Electron Radiolysis of Ammonium Perchlorate: a Reflectron Time-Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis Simran Kaur Purdue University
Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations 2013 Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis Simran Kaur Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Food Science Commons Recommended Citation Kaur, Simran, "Chlorine Dioxide Gas Treatment of Cantaloupe and Residue Analysis" (2013). Open Access Theses. 47. https://docs.lib.purdue.edu/open_access_theses/47 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. CHLORINE DIOXIDE GAS TREATMENT OF CANTALOUPE AND RESIDUE ANALYSIS A Thesis Submitted to the Faculty of Purdue University by Simran Kaur In Partial Fulfillment of the Requirements for the Degree of Master of Science December 2013 Purdue University West Lafayette, Indiana ii Two cantaloupes were in love. One said to the other, “Let’s run away together!” The other one said, “No. We cantelope.” iii ACKNOWLEDGEMENTS I would like to thank Dr. Mark Morgan for giving me the opportunity to work on this project. I truly appreciate his support, encouragement and guidance and have thoroughly enjoyed every moment. I would also like to thank my committee members, Dr. Mario Ferruzzi and Dr. Peter Hirst for their suggestions, feedback and comments. Thank you to Ben Paxson for his help with equipment and also to Dr. Applegate for the lab space to do my project. I am also thankful for the help and support from all my friends, old and new, close and far, for their support and companionship throughout my graduate studies, especially my dear friend Nadra Guizani. -
Chlorine Oxides and Chlorine Oxygen Acids 1
Chlorine Oxides and Chlorine Oxygen Acids 1 Chlorine Oxides and Chlorine Oxygen Acids Helmut Vogt, Technische Fachhochschule Berlin, Berlin, Federal Republic of Germany (Chaps. 1, 4.2 – 4.6, 7, and 9) Jan Balej, Ingenieurburo¨ fur¨ chemische Technik, Julich,¨ Federal Republic of Germany (Chap. 1) John E. Bennett, Eltech Systems Corp., Fairport Harbor, Ohio 44077, United States (Chaps. 4.2 – 4.6) Peter Wintzer, Cellulosefabrik Attisholz AG, Luterbach, Switzerland (Chaps. 7 and 9) Saeed Akbar Sheikh, Davy McKee AG, Frankfurt, Federal Republic of Germany (Chaps. 2, 3, 4.1, 5, 6, and 9) Patrizio Gallone, Politecnico di Milano, Milano, Italy (Chaps. 8 and 9) 1. Introduction ............... 2 7. Chloric Acid and Chlorates ..... 21 2. Hypochlorous Acid ........... 5 7.1. Properties ................. 22 3. Solid Hypochlorites ........... 5 7.2. Production Fundamentals ...... 24 3.1. Properties ................. 5 7.2.1. Chlorate-Generating Reactions .... 24 3.2. Production ................ 6 7.2.2. Loss Reactions .............. 26 3.3. Quality Specifications ......... 7 7.3. Industrial Electrosynthesis Systems 27 3.4. Uses ..................... 7 7.3.1. Electrolysis Cell Types ......... 28 4. Hypochlorite Solutions ........ 7 7.3.2. Electrodes ................. 28 4.1. Chemical Production .......... 7 7.3.3. Operational Parameters ......... 31 ............... 4.1.1. From Chlorine 8 7.3.4. Brine Purification ............. 33 ........ 4.1.2. From Bleaching Powder 8 7.4. Crystallization .............. 33 ............. 4.2. Electrosynthesis 9 7.5. Construction Materials ........ 33 ......... 4.2.1. Reaction Fundamentals 9 7.6. Environmental Protection ...... 34 .............. 4.2.2. Industrial Cells 10 7.7. Quality Specifications ......... 34 ................... 4.3. Storage 14 7.8. Storage, Transportation, and Safety 34 4.4. -
CHEM-001 Chapter 06
Nomenclature of Inorganic Compounds Chapter 6 Hein and Arena Eugene Passer Chemistry Department Version 1.1 Bronx Community1 College © John Wiley and Sons, Inc Elements and Ions 2 The formula for most elements is the symbol of the element. Sodium Na Potassium K Zinc Zn Argon Ar Mercury Hg Lead Pb Calcium Ca 3 These 7 elements are found in nature as diatomic molecules. Hydrogen H2 Nitrogen N2 Oxygen O2 Fluorine F2 Chlorine Cl2 Bromine Br2 Iodine I2 4 Formation of Ions 5 Positive Ion Formation: Loss of an Electron(s) From a Neutral Atom Na Na+ + e- Ca Ca2+ + 2e- Al Al3+ + 3e- 6 Naming Cations 7 Cations are named the same as their parent atoms. 8 Atom sodium (Na) Cation Na+ Name of sodium ion Cation 9 Atom calcium (Ca) Cation Ca2+ Name of calcium ion Cation 10 Negative Ion Formation: Gain of an Electron(s) by a Neutral Atom Cl + e- Cl- O + 2e- O2- N + 3e- N3- 11 Naming Anions 12 A monatomic anion consists of one element and has the stem of the parent element name with an –ide ending 13 Atom fluorine (F) Anion F- stem Name of fluoride ion Anion 14 Atom oxygen (O) Anion O2- stem Name of oxide ion Anion 15 Ions are always formed by adding or removing one or more electrons to or from a neutral atom. 16 Most often ions are formed when metals combine with nonmetals to form ionic solids with ionic bonds. 17 The charge on an ion can be predicted from its position in the periodic table. -
J. Rohonczy: Inorganic Chemistry I
Dr. János Rohonczy Lecture Notes Eötvös Loránd University, Budapest Faculty of Sciences Dr. János Rohonczy INORGANIC CHEMISTRY I. Lecture Notes Eötvös Loránd University Faculty of Sciences BUDAPEST 2017. János Rohonczy: Inorganic Chemistry I. Lecture Notes. Copyright © 2017 Dr. János Rohonczy, Eötvös Loránd University, Budapest, Faculty of Sciences All Right are Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photographical, photocopying, recording or otherwise, without permission in writing form the publisher. This book is written utilized the lecture notes of the Inorganic Chemistry lectures of the author at the Department of Inorganic Chemistry of Eötvös Loránd University, Budapest. Revised, and the fullerene and boron cluster topics remarked by Dr. Béla Csákvári professor emeritus. First edition 2017 Edited and cover page made by Dr. János Rohonczy Publisher: Eötvös Loránd University, Faculty of Sciences ISBN: 978-963-284-853-2 DOI: 10.21862/ 3 Table of Contents Introduction 7 1. Hydrogen 8 1.1. Hydrogen compounds 9 2. Halogens: F, Cl, Br, I, At 10 2.1. Hydrogen halides 13 2.2. Interhalogens 14 2.3. Polyhalogen and interhalogen ions, organic derivatives 16 3. (16th column) O, S, Se, Te, Po 17 3.1. Oxygen (O) 17 3.1.1. Oxygen compounds 19 3.1.2. Halogen oxides and oxygen halides 21 3.1.3. Halogen oxoacids and their salts 24 3.1.4. Halogen oxofluorides and fluorinated oxoacids 28 3.2. Sulfur(S) 29 3.2.1. Sulfur containing compounds 31 3.2.2. -
Oxyacids of Sulphur and Some Important Compounds, 2021
Session 3, p-block elements- Oxyacids of sulphur and some important compounds, 2021 Why Vedantu PRO is the Best? Live Interactive Classes Test Series & Analysis ● LIVE & Interactive Teaching Style ● Exclusive Tests To Enable Practical ● Fun Visualizations, Quizzes & Application ● Mock & Subject Wise Tests, Leaderboards Previous Year Tests ● Daily Classes on patented WAVE ● Result Analysis To Ensure Thorough platform Preparation ● Dual Teacher Model For Personal Assignments & Notes Attention ● Regular Assignments To Ensure Progress ● Replays, Class Notes & Study Materials Available 24*7 ● Important Textbook Solutions What is Included in Vedantu PRO? ● Full syllabus Structured Long Term Course ● 20+ Teachers with 5+ years of experience ● Tests & Assignments with 10,000+ questions ● Option to Learn in English or Hindi ● LIVE chapter wise course for revision ● 4000+ Hours of LIVE Online Teaching ● Crash Course and Test Series before Exam *Vedantu Pro Subscription Link available in description Use the Coupon Code: HMPRO How to Avail The Vedantu PRO SUBSCRIPTION 1 2 3 4 Select Your Click on Get Subscription Choose Your Subscription Apply Coupon Code Grade & Target & Click on Proceed To Pay and Make Payment *Vedantu Pro Subscription Link available in description Use the code: HMPRO p-Block elements Oxyacids of sulphur Session 3 Oxoacids of sulphur ● H2SO3 (Hydrogen sulphite) Oxoacids of sulphur ● H2SO4 (Hydrogen sulphate) Oxoacids of sulphur ● H2S2O7 (Pyrosulphuric acid or oleum) Oxoacids of sulphur ● H2S2O2 (Thiosulphurous acid) Oxoacids of -
Nomenclature Practice for Each of the Following Compounds Provide The
Nomenclature Practice For each of the following compounds provide the correct formula. a. aluminum chloride AlCl3 l. lithium chloride LiCl b. aluminum nitride AlN m. magnesium oxide MgO c. aluminum oxide Al2O3 n. potassium iodide KI d. barium bromide BaBr2 o. potassium oxide K2O e. barium nitride Ba3N2 p. potassium sulfide K2S f. boron phosphide BP q. silver oxide Ag2O g. calcium chloride CaCl2 r. sodium sulfide Na2S h. calcium fluoride CaF2 s. strontium bromide SrBr2 i. calcium arsenide Ca3As2 t. strontium nitride Sr3N2 j. calcium iodide CaI2 u. zinc oxide ZnO k. calcium sulfide CaS For each of the following provide the correct IUPAC name. a. Ag2O silver oxide n. ZnS zinc sulfide b. Al2O3 aluminum oxide o. KBr potassium bromide c. AlN aluminum nitride p. CaH2 calcium hydride d. BN boron nitride q. Al4Si3 aluminum sulfide e. CaO calcium oxide r. ZnI2 zinc iodide f. KCl potassium chloride s. Ag2S silver sulfide g. MgI2 magnesium iodide t. Al2S3 aluminum sulfide h. Na2O sodium oxide u. CaCl2 calcium chloride i. NaH sodium hydride v. CsF cesium fluoride j. ZnO zinc oxide w. AlBr3 aluminum bromide k. NaCl sodium chloride x. LiH lithium hydride l. MgO magnesium oxide v. NaBr sodium bromide m. KF potassium fluoride z. SrCl2 strontium chloride For each of the following compounds provide the correct formula. a. copper(II) bromide CuBr2 q. mercury(III) chloride HgCl3 b. cobalt(II) chloride CoCl2 r. chromium(III) oxide Cr2O3 c. iron(II) oxide FeO s. nickel(II) arsenide Ni3As2 d. cobalt(III) oxide Co2O3 t. cobalt(III) chloride CoCl3 e. -
National Chemicals Management Profile MONGOLIA
National Chemicals Management Profile Project team. J.Choikhand MONGOLIA Director of International Cooperation Department of MNE Second Edition L.Jargalsaikhan (Phd) June 2008 National Chemical Council D.Purevsuren (Phd), Bio-Chemist B.Munkhzul, Lawyer B.Munkhchimeg, Chemist Phone: Fax: 976- 11- 321401 Tel: 976-11- 266197 [email protected] ACRONYMS ADB – Asian Development Bank EU – European Union EIA – Environmental Impact Assessment FAO – Food and Agricultural Organization GH G – Greenhouse Gas Emission GEF – Global Environmental Facility Go M – Government of Mongolia LDC – Le ast Developed Country MNE – Ministry of Nature and Environment MPRP – Mongolian People’s Revolutionary Party MA P-21 – Mongolia Action Plan – 21 MDGs – Millennium Development Goals MESC – Ministry of Education, Science and Culture MFA – Ministry of Foreign Affairs MFA - Ministry of Food and Agriculture MIC- Ministry of Industry and Commerce MoH-Ministry of Health MoD-Ministry of Defense MoF – Ministry of Finance HOB – Heat –only-boilers NEMA- National Emergency Management Agency SAICM – Strategic Approach to International Chemicals Management SPIA- State Professional Inspection Agency UB – Ulaanbaatar UNITAR – United Nations Institute for Training and Research WB – World Bank 2 CONTENT ACRONYMS 2 ACKNOWLEDGEMENT 4 EXECUTIVE SUMMARY 5 CHAPTER 1 NATIONAL BACKGROUND INFORMATION 7 CHAPTER 2 CHEMICAL PRODUCTION, 22 IMPORT , EXPORT AND USE CHAPTER 3. PRIORITY CONCERNS RELATED TO CHEMICAL 34 PRODUCTION, IMPORT, EXPORT AND USE CHAPTER 4 LEGAL INSTRUMENTS AND NON-REGULATORY -
Chapter 2 Atoms, Molecules, and Ions
Lecture Presentation Chapter 2 Atoms, Molecules, and Ions James F. Kirby Quinnipiac University Hamden, CT © 2015 Pearson Education, Inc. Atomic Theory of Matter Atoms, Molecules, and Ions © 2015 Pearson Education, Inc. Law of Conservation of Mass The total mass of substances present at the end of a chemical process is the same as the mass of substances present before the process took place. This law was one of the laws on which Dalton’s atomic theory was based. Law of Multiple Proportions If two elements, A and B, form more than one compound, the masses of B that combine with a given mass of A are in the ratio of small whole numbers. When two or more compounds exist from the same elements, they can not have the same relative number of atoms. Atoms, Ex. H2O and H2O2 or CO2 and CO Molecules, and Ions © 2015 Pearson Education, Inc. The Electron • Streams of negatively charged particles were found to emanate from cathode tubes, causing fluorescence. • J. J. Thomson is credited with their discovery (1897). Thomson measured the charge/mass ratio of the electron to be 1.76 108 coulombs/gram (C/g). Atoms, Molecules, and Ions © 2015 Pearson Education, Inc. Radioactivity • Radioactivity is the spontaneous emission of high-energy radiation by an atom. Alpha (+) particles, Beta (-) particles and gamma rays • It was first observed by Henri Becquerel. • Marie and Pierre Curie also studied it. • Its discovery showed that the atom had more subatomic particles and energy associated with it. Atoms, Molecules, and Ions © 2015 Pearson Education, Inc. The Atom, circa 1900 • The prevailing theory was that of the “plum pudding” model, put forward by Thomson. -
PERCORSO 5 Composti Binari Inorganici
PERCORSO 5 Composti binari inorganici NOW TRY IN ENGLISH CLIL Oxide Nomenclature Li2O Lithium oxide Fe2O3 Iron(III) oxide Na2O Sodium oxide Cu2O Copper(I) oxide K2O Potassium oxide CuO Copper(II) oxide BeO Beryllium oxide Ag2O Silver oxide MgO Magnesium oxide ZnO Zinc oxide CaO Calcium oxide PbO Lead(II) oxide BaO Barium oxide PbO2 Lead(IV) oxide Al2O3 Aluminium oxide HgO Mercury(II) oxide FeO Iron(II) oxide NiO Nickel(II) oxide Anhydrides Nomenclature B2O3 Boron oxide P2O3 Diphosphorus trioxide CO Carbon monoxide P2O5 Diphosphorus pentoxide CO2 Carbon dioxide As2O3 Diarsenic trioxide SiO2 Silicon dioxide As2O5 Diarsenic pentoxide N2O Nitrous oxide SO2 Sulphur dioxide NO Nitrogen oxide SO3 Sulphur trioxide N2O3 Dinitrogen trioxide Cl2O3 Dichlorine trioxide NO2 Nitrogen dioxide Cl2O5 Dichlorine pentoxide N2O5 Dinitrogen pentoxide Cl2O7 Dichlorine heptoxide Hydroxides Nomenclature LiOH Lithium hydroxide Fe(OH)3 Iron(III) hydroxide NaOH Sodium hydroxide CuOH Copper(I) hydroxide KOH Potassium hydroxide Cu(OH)2 Copper(II) hydroxide Be(OH)2 Beryllium hydroxide AgOH Silver hydroxide Mg(OH)2 Magnesium hydroxide Zn(OH)2 Zinc hydroxide Be(OH)2 Calcium hydroxide Pb(OH)2 Lead(II) hydroxide Ca(OH)2 Barium hydroxide Cd(OH)2 Cadmium hydroxide Al(OH)3 Aluminium hydroxide Hg(OH)2 Mercury hydroxide Fe(OH)2 Iron(II) hydroxide Ni(OH)2 Nickel hydroxide 1 H2O artPlus Chimica dei materiali NOW TRY IN ENGLISH per il terzo e quarto anno dei Licei Artistici Acids Nomenclature H3BO3 Boric acid HClO Hypochlorous acid H2CO3 Carbonic acid HClO2 Chlorous acid HNO2 Nitrous acid HClO3 Chloric acid HNO3 Nitric acid HClO4 Perchloric acid H2SO3 Solphurous acid HF Hydrofluoric acid H2SO4 Solphuric acid HCl Hydrocloric acid H3PO3 Phosphorous acid HBr Hydrobromic acid H3PO4 Phosphoric acid HI Hydriodic acid H3AsO3 Arsenious acid H2S Hydrogen sulphide H3AsO4 Arsenic acid HCN Hydrocianic acid Oxide An oxide is a binary chemical compound of the oxygen with other chemical elements.