Impact of Climate Change on the Occurrence of Late Holocene Glacial Lake Outburst Floods in Patagonia: a Sediment Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Climate Change on the Occurrence of Late Holocene Glacial Lake Outburst Floods in Patagonia: a Sediment Perspective Impact of climate change on the occurrence of late Holocene glacial lake outburst floods in Patagonia: A sediment perspective Elke Vandekerkhove Supervisor: Prof. Dr. Sébastien Bertrand Academic year 2020–2021 Submitted to the Faculty of Science of Ghent University in fulfillment of the requirements for the degree of Doctor in Science: Geology Members of the examination committee: Prof. dr. S. Louwye (Ghent University, Belgium): chair Prof. dr. M. De Batist (Ghent University, Belgium): secretary Prof. dr. M. Van Daele (Ghent University, Belgium) Dr. B. Amann (Ghent University, Belgium) Dr. B. Reid (Centro de Investigación en Ecosistemas de la Patagonia, Chile) Prof. dr. C. Lange (University of Concepción, Chile) Prof. dr. G. Benito (National Museum of Natural Sciences, Spain) This research was carried out by Elke Vandekerkhove with financial support of the Research Foundation Flanders (Paleo-GLOFs project: n°G0D7916N) To refer to this thesis: Vandekerkhove, E. (2021) Impact of climate change on the occurrence of late Holocene Glacial Lake Outburst Floods in Patagonia: A sediment perspective. PhD thesis, Ghent University, Ghent, Belgium. The author and the supervisor give the authorization to consult and copy parts of this work for personal use only. Every other use is subjected to copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. I Table of Contents 1. Introduction ..................................................................................................................................... 1 1.1. Glacial Lake Outburst Floods ................................................................................................... 1 1.1.1. Moraine-dammed lakes ................................................................................................... 2 1.1.2. Ice-dammed lakes ............................................................................................................ 3 1.2. Worldwide GLOF occurrence ................................................................................................... 4 1.3. Relationship between GLOF occurrence and climate .............................................................. 6 1.4. GLOFs in Patagonia .................................................................................................................. 7 1.5. Research questions .................................................................................................................. 9 2. Setting ............................................................................................................................................ 17 2.1. Baker River ............................................................................................................................. 17 2.2. Oceanography of the Baker-Martínez fjord system ............................................................... 18 2.3. Present-day climate and vegetation ...................................................................................... 18 2.4. Quaternary climate and glacier evolution of Patagonia ......................................................... 20 2.5. Baker River floods .................................................................................................................. 23 2.5.1. Late Quaternary GLOFs .................................................................................................. 23 2.5.2. Historical GLOFs ............................................................................................................. 23 2.5.3. Meteorological floods .................................................................................................... 26 3. Methods ........................................................................................................................................ 32 3.1. Multibeam bathymetry .......................................................................................................... 32 3.2. Sediment sampling ................................................................................................................ 33 3.2.1. Fjord ............................................................................................................................... 33 3.2.2. Floodplain ...................................................................................................................... 34 3.2.3. River suspended sediment concentrations .................................................................... 34 3.3. Sediment analysis .................................................................................................................. 35 3.3.1. Medical CT scanning ...................................................................................................... 36 3.3.2. Core splitting .................................................................................................................. 36 3.3.3. Image acquisition ........................................................................................................... 36 3.3.4. Multi-Sensor Core Logging (MSCL) ................................................................................ 36 3.3.5. X-Ray Fluorescence (XRF) scanning ................................................................................ 38 3.3.6. Sub-sampling ................................................................................................................. 39 3.3.7. Manual magnetic susceptibility measurements ............................................................ 39 3.3.8. Grain-size measurements .............................................................................................. 39 3.3.9. Loss-On-Ignition ............................................................................................................. 40 3.3.10. Bulk organic geochemistry ............................................................................................. 40 3.4. Chronology ............................................................................................................................ 41 II 3.4.1. Radionuclide dating ....................................................................................................... 41 3.4.2. Radiocarbon dating ........................................................................................................ 42 3.4.3. Charcoal analysis ............................................................................................................ 43 3.5. Historical records ................................................................................................................... 43 3.6. Instrumental records ............................................................................................................. 44 Supplementary Information .............................................................................................................. 49 4. Modern sedimentary processes at the heads of Martínez Channel and Steffen Fjord, Chilean Patagonia ............................................................................................................................................... 51 4.1. Introduction ........................................................................................................................... 51 4.2. Setting .................................................................................................................................... 52 4.3. Material and methods ........................................................................................................... 54 4.3.1. Multibeam bathymetry .................................................................................................. 54 4.3.2. Grab sediment samples ................................................................................................. 54 4.4. Results ................................................................................................................................... 54 4.4.1. Basin morphology .......................................................................................................... 54 4.4.2. Sediment properties ...................................................................................................... 60 4.5. Interpretation and discussion ................................................................................................ 63 4.5.1. Submarine channel systems .......................................................................................... 63 4.5.2. Other morphological features ....................................................................................... 67 4.5.3. Implications for paleoclimate and paleoenvironmental research: site selection........... 69 4.6. Conclusions ............................................................................................................................ 69 4.7. Data availability ...................................................................................................................... 70 Supplementary Information .............................................................................................................. 78 5. Signature of modern glacial lake outburst floods in fjord sediments (Baker River, Chile) ............. 81 5.1. Introduction ........................................................................................................................... 81 5.2. Setting ...................................................................................................................................
Recommended publications
  • Forest & River News, Summer 2019
    Forest & River News GRASSROOTS CONSERVATION & RESTORATION IN THE REDWOOD REGION TREES FOUNDATION SUMMER 2019 Celebrating 30 Years of Ancient Forest International and the Formation of the 10 million-acre Patagonia National Park System! • Protests Intensify at Rainbow Ridge • Getting Wildfi re Prepared • 22nd Annual Coho Confab on the Klamath River August 23-25 Index Forests & All Creatures 30 Years of Ancient Forest International ................................................................................ 3 Ancient Forest International Rainbow Ridge ................................................................................................................................16 Editor’s Note David Simpson and the Lost Coast League Rainbow Committee History and Richardson Grove Update ................................................................................. 31 This issue celebrates the remarkable Coalition for Responsible Transportation Priorities achievements of Ancient Forest Meet the New Neighbors—Green Diamond Acquires 9,400-acres International (AFI), a group of Southern of Timberland in the Sproul Creek Watershed ..................................................................32 Environmental Protection Information Center Humboldt activists who 30 years ago leveraged the tremendous momentum A Fun Earth Day Celebration ....................................................................................................33 Lost Coast Interpretive Association of the Headwaters campaign to expand forest protection efforts into
    [Show full text]
  • Variations of Patagonian Glaciers, South America, Utilizing RADARSAT Images
    Variations of Patagonian Glaciers, South America, utilizing RADARSAT Images Masamu Aniya Institute of Geoscience, University of Tsukuba, Ibaraki, 305-8571 Japan Phone: +81-298-53-4309, Fax: +81-298-53-4746, e-mail: [email protected] Renji Naruse Institute of Low Temperature Sciences, Hokkaido University, Sapporo, 060-0819 Japan, Phone: +81-11-706-5486, Fax: +81-11-706-7142, e-mail: [email protected] Gino Casassa Institute of Patagonia, University of Magallanes, Avenida Bulness 01855, Casilla 113-D, Punta Arenas, Chile, Phone: +56-61-207179, Fax: +56-61-219276, e-mail: [email protected] and Andres Rivera Department of Geography, University of Chile, Marcoleta 250, Casilla 338, Santiago, Chile, Phone: +56-2-6783032, Fax: +56-2-2229522, e-mail: [email protected] Abstract Combining RADARSAT images (1997) with either Landsat MSS (1987 for NPI) or TM (1986 for SPI), variations of major glaciers of the Northern Patagonia Icefield (NPI, 4200 km2) and of the Southern Patagonia Icefield (SPI, 13,000 km2) were studied. Of the five NPI glaciers studied, San Rafael Glacier showed a net advance, while other glaciers, San Quintin, Steffen, Colonia and Nef retreated during the same period. With additional data of JERS-1 images (1994), different patterns of variations for periods of 1986-94 and 1994-97 are recognized. Of the seven SPI glaciers studied, Pio XI Glacier, the largest in South America, showed a net advance, gaining a total area of 5.66 km2. Two RADARSAT images taken in January and April 1997 revealed a surge-like very rapid glacier advance.
    [Show full text]
  • Glacial Lakes of the Central and Patagonian Andes
    Aberystwyth University Glacial lakes of the Central and Patagonian Andes Wilson, Ryan; Glasser, Neil; Reynolds, John M.; Harrison, Stephan; Iribarren Anacona, Pablo; Schaefer, Marius; Shannon, Sarah Published in: Global and Planetary Change DOI: 10.1016/j.gloplacha.2018.01.004 Publication date: 2018 Citation for published version (APA): Wilson, R., Glasser, N., Reynolds, J. M., Harrison, S., Iribarren Anacona, P., Schaefer, M., & Shannon, S. (2018). Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change, 162, 275-291. https://doi.org/10.1016/j.gloplacha.2018.01.004 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. Jul. 2020 Global and Planetary Change 162 (2018) 275–291 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Glacial lakes of the Central and Patagonian Andes T ⁎ Ryan Wilsona, , Neil F.
    [Show full text]
  • The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia
    Aberystwyth University The 2015 Chileno Valley glacial lake outburst flood, Patagonia Wilson, R.; Harrison, S.; Reynolds, John M.; Hubbard, Alun; Glasser, Neil; Wündrich, O.; Iribarren Anacona, P.; Mao, L.; Shannon, S. Published in: Geomorphology DOI: 10.1016/j.geomorph.2019.01.015 Publication date: 2019 Citation for published version (APA): Wilson, R., Harrison, S., Reynolds, J. M., Hubbard, A., Glasser, N., Wündrich, O., Iribarren Anacona, P., Mao, L., & Shannon, S. (2019). The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology, 332, 51-65. https://doi.org/10.1016/j.geomorph.2019.01.015 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 09. Jul. 2020 Geomorphology 332 (2019) 51–65 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The 2015 Chileno Valley glacial lake outburst flood, Patagonia R.
    [Show full text]
  • Podilymbus Podiceps (Linnaeus, 1758) (Podicipediformes, Podicipedidae) in the Patagonian Region of Southern Chile
    14 2 309 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 14 (2): 309–312 https://doi.org/10.15560/14.2.309 New record of Podilymbus podiceps (Linnaeus, 1758) (Podicipediformes, Podicipedidae) in the Patagonian region of southern Chile Javier Godoy-Güinao,1, 2 Juan Carlos Llancabure,1 Iván A. Díaz1, 2 1 Laboratorio de Biodiversidad y Ecología del Dosel, Instituto de Conservación, Biodiversidad y Territorio de la Universidad Austral de Chile, Casilla 567, Valdivia, Chile. 2 Fundación Mar Adentro, Av. El Golf 99 of. 901, Santiago Chile. Corresponding author: Javier Godoy-Güinao, [email protected] Abstract We report a new record of Podilymbus podiceps (Linnaeus, 1758) in the southern Chilean Patagonia, 120 km south of previous records on the western side of the Andes, and more than 400 km south of their known distribution area on the eastern side of the Andes. This is the southernmost record of this species in Chile and one of the southernmost records worldwide, highlighting the vagrancy of this species in southern Patagonia. Key words Vagrancy; Chilean Patagonia; Grebes; General Carrera Lake; Puerto Ingeniero Ibáñez. Academic editor: Caio J. Carlos | Received 13 May 2017 | Accepted 21 February 2018 | Published 9 March 2018 Citation: Godoy-Güinao J, Llancabure JC, Díaz IA (2018) New record of Podilymbus podiceps (Linnaeus, 1758) (Podicipediformes, Podicipedidae) in the Patagonian region of southern Chile. Check List 14 (2): 309–312. https://doi.org/10.15560/14.2.309 Introduction Throughout the southern part of its distribution range, P. podiceps is distributed differently on either side of the Podilymbus podiceps (Linnaeus, 1758) is an aquatic bird Patagonian Andes (Birdlife International 2016).
    [Show full text]
  • 168 2Nd Issue 2015
    ISSN 0019–1043 Ice News Bulletin of the International Glaciological Society Number 168 2nd Issue 2015 Contents 2 From the Editor 25 Annals of Glaciology 56(70) 5 Recent work 25 Annals of Glaciology 57(71) 5 Chile 26 Annals of Glaciology 57(72) 5 National projects 27 Report from the New Zealand Branch 9 Northern Chile Annual Workshop, July 2015 11 Central Chile 29 Report from the Kathmandu Symposium, 13 Lake district (37–41° S) March 2015 14 Patagonia and Tierra del Fuego (41–56° S) 43 News 20 Antarctica International Glaciological Society seeks a 22 Abbreviations new Chief Editor and three new Associate 23 International Glaciological Society Chief Editors 23 Journal of Glaciology 45 Glaciological diary 25 Annals of Glaciology 56(69) 48 New members Cover picture: Khumbu Glacier, Nepal. Photograph by Morgan Gibson. EXCLUSION CLAUSE. While care is taken to provide accurate accounts and information in this Newsletter, neither the editor nor the International Glaciological Society undertakes any liability for omissions or errors. 1 From the Editor Dear IGS member It is now confirmed. The International Glacio­ be moving from using the EJ Press system to logical Society and Cambridge University a ScholarOne system (which is the one CUP Press (CUP) have joined in a partnership in uses). For a transition period, both online which CUP will take over the production and submission/review systems will run in parallel. publication of our two journals, the Journal Submissions will be two­tiered – of Glaciology and the Annals of Glaciology. ‘Papers’ and ‘Letters’. There will no longer This coincides with our journals becoming be a distinction made between ‘General’ fully Gold Open Access on 1 January 2016.
    [Show full text]
  • Hydrology and Water Resources in Arizona and the Southwest, Volume 38 (2008)
    Hydrology and Water Resources in Arizona and the Southwest, Volume 38 (2008) Item Type text; Proceedings Publisher Arizona-Nevada Academy of Science Journal Hydrology and Water Resources in Arizona and the Southwest Rights Copyright ©, where appropriate, is held by the author. Download date 26/09/2021 13:49:17 Link to Item http://hdl.handle.net/10150/296676 Volume 38 HYDROLOGY AND WATER RESOURCES IN ARIZONA AND THE SOUTHWEST Proceedings of the 2008 Meetings of the Hydrology Section Arizona -Nevada Academy of Science March 29, 2008, Southwestern University, Phoenix, Arizona ACKNOWLEDGMENTS The Spring 2008 meeting of the Hydrology Section of the Arizona- Nevada Academy of Science was held at Southwestern University, Phoenix, Arizona, on March 29, 2008. The organizers wish to thank Boris Poff, the Chairperson for the 2008 Hydrology Section meeting. Appreciation is also extended to Cody L. Stropki, School of Natural Resources, University of Arizona, for preparing these proceedings of the meeting. ii CONTENTS LONG -TERM CHANGES IN PEAK SNOWPACK ACCUMULATIONS ON ARIZONA WATERSHEDS 1 Peter F. Ffolliott INTERNATIONAL CO- OPERATIVE PROGRAM ON ASSESSMENT AND MONITORING OF AIR POLLUTION EFFECTS ON FORESTS: THE SIERRA 5 ANCHA EXPERIMENTAL FOREST, ARIZONA Boris Poff and Daniel G. Neary A CONTRAST AMONG NATIONAL FOREST WATERSHED PROGRAMS: 1978 - 2008 11 Robert E. Lefevre SOUTH -TO -NORTH WATER DIVERSION PROJECT IN CHINA Hui Chen and Peter F. Ffolliott 17 TRANSPIRATION OF OAK TREES IN THE OAK SAVANNAS OF THE SOUTHWESTERN BORDERLANDS REGION 23 Peter F. Ffolliott, Cody L. Stropki, Aaron T Kauffman, and Gerald J. Gottfried HOW USEFUL IS LiDAR IN ESTABLISHING A STREAM GAUGING NETWORK IN A TROPICAL EXPIRMENTAL FOREST 29 Boris Poff, Daniel G.
    [Show full text]
  • Glacial Lakes of the Central and Patagonian Andes
    Aberystwyth University Glacial lakes of the Central and Patagonian Andes Wilson, Ryan; Glasser, Neil; Reynolds, John M.; Harrison, Stephan; Iribarren Anacona, Pablo; Schaefer, Marius; Shannon, Sarah Published in: Global and Planetary Change DOI: 10.1016/j.gloplacha.2018.01.004 Publication date: 2018 Citation for published version (APA): Wilson, R., Glasser, N., Reynolds, J. M., Harrison, S., Iribarren Anacona, P., Schaefer, M., & Shannon, S. (2018). Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change, 162, 275-291. https://doi.org/10.1016/j.gloplacha.2018.01.004 Document License CC BY General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 26. Sep. 2021 Global and Planetary Change 162 (2018) 275–291 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Glacial lakes of the Central and Patagonian Andes T ⁎ Ryan Wilsona, , Neil F.
    [Show full text]
  • VERDICT-TRIBUNAL-Chile-English
    FINAL VERDICT FIFTH INTERNATIONAL RIGHTS OF NATURE TRIBUNAL, GATHERED IN THE CITY OF SANTIAGO DE CHILE, DECEMBER 05, 2019. Resolution No. 5/2019 Judges: Yaku Pérez - President of the Tribunal (Ecuador) Maristella Svampa (Argentina) Nancy Yáñez (Chile) Alberto Acosta (Ecuador) Antonio Elizalde (Chile) Raúl Sohr (Chile) Prosecutor of the Earth: Enrique Viale (Argentina) Secretary General: Natalia Greene (Ecuador) FINAL VERDICT 5th INTERNATIONAL RIGHTS OF NATURE TRIBUNAL In the city of Santiago de Chile on the fifth day of the month of December of the Andean-Panamazonic year 5.527/colonial 2019, the Tribunal is aware of the requests of the representatives of ancestral communities, organizations defending the Rights of Nature and the Rights of Water, as well as environmentalists, Human Rights Defenders and other social sectors. After hearing the affected persons and the expertise of respectable experts in the field at the public hearing, as well as the Prosecutor of the Earth, the judges proceed to analyze the cases reported in the order of their presentation at the hearing, and issue their judgment: 1 LITHIUM MINING CASE IN THE DESERT OF ATACAMA (CHILE) CASE BACKGROUND The extraction of lithium, along with the extraction of other precious metals (such as copper) and minerals (such as potassium) are consuming unsustainable amounts of water in the Atacama Desert of Chile, putting the fragile desert ecosystem, its wildlife and the livelihoods of the Indigenous Peoples who live there at risk. This territory is part of the ancestral heritage of the Atacameño people or Lickanantay, which has established its jurisdiction through the immemorial occupation of said territory, recognized through the rights granted by the Indigenous Law of Chile (19.253) and the Convention 169 on Indigenous and Tribal Peoples, hereinafter Convention 169, of the Labor Organization (ILO), ratified by the State of Chile and in force in the domestic legal system.
    [Show full text]
  • Caleta Tortel Campos De Hielo Norte
    Ruta Patrimonial Nº12 Caleta Tortel Campos de Hielo Norte Región de Aysén del General Carlos Ibáñez del Campo tapas.FH11 Tue Dec 11 12:33:59 2007 Page 2 RUTA PATRIMONIAL CAMPO DE HIE Autorizada su circulación, por Resolución exenta Nº 332 del 26 de noviembre de 2003 de la Dirección Nacional de Fronteras y Límites del Estado. La edición y circulación de mapas, cartas geográficas u otros impresos y documentos que se refieran o relacionen con los límites y fronteras de Chile, no comprometen, en modo alguno, al Estado de Chile, de acuerdo con el Art. 2º, letra g del DFL. Nº83 de 1979 del Ministerio de Relaciones Exteriores «Authorized by Resolution Nº 332 dated november 26, 2003 of the National Direction of Frontiers and Limits of the State. The edition or distribution of maps, geographic charts and other prints and documents thar are referred or related with the limits and frontiers of Chile, don not compromise, in anyway, the State of Chile, according to Article Nº 2, letter G of the DFL Nº 83 of 1979, dictaded by the Ministry of Foreign Relations». Límites de áreas protegidas según interpretación Decreto nº 780 del 21/12/ 83 y Decreto nº 737 del 23/11/83, CONAF 2003 Composite tapas.FH11 Tue Dec 11 12:33:59 2007 Page 3 DE HIELO NORTE - CALETA TORTEL Hito de Interés Interest Target Tramo I (Ruta Marítima) Section I (Sea Route) Tramo II y III (Ruta Terrestre) la Section II and III (Land Route) se al nes of har he try eto Composite tapas.FH11 Tue Dec 11 12:33:59 2007 Page 4 UBICACIÓN LOCATION La ruta patrimonial Campo de Hielo Northern Icefield Patrimonial Road: Tortel Norte: Caleta Tortel se ubica en la Comuna Cove, is located in Tortel commune, XI de Tortel, XI Región de Aysén.
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • Modeling Past and Future Surface Mass Balance of the Northern Patagonia Icefield
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Modeling past and future surface mass balance of the Northern Patagonia Icefield Schaefer, M ; Machguth, H ; Falvey, M ; Casassa, G Abstract: Glaciers are strongly retreating and thinning in Patagonia. We present new inferences about the climatic situation and the surface mass balance on the Northern Patagonia Icefield in the past and the future using a combined modeling approach. The simulations are driven by NCAR/NCEP Reanalysis and ECHAM5 data, which were physically downscaled using the Weather Research and Forecasting regional climate model and simple sub-grid parameterizations. The surface mass balance model was calibrated with geodetic mass balance data of three large non-calving glaciers and with point mass balance measurements. An increase of accumulation on the Northern Patagonia Icefield was detected from 1990– 2011 as compared to 1975–1990. Using geodetic mass balance data, calving losses from the Northern Patagonia Icefield could be inferred, which doubled in 2000–2009 as compared to 1975–2000. The21st century projection of future mass balance of the Northern Patagonia Icefield shows a strong increase in ablation from 2050 and a reduction of solid precipitation from 2080, both due to higher temperatures. The total mass loss in the 21st century is estimated to be 592±50 Gt with strongly increasing rates towards the end of the century. The prediction of the future mass balance of the Northern Patagonia Icefield includes several additional sources of errors due to uncertainties in the prediction of future climate and due to possible variations in ice dynamics, which might modify the geometry of the icefield and change the rate of mass losses due to calving.
    [Show full text]