Location ............................... 13 2.1.2 Mineral Resource Scarcity and Demand is Increasing Economic Pressure...................... 17 2.1.3 Decreasing Technology Costs for Spaceflight ............................................................................... 23 2.1.4 The Potential for a Space Resource Industry ................................................................................ 25 2.2 Policies in Place for Space utilization ......................................................................................................... 29 2.2.1 The Outer Space Treaty .......................................................................................................................... 29 2.2.2 National Space Policy of the United States ..................................................................................... 35 2.2.3 The SPACE Act 39 2.3 The Exposed Policy Gaps................................................................................................................................. 42 2.3.1 Technology Development ..................................................................................................................... 45 2.3.2 Surveying Duties 46 2.3.3 Ownership 47 2.3.4 Infrastructure Development ................................................................................................................ 48 3 Methodology of This Analysis ................................................................................................................................. 49 2016 Page 2 of 178 A. Hennig Policy Recommendations for Space Mineral Mining 3.1 Historical Analogs .............................................................................................................................................. 49 3.2 Mineral Mining .................................................................................................................................................... 51 3.2.1 Spanish Silver Exploitation ................................................................................................................... 51 3.2.2 American Gold Rush 55 3.2.3 Australian Gold Rush ............................................................................................................................... 59 3.2.4 Modern Mining 61 3.2.5 The Use of Antarctica .............................................................................................................................. 64 3.2.6 Deep Sea Bed Exploitation .................................................................................................................... 68 3.2.7 Diamond Mining 73 3.3 Fructus Stocks...................................................................................................................................................... 76 3.3.1 French and British Renewable Resource Exploitation ............................................................. 77 3.3.2 Fishing and Exclusive Economic Zones ........................................................................................... 79 3.4 Digital and Telecommunications Resources ........................................................................................... 83 3.4.1 Radio Spectrum 84 3.4.2 Geostationary Orbit Allocation ........................................................................................................... 86 3.4.3 Internet Allocation 87 4 Policy Issue: Technology Development Policy................................................................................................. 91 4.1 Technology Development Types .................................................................................................................. 91 4.1.1 Basic Research Needs ............................................................................................................................. 92 4.1.2 Applied Research Needs ........................................................................................................................ 93 4.2 Dimensions of Research Agents ................................................................................................................... 94 2016 Page 3 of 178 A. Hennig Policy Recommendations for Space Mineral Mining 4.2.1 Public Research Policy Support .......................................................................................................... 94 4.2.2 Private Research Programs .................................................................................................................. 96 4.3 Policy Mechanisms ............................................................................................................................................ 97 4.4 Hybrid Research Policy for Space Mineral Resource Activities ...................................................... 99 4.4.1 Public Procurement Might Be Forbidden .................................................................................... 100 4.4.2 Public Prizes and Contests to Develop Shared Technology Interests .............................. 101 4.4.3 Intellectual Property (IP) as a Resource ...................................................................................... 104 4.4.4 Tax Subsidies and Incentives are Not Appropriate Now ...................................................... 105 4.5 Conclusions and Future Evolutionary Pathways ............................................................................... 106 5 Policy Issue: Surveying ........................................................................................................................................... 107 5.1 Surveying as Part of the Claim Process, and Changes From Tradition ..................................... 108 5.2 Identifying Asteroids for the Public Good ............................................................................................. 114 5.3 Characterizing Asteroids for Private Benefit ....................................................................................... 116 5.4 Conclusions and Future Evolutionary Pathways ............................................................................... 119 6 Policy Issue: Ownership ......................................................................................................................................... 121 6.1 The Failures of the Common Heritage of Mankind ........................................................................... 122 6.2 Res Communis Policies Are Also Insufficient ...................................................................................... 128 6.3 Total Ownership Policies Propose a Frightening Future ................................................................ 132 6.4 Coordinating Asteroid Use Through Licenses ..................................................................................... 134 6.4.1 History of Success 135 6.4.2 Preventing Exclusivity ......................................................................................................................... 139 2016 Page 4 of 178 A. Hennig Policy Recommendations for Space Mineral Mining
Recommended publications
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • REASONS to MIND ASTEROIDS with the Rapid Progress Made In
    ASTEROID MINING & ITS LEGAL IMPLICATIONS Neil Modi & Devanshu Ganatra Presentation ID- IAC- 16.E7.IP.23.x32357 REASONS TO MINE ASTEROIDS With the rapid progress made in technology, humans are taking huge steps in space today. There is huge potential in space, and particularly in asteroid mining. ENERGY CRISIS RARE EARTH METALS • Non-renewable fossil fuels like coal, oil currently account for 81% of • Many of the metals widely used in almost all industrial products the world’s primary energy. were always limited and are now in SHORT SUPPLY leading to skyrocketing manufacturing costs. • EARLIER, renewable energy could not compete with non-renewable sources because it relied on metals in short supply. Resources found • These include Platinum Group Metals (PMGS) and others like on asteroids would solve this problem completely. gold, cobalt, iron, molybdenum etc. Image Credit-The U.S. Energy Image Credit- FuelSpace.org- ‘How Asteroids Can Information Administration Save Mankind’ PROJECTED SCARCITY OF RESOURCES ON EARTH Image Credit-Shackleton Energy Company Image Credit- Chris Clugston’s ‘An Oil Drum- An Analysis’ (2010) THE NEED FOR WATER 1. SUPPORT SYSTEM FOR ASTRONAUTS- Since the main constituents of water HYDRATION AND OXYGEN are hydrogen and oxygen, it is a source of oxygen for life support. TO ASTRONAUTS 2. PROTECTION FROM RADIATION- Water absorbs and blocks infrared radiation, which means that by storing heat it helps to maintain temperature. 3. ROCKET FUEL- Rocket propellant is hydrogen and oxygen based, with a large percentage of the weight of a spacecraft taken up by fuel. 4. SPACE EXPLORATION- A GAS STATION IN SPACE KEY TO SPACE BLOCKS EXPLORATION WATER RADIATION Today billions of dollars are spent in rocket fuel to sustain space explorations.
    [Show full text]
  • Questioning the Surface of Mars As the 21St Century's Ultimate Pioneering Destination in Space
    Questioning The Surface Of Mars As The 21st Century's Ultimate Pioneering Destination In Space Small Bodies Assessment Group Meeting #13 Washington D.C. 1 July 2015 Questioning Mars As The Ultimate Pioneering Destination In Space Background And Context • Foreseeable human-initiated activity in space can be divided into two categories - Exploring (e.g. Lewis & Clark ca. 1805): survey foreign territory + A major component of NASA's charter + Can be conducted by humans directly or by robots under human control + Virtual human presence is possible via tele-robotics stationed < 100,000 km away + Mars never approaches Earth closer than 56 million km - Pioneering (e.g. Pilgrims ca.1620): put down multi-generation roots in foreign territory + NOT in NASA's charter + MUST be conducted by humans in situ and ultimately return sustained profits + Any examples to date are dubious and Earth-centered (e.g. communication satellites) • Mars is widely accepted as the ultimate 21st century pioneering destination in space - Why would 202,586* adults volunteer in 2013 for a one-way trip to the surface of Mars? - What are potential obstacles to pioneering the surface of Mars? - Might there be more accessible and hospitable pioneering destinations than Mars? * The number of applications actually completed and submitted to Mars One was reported in 2015 to be 4227. Daniel R. Adamo ([email protected]) 1 1 July 2015 Questioning Mars As The Ultimate Pioneering Destination In Space History† Indicates Humans Pioneer For Compelling Reasons • Escape from war, starvation,
    [Show full text]
  • Global Exploration Roadmap
    The Global Exploration Roadmap January 2018 What is New in The Global Exploration Roadmap? This new edition of the Global Exploration robotic space exploration. Refinements in important role in sustainable human space Roadmap reaffirms the interest of 14 space this edition include: exploration. Initially, it supports human and agencies to expand human presence into the robotic lunar exploration in a manner which Solar System, with the surface of Mars as • A summary of the benefits stemming from creates opportunities for multiple sectors to a common driving goal. It reflects a coordi- space exploration. Numerous benefits will advance key goals. nated international effort to prepare for space come from this exciting endeavour. It is • The recognition of the growing private exploration missions beginning with the Inter- important that mission objectives reflect this sector interest in space exploration. national Space Station (ISS) and continuing priority when planning exploration missions. Interest from the private sector is already to the lunar vicinity, the lunar surface, then • The important role of science and knowl- transforming the future of low Earth orbit, on to Mars. The expanded group of agencies edge gain. Open interaction with the creating new opportunities as space agen- demonstrates the growing interest in space international science community helped cies look to expand human presence into exploration and the importance of coopera- identify specific scientific opportunities the Solar System. Growing capability and tion to realise individual and common goals created by the presence of humans and interest from the private sector indicate and objectives. their infrastructure as they explore the Solar a future for collaboration not only among System.
    [Show full text]
  • Planetary Defence Activities Beyond NASA and ESA
    Planetary Defence Activities Beyond NASA and ESA Brent W. Barbee 1. Introduction The collision of a significant asteroid or comet with Earth represents a singular natural disaster for a myriad of reasons, including: its extraterrestrial origin; the fact that it is perhaps the only natural disaster that is preventable in many cases, given sufficient preparation and warning; its scope, which ranges from damaging a city to an extinction-level event; and the duality of asteroids and comets themselves---they are grave potential threats, but are also tantalising scientific clues to our ancient past and resources with which we may one day build a prosperous spacefaring future. Accordingly, the problems of developing the means to interact with asteroids and comets for purposes of defence, scientific study, exploration, and resource utilisation have grown in importance over the past several decades. Since the 1980s, more and more asteroids and comets (especially the former) have been discovered, radically changing our picture of the solar system. At the beginning of the year 1980, approximately 9,000 asteroids were known to exist. By the beginning of 2001, that number had risen to approximately 125,000 thanks to the Earth-based telescopic survey efforts of the era, particularly the emergence of modern automated telescopic search systems, pioneered by the Massachusetts Institute of Technology’s (MIT’s) LINEAR system in the mid-to-late 1990s.1 Today, in late 2019, about 840,000 asteroids have been discovered,2 with more and more being found every week, month, and year. Of those, approximately 21,400 are categorised as near-Earth asteroids (NEAs), 2,000 of which are categorised as Potentially Hazardous Asteroids (PHAs)3 and 2,749 of which are categorised as potentially accessible.4 The hazards posed to us by asteroids affect people everywhere around the world.
    [Show full text]
  • ASTEROID MINING and IN-SITU RESOURCE UTILIZATION A. A. Mardon1 and G
    82nd Annual Meeting of The Meteoritical Society 2019 (LPI Contrib. No. 2157) 6189.pdf ASTEROID MINING AND IN-SITU RESOURCE UTILIZATION A. A. Mardon1 and G. Zhou2, 1University of Alberta, 2George Washington University. Introduction: Like many space exploration missions, cost is a determining factor. Transportation alone imposes a cost of $10,000 per kilogram for the entire mission making it simply not profitable or attractive to potential investors. A poten- tial near-instantaneous solution would be to develop an asteroid mining economy developing of a human-commercial market. It is suggested that this scenario will create the economic and technological opportunities not available today. Fu- ture manned missions would require the use of native material and energy on celestial objects to support future human and robotic explorations. The process of collecting and processing usable native material is known as in-situ resource utiliza- tion (ISRU). Currently, space travelling requires missions to carry life necessities such as air, food, water and habitable volume and shielding needed to sustain crew trips from Earth to interplanetary destinations. [1] The possibility of a mis- sion depends on the deduced market value from commercial sale of the product. Engineering choices are identified; a ma- trix of mineralogy, product and process choices can be developed. [2] One major consideration in the process of obtaining energy and life supporting materials from the lunar surface is the identification and excavation of raw material. [3] Lunar soil is produced primarily by meteorite impacts on the surface. This process caused for mineral fragmentation with com- position consisting of miscellaneous glasses, agglutinates and basaltic and brecciated lithic fragments.
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • General Assembly Distr.: General 7 January 2005
    United Nations A/AC.105/839 General Assembly Distr.: General 7 January 2005 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-second session Vienna, 21 February-4 March 2004 Item 10 of the provisional agenda∗ Near-Earth objects Information on research in the field of near-Earth objects carried out by international organizations and other entities Note by the Secretariat Contents Page I. Introduction ................................................................... 2 II. Replies received from international organizations and other entities ..................... 2 European Space Agency ......................................................... 2 The Spaceguard Foundation ...................................................... 17 __________________ ∗ A/AC.105/C.1/L.277. V.05-80067 (E) 010205 020205 *0580067* A/AC.105/839 I. Introduction In accordance with the agreement reached at the forty-first session of the Scientific and Technical Subcommittee (A/AC.105/823, annex II, para. 18) and endorsed by the Committee on the Peaceful Uses of Outer Space at its forty-seventh session (A/59/20, para. 140), the Secretariat invited international organizations, regional bodies and other entities active in the field of near-Earth object (NEO) research to submit reports on their activities relating to near-Earth object research for consideration by the Subcommittee. The present document contains reports received by 17 December 2004. II. Replies received from international organizations and other entities European Space Agency Overview of activities of the European Space Agency in the field of near-Earth object research: hazard mitigation Summary 1. Near-Earth objects (NEOs) pose a global threat. There exists overwhelming evidence showing that impacts of large objects with dimensions in the order of kilometres (km) have had catastrophic consequences in the past.
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • NASA's Near-Earth Object Program
    NASA’s Near-Earth Object Program (Spaceguard) Don Yeomans Manager, NASA Near-Earth Object Program Office Meteor Crater Arizona History of Known NEO Population The Inner Solar System in 2006 201118001900195019901999 Known • 500,000 Earth minor planets Crossing •7750 NEOs Outside • 1200 PHAs Earth’s Orbit Scott Manley Armagh Observatory NASA’s NEO Search Program (Current Systems) Minor Planet Center (MPC) • IAU sanctioned NEO-WISE • Int’l observation database • Initial orbit determination www.cfa.harvard.edu/iau/mpc. html NEO Program Office @ JPL • Program coordination JPL • Precision orbit determination Sun-synch LEO • Automated SENTRY www.neo.jpl.nasa.gov Catalina Sky Pan-STARRS LINEAR Survey MIT/LL UofAZ Arizona & Australia Uof HI Soccoro, NM Haleakula, Maui3 The Importance of Near-Earth Objects •Science •Future Space Resources •Planetary Defense •Exploration NASA’s NEO Program Office at JPL Coordination and Metrics Automatic orbit updates as new data arrive SENTRY system Relational database for NEO orbits & characteristics Conduct research on: Discovery efficiency Improving observational data Modeling dynamics Optimal mitigation processes Impact warnings & outreach http://www.jpl.nasa.gov/asteroidwatch / NEO Program Office: http://neo.jpl.nasa.gov/ Near-Earth Asteroid Discoveries Start of NASA NEO Program Discovery Completion Within Size Intervals 40% 8% <1% 87% JPL’s SENTY NEO Risk Page http://neo.jpl.nasa.gov/risk/ Object Year Potential Impact Velocity H Estimated Palermo Torino Designation Range Impacts Prob. (km/s) (mag.) Diameter
    [Show full text]
  • Colonization of Venus
    Conference on Human Space Exploration, Space Technology & Applications International Forum, Albuquerque, NM, Feb. 2-6 2003. Colonization of Venus Geoffrey A. Landis NASA Glenn Research Center mailstop 302-1 21000 Brook Park Road Cleveland, OH 44135 21 6-433-2238 geofrq.landis@grc. nasa.gov ABSTRACT Although the surface of Venus is an extremely hostile environment, at about 50 kilometers above the surface the atmosphere of Venus is the most earthlike environment (other than Earth itself) in the solar system. It is proposed here that in the near term, human exploration of Venus could take place from aerostat vehicles in the atmosphere, and that in the long term, permanent settlements could be made in the form of cities designed to float at about fifty kilometer altitude in the atmosphere of Venus. INTRODUCTION Since Gerard K. O'Neill [1974, 19761 first did a detailed analysis of the concept of a self-sufficient space colony, the concept of a human colony that is not located on the surface of a planet has been a major topic of discussion in the space community. There are many possible economic justifications for such a space colony, including use as living quarters for a factory producing industrial products (such as solar power satellites) in space, and as a staging point for asteroid mining [Lewis 19971. However, while the concept has focussed on the idea of colonies in free space, there are several disadvantages in colonizing empty space. Space is short on most of the raw materials needed to sustain human life, and most particularly in the elements oxygen, hydrogen, carbon, and nitrogen.
    [Show full text]
  • VBI China DA 2K11
    VBI China DA 2k11 China DA China DA ................................................................................................................................................................ 1 China 1NC .............................................................................................................................................................. 2 China 1NC .............................................................................................................................................................. 3 Uniqueness—China Leads in Space ..................................................................................................................... 4 Uniqueness—China Leads in Space ..................................................................................................................... 5 Uniqueness—Chinese Heg Now ............................................................................................................................ 6 Uniqueness—Chinese Heg Now ............................................................................................................................ 7 Uniqueness—Chinese Heg Now ............................................................................................................................ 8 Uniqueness—Multipolarity Now ............................................................................................................................. 9 Brinks—Now Key Time .......................................................................................................................................
    [Show full text]