Butterflies and Moths Free

Total Page:16

File Type:pdf, Size:1020Kb

Butterflies and Moths Free FREE BUTTERFLIES AND MOTHS PDF DK | 224 pages | 01 Feb 2010 | Dorling Kindersley Ltd | 9781405349956 | English | London, United Kingdom Comparison of butterflies and moths - Wikipedia A common classification of the Lepidoptera involves their differentiation into butterflies and moths. Butterflies are a natural monophyletic group, often given the suborder Rhopalocerawhich includes Papilionoidea true butterfliesHesperiidae skippersand Hedylidae butterfly moths. In this taxonomic scheme, moths belong to the suborder Heterocera. Other taxonomic schemes have been proposed, the most common Butterflies and Moths the butterflies into the suborder Ditrysia and then the "superfamily" Papilionoidea and ignoring a classification for moths. While the butterflies form a monophyletic group, the moths, which comprise the rest of the Lepidoptera, do not. Many attempts have been made to group the superfamilies of the Lepidoptera into natural groups, most of which fail because one of the two groups is Butterflies and Moths monophyletic: Microlepidoptera and Macrolepidoptera, Heterocera and Rhopalocera, Jugatae and Frenatae, Monotrysia and Ditrysia. Although the rules for distinguishing these groups are Butterflies and Moths absolute, one very good guiding principle is that butterflies have thin antennae and with one exception have small balls or clubs at the end of their antennae. Moth antennae Butterflies and Moths be quite varied in appearance, but in particular lack the club end. The divisions are named by this principle: "club-antennae" Rhopalocera or "varied-antennae" Heterocera. The family Hesperiidaeor the skippers, often considered as butterflies, have Butterflies and Moths morphological differences from butterflies and moths. The most obvious difference is in the feelers, or antennae. Most butterflies have thin slender filamentous antennae which are club shaped at the end. Moths, on the other hand, often have comb-like Butterflies and Moths feathery antennae, or filamentous and unclubbed. There are, however, exceptions to this rule and a few moths the families CastniidaeUraniidaeApoprogonidaeand Sematuridae [4] have clubbed antennae. Some butterflies, like Pseudopontia paradoxa from the forests of central Africalack the club ends. The hesperiids often have an angle to the tip of the antenna. Many moths have a frenulum which is a filament arising from the hindwing and coupling matching up with barbs on the forewing. The frenulum can be observed only when a specimen is in hand. Some moths have a lobe on the forewing called a jugum that helps in coupling with the hindwing. Butterflies, however, lack these structures. Most moth caterpillars spin a cocoon made of silk within which they metamorphose into the pupal stage. Most butterfly caterpillars, on the other hand, form an exposed pupa made from a hardened protein, also termed a chrysalis. There are many exceptions to this rule, however. For example, the hawk moths form an exposed pupa which Butterflies and Moths underground. Gypsy moths sometimes form butterfly-style pupae, hanging on twigs or tree bark, although usually they create flimsy cocoons out of silk strands and a few leaves, partially exposing the pupa. The plume winged moths of the family Pterophoridae also Butterflies and Moths without a cocoon and the pupa resembles Butterflies and Moths chrysalis of the pierid butterfly. A few skipper butterfly larvae also make crude cocoons in which they pupate, exposing the pupa a bit. The Parnassius butterfly larvae make a flimsy cocoon for pupation and they pupate near the ground surface between debris. Most butterflies have bright colours on Butterflies and Moths wings. Nocturnal moths on the other hand are usually plain brown, grey, white or black and often with obscuring patterns of zigzags or swirls which help camouflage them from predators as they rest during the day. However, many day-flying moths are brightly coloured, Butterflies and Moths if they are toxic. These diurnal species evolved to locate their mates visually and not primarily by pheromone as their Butterflies and Moths nocturnal cousins. A few butterflies Butterflies and Moths also plain-coloured, like the cabbage white Butterflies and Moths or the baron butterfly. Moths tend to have stout and hairy or furry-looking bodies, while butterflies have slender and smoother abdomens. Moths have larger scales on their wings which makes them look more dense and fluffy. Butterflies on the other hand possess fine scales. This difference is possibly due to the need for moths to conserve heat during the cooler nights, or to confound echolocation by bats, whereas butterflies are able to absorb sunlight. Despite appearances, butterflies and moths have different types of compound eyes. Though not universal, moths very commonly have superposition eyeswhile butterflies equally commonly Butterflies and Moths apposition eyes. This is due to the superposition eye's adaptations for low light environments suiting the nocturnal moths, and the apposition eye's superior resolution and potential for colour vision benefiting the more diurnal butterflies. There are several exceptions to this rule, such as with the diurnal Zygaenidae and Sytomidae families of moths, both of which have apposition eyes, or the Hedyloidea family of butterflies, which are nocturnal and feature superposition eyes. Most moths are nocturnal or crepuscular while most butterflies are diurnal. There are however exceptions, including the spectacular Uraniidae or sunset Butterflies and Moths. Moths usually rest with their wings spread out to their sides. Butterflies frequently fold their wings above their backs when they are perched although they will occasionally "bask" with Butterflies and Moths wings spread for short periods several types of Swallowtail butterflies tend to frequently rest with their wings spread when in sunlight. However, some butterflies, like the skippersmay hold their wings either flat, or folded, or even in-between the so-called "jet plane" position when perched. Most moths also occasionally fold their wings Butterflies and Moths their backs when they are in a certain spot like when there is no room to fully spread their wings. A sometimes confusing family can be the Geometridae such as the winter moth because the adults often rest with their wings Butterflies and Moths vertically. These moths have thin bodies and large wings like many butterflies but may be distinguished easily by structural differences in their antennae e. Chrysiridia rhipheus Uraniidaethe day-flying Madagascan sunset moth, has butterfly-like colours. Tetragonus sp. The day-flying Paysandisia archon has clubbed antennae like other moths of family Castniidae. The male Butterflies and Moths promethea uses Batesian mimicry to mimic the poisonous pipe vine swallowtail. From Wikipedia, the free encyclopedia. The Lepidoptera: form, function and diversity. Retrieved June 29, Retrieved April 27, Lund University. Archived from the original PDF on 9 February Retrieved 11 May Johnson; Sarah G. Brown; Eric J. Warrant 14 November Lepidoptera: Hedyloidea : a nocturnal butterfly with superposition optics". Extant Butterflies and Moths families. Suborder Zeugloptera. Micropterigidae mandibulate archaic moths. Suborder Aglossata. Agathiphagidae kauri moths. Suborder Heterobathmiina. Suborder Glossata. Acanthopteroctetidae archaic sun moths. Aenigmatineidae Neopseustidae archaic bell moths. Anomosetidae Hepialidae swift moths, ghost moths Neotheoridae Amazonian primitive ghost moths Palaeosetidae miniature ghost Butterflies and Moths Prototheoridae African primitive ghost moths. Mnesarchaeidae New Zealand primitive moths. Adelidae fairy longhorn moths Cecidosidae Heliozelidae Incurvariidae Prodoxidae yucca moths. Andesianidae Andean endemic moths. Nepticulidae pigmy, or midget moths Opostegidae white eyecap moths. Palaephatidae Gondwanaland moths. Tischeriidae trumpet leaf miner moths. Acrolophidae burrowing webworm moths Arrhenophanidae Eriocottidae Old World spiny-winged moths Lypusidae Psychidae bagworm moths Tineidae fungus moths. Bucculatricidae ribbed cocoon makers Douglasiidae Douglas moths Gracillariidae Roeslerstammiidae. Acrolepiidae false diamondback moths Bedelliidae Glyphipterigidae sedge moths Heliodinidae Butterflies and Moths Plutellidae Yponomeutidae ermine moths Ypsolophidae. Autostichidae Batrachedridae Blastobasidae Coleophoridae case-bearers, case moths Cosmopterigidae cosmet moths Elachistidae grass-miner moths Gelechiidae twirler moths Lecithoceridae long-horned moths Metachandidae Momphidae mompha moths Oecophoridae concealer Butterflies and Moths Pterolonchidae Scythrididae flower Butterflies and Moths Xyloryctidae timber moths. Heterogynidae Zygaenidae burnet, forester, or smoky moths Himantopteridae Lacturidae Somabrachyidae Megalopygidae flannel moths Aididae Anomoeotidae Cyclotornidae Epipyropidae planthopper parasite moths Dalceridae slug caterpillars Limacodidae slug, or cup moths. Cossidae carpenter millers, or goat moths Dudgeoneidae dudgeon carpenter moths. Brachodidae little bear moths Castniidae castniid moths: giant butterfly- moths, sun moths Sesiidae clearwing moths. Choreutidae metalmark moths. Tortricidae tortrix moths. Urodidae false burnet moths. Schreckensteiniidae bristle-legged moths. Epermeniidae fringe-tufted moths. Butterflies and Moths many-plumed moths Tineodidae false plume moths. Pterophoridae plume moths. Copromorphidae tropical fruitworm moths Carposinidae fruitworm moths. Thyrididae picture-winged leaf moths. Callidulidae Old World butterfly-moths.
Recommended publications
  • Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009
    Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Fauna Conservation Department Kadoorie Farm & Botanic Garden 29 June 2010 Kadoorie Farm and Botanic Garden Publication Series: No 6 Fung Yuen SSSI & Butterfly Reserve moth survey 2009 Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Executive Summary The objective of this survey was to generate a moth species list for the Butterfly Reserve and Site of Special Scientific Interest [SSSI] at Fung Yuen, Tai Po, Hong Kong. The survey came about following a request from Tai Po Environmental Association. Recording, using ultraviolet light sources and live traps in four sub-sites, took place on the evenings of 24 April and 16 October 2009. In total, 825 moths representing 352 species were recorded. Of the species recorded, 3 meet IUCN Red List criteria for threatened species in one of the three main categories “Critically Endangered” (one species), “Endangered” (one species) and “Vulnerable” (one species” and a further 13 species meet “Near Threatened” criteria. Twelve of the species recorded are currently only known from Hong Kong, all are within one of the four IUCN threatened or near threatened categories listed. Seven species are recorded from Hong Kong for the first time. The moth assemblages recorded are typical of human disturbed forest, feng shui woods and orchards, with a relatively low Geometridae component, and includes a small number of species normally associated with agriculture and open habitats that were found in the SSSI site. Comparisons showed that each sub-site had a substantially different assemblage of species, thus the site as a whole should retain the mosaic of micro-habitats in order to maintain the high moth species richness observed.
    [Show full text]
  • Fatty Acid-Amino Acid Conjugates Diversification in Lepidopteran Caterpillars
    J Chem Ecol (2010) 36:319–325 DOI 10.1007/s10886-010-9764-8 Fatty Acid-amino Acid Conjugates Diversification in Lepidopteran Caterpillars Naoko Yoshinaga & Hans T. Alborn & Tomoaki Nakanishi & David M. Suckling & Ritsuo Nishida & James H. Tumlinson & Naoki Mori Received: 30 September 2009 /Revised: 29 January 2010 /Accepted: 11 February 2010 /Published online: 27 February 2010 # Springer Science+Business Media, LLC 2010 Abstract Fatty acid amino acid conjugates (FACs) have the presence of FACs in lepidopteran species outside these been found in noctuid as well as sphingid caterpillar oral families of agricultural interest is not well known. We con- secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)- ducted FAC screening of 29 lepidopteran species, and found L-glutamine] and its biochemical precursor, N-linolenoyl-L- them in 19 of these species. Thus, FACs are commonly glutamine, are known elicitors of induced volatile emissions synthesized through a broad range of lepidopteran cater- in corn plants. These induced volatiles, in turn, attract natural pillars. Since all FAC-containing species had N-linolenoyl-L- enemies of the caterpillars. In a previous study, we showed glutamine and/or N-linoleoyl-L-glutamine in common, and that N-linolenoyl-L-glutamine in larval Spodoptera litura the evolutionarily earliest species among them had only plays an important role in nitrogen assimilation which might these two FACs, these glutamine conjugates might be the be an explanation for caterpillars synthesizing FACs despite evolutionarily older FACs. Furthermore, some species had an increased risk of attracting natural enemies. However, glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylog- eny indicates that glutamic acid conjugates can be synthe- N.
    [Show full text]
  • SYSTEMATICS of the MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of T
    SYSTEMATICS OF THE MEGADIVERSE SUPERFAMILY GELECHIOIDEA (INSECTA: LEPIDOPTEA) DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Sibyl Rae Bucheli, M.S. ***** The Ohio State University 2005 Dissertation Committee: Approved by Dr. John W. Wenzel, Advisor Dr. Daniel Herms Dr. Hans Klompen _________________________________ Dr. Steven C. Passoa Advisor Graduate Program in Entomology ABSTRACT The phylogenetics, systematics, taxonomy, and biology of Gelechioidea (Insecta: Lepidoptera) are investigated. This superfamily is probably the second largest in all of Lepidoptera, and it remains one of the least well known. Taxonomy of Gelechioidea has been unstable historically, and definitions vary at the family and subfamily levels. In Chapters Two and Three, I review the taxonomy of Gelechioidea and characters that have been important, with attention to what characters or terms were used by different authors. I revise the coding of characters that are already in the literature, and provide new data as well. Chapter Four provides the first phylogenetic analysis of Gelechioidea to include molecular data. I combine novel DNA sequence data from Cytochrome oxidase I and II with morphological matrices for exemplar species. The results challenge current concepts of Gelechioidea, suggesting that traditional morphological characters that have united taxa may not be homologous structures and are in need of further investigation. Resolution of this problem will require more detailed analysis and more thorough characterization of certain lineages. To begin this task, I conduct in Chapter Five an in- depth study of morphological evolution, host-plant selection, and geographical distribution of a medium-sized genus Depressaria Haworth (Depressariinae), larvae of ii which generally feed on plants in the families Asteraceae and Apiaceae.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • GIS Handbook Appendices
    Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Appendix D Cooperating Agency Codes The following table lists the aerial survey cooperating agencies and codes to be used in the agency1, agency2, agency3 fields of the flown/not flown coverages. The contents of this list is available in digital form (.dbf) at the following website: http://www.fs.fed.us/foresthealth/publications/id/id_guidelines.html 28 Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Code Agency Name AFC Alabama Forestry Commission ADNR Alaska Department of Natural Resources AZFH Arizona Forest Health Program, University of Arizona AZS Arizona State Land Department ARFC Arkansas Forestry Commission CDF California Department of Forestry CSFS Colorado State Forest Service CTAES Connecticut Agricultural Experiment Station DEDA Delaware Department of Agriculture FDOF Florida Division of Forestry FTA Fort Apache Indian Reservation GFC Georgia Forestry Commission HOA Hopi Indian Reservation IDL Idaho Department of Lands INDNR Indiana Department of Natural Resources IADNR Iowa Department of Natural Resources KDF Kentucky Division of Forestry LDAF Louisiana Department of Agriculture and Forestry MEFS Maine Forest Service MDDA Maryland Department of Agriculture MADCR Massachusetts Department of Conservation and Recreation MIDNR Michigan Department of Natural Resources MNDNR Minnesota Department of Natural Resources MFC Mississippi Forestry Commission MODC Missouri Department of Conservation NAO Navajo Area Indian Reservation NDCNR Nevada Department of Conservation
    [Show full text]
  • Bionomics of Bagworms (Lepidoptera: Psychidae)
    ANRV363-EN54-11 ARI 27 August 2008 20:44 V I E E W R S I E N C N A D V A Bionomics of Bagworms ∗ (Lepidoptera: Psychidae) Marc Rhainds,1 Donald R. Davis,2 and Peter W. Price3 1Department of Entomology, Purdue University, West Lafayette, Indiana, 47901; email: [email protected] 2Department of Entomology, Smithsonian Institution, Washington D.C., 20013-7012; email: [email protected] 3Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011-5640; email: [email protected] Annu. Rev. Entomol. 2009. 54:209–26 Key Words The Annual Review of Entomology is online at bottom-up effects, flightlessness, mating failure, parthenogeny, ento.annualreviews.org phylogenetic constraint hypothesis, protogyny This article’s doi: 10.1146/annurev.ento.54.110807.090448 Abstract Copyright c 2009 by Annual Reviews. The bagworm family (Lepidoptera: Psychidae) includes approximately All rights reserved 1000 species, all of which complete larval development within a self- 0066-4170/09/0107-0209$20.00 enclosing bag. The family is remarkable in that female aptery occurs in ∗The U.S. Government has the right to retain a over half of the known species and within 9 of the 10 currently recog- nonexclusive, royalty-free license in and to any nized subfamilies. In the more derived subfamilies, several life-history copyright covering this paper. traits are associated with eruptive population dynamics, e.g., neoteny of females, high fecundity, dispersal on silken threads, and high level of polyphagy. Other salient features shared by many species include a short embryonic period, developmental synchrony, sexual segrega- tion of pupation sites, short longevity of adults, male-biased sex ratio, sexual dimorphism, protogyny, parthenogenesis, and oviposition in the pupal case.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • ILLUSTRATIONS of MOTHS in TAIWAN, 1-5 by B. S. Chang
    142 BOOK REVIEW TROPICAL LEPIDOPTERJ Tropical Lepidoptera, 4(2): 142 BOOK REVIEW ILLUSTRATIONS OF MOTHS IN TAIWAN, 1-5 by B. S. Chang Vol. 1: Sphingidae, Ratardidae. Epipyropidae, Drepanidae, Cyclidiidae, Thyatiridae, Epicopeiidae, Callidulidae. Lasiocampidae. EupterotidJ Bombycidae, Brahmaeidae, Agaristidae [Noctuidae, part]. 242 pp, 271 col. fig., col. cover. 1989. (paper only) Vol. 2: Arctiidae, Hypsidae [Noctuidae, part], Limacodidae, Notodontidae. 310 pp, 356 col. fig., col. cover. 1989. Vol. 3: Geometridae [1]. Oenochrominae, Geometrinae, Sterrhinae, Larentiinae. 350 pp, 405 col. fig., col. cover. 1989. Vol. 4: Geometridae [2]. Ennominae. 480 pp, 684 col. fig., col. cover. 1990. Vol. 5: Noctuidae [1]. 366 pp. 572 col. fig., col. cover. 1991. (paper only) 1989-91. Taiwan Museum, Taipei. All are 21 x 18.5 cm. (elongate) In Chinese; Latin names. Price for each is S35.00 paper, S42.00 cloth. Available from Flora & Fauna Books, P. O. Box 15718, Gainesville, FL 32604 (plus S2 shipping each, or 55 per set). This series of small, full-color books is the result of a lifetime of with 706 species illustrated out of the 791 recorded for Taiwan. TlJ collecting by retired Taiwan high school teacher B. S. Chang. Until color figures are all excellent but many of the wing venation drawing 1991, 5 volumes were completed, but the second part of the Noctuidae are very faintly reproduced in the books. has unfortunately been halted by the untimely death of the author. It is Overall, the books are one of the unique treatments of Lepidoptera ii not known if a manuscript is available for the eventual completion of the world.
    [Show full text]
  • Lepidoptera, Incurvariidae) with Two New Species from China and Japan
    Zootaxa 4927 (2): 209–233 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4927.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:96B9981B-01B5-4828-A4C6-E2E4A08DB8F2 Review of the genus Vespina (Lepidoptera, Incurvariidae) with two new species from China and Japan TOSHIYA HIROWATARI1*, SADAHISA YAGI1, ISSEI OHSHIMA2, GUO-HUA HUANG3 & MIN WANG4 1Entomological laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan. [email protected]; https://orcid.org/0000-0002-4261-1219 2Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522 Japan. [email protected]; https://orcid.org/0000-0001-8295-9749 3Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410128, Hunan, China. [email protected]; https://orcid.org/0000-0002-6841-0095 4Department of Entomology, South China Agricultural University, Guangzhou 510640, Guangdong, China. [email protected]; https://orcid.org/0000-0001-5834-4058 *Corresponding author. [email protected]; https://orcid.org/0000-0002-6839-2229 Abstract Asian species of the genus Vespina Davis, 1972 (Lepidoptera, Incurvariidae) are mainly reviewed. Vespina meridiana Hirowatari & Yagi sp. nov. from the Ryukyu Islands, Japan, and Vespina sichuana Hirowatari, Huang & Wang sp. nov. from Sichuan, China, are described. The previously known Vespina species are associated with plants from the Fagaceae family on the western coast of the USA and East Asia and with Sapindaceae (Aceraceae) in eastern Europe.
    [Show full text]
  • Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note
    Lepidoptera Recorded for Imperial County California Compiled by Jeffrey Caldwell [email protected] 1-925-949-8696 Note: BMNA = Butterflies and Moths of North America web site MPG = Moth Photographers Group web site Most are from the Essig Museum’s California Moth Specimens Database web site Arctiidae. Tiger and Lichen Moths. Apantesis proxima (Notarctia proxima). Mexican Tiger Moth. 8181 [BMNA] Ectypia clio (clio). Clio Tiger Moth. 8249 Estigmene acrea (acrea). Salt Marsh Moth. 8131 Euchaetes zella. 8232 Autostichidae (Deoclonidae). Oegoconia novimundi. Four-spotted Yellowneck Moth. 1134 (Oegoconia quadripuncta mis-applied) Bucculatricidae. Ribbed Cocoon-maker Moths. Bucculatrix enceliae. Brittlebrush Moth. 0546 Cossidae. Goat Moths, Carpenterworm Moths, and Leopard Moths. Comadia henrici. 2679 Givira mucida. 2660 Hypopta palmata. 2656 Prionoxystus robiniae (mixtus). Carpenterworm or Locust Borer. 2693 Depressariidae. Pseudethmia protuberans. 1008 [MPG] Ethmiidae. Now assigned to Depressariidae. Ethmiinae. Ethmia timberlakei. 0984 Pseudethmia protuberans. 1008 Gelechiidae. Twirler Moths. Aristotelia adceanotha. 1726 [Sighting 1019513 BMNA] Chionodes abdominella. 2054 Chionodes dentella. 2071 Chionodes fructuaria. 2078 Chionodes kincaidella. 2086 (reared from Atriplex acanthocarpa in Texas) Chionodes oecus. 2086.2 Chionodes sistrella. 2116 Chionodes xanthophilella. 2125 Faculta inaequalis. Palo Verde Webworm. 2206 Friseria cockerelli. Mesquite Webworm. 1916 Gelechia desiliens. 1938 Isophrictis sabulella. 1701 Keiferia lycopersicella. Tomato Pinworm. 2047 Pectinophora gossypiella. Pink Bollworm. 2261 Prolita puertella. 1895 Prolita veledae. 1903 Geometridae. Inchworm Moths, Loopers, Geometers, or Measuring Worms. Archirhoe neomexicana. 7295 Chesiadodes coniferaria. 6535 Chlorochlamys appellaria. 7073 Cyclophora nanaria. Dwarf Tawny Wave. W 7140 Dichorda illustraria. 7055 Dichordophora phoenix. Phoenix Emerald. 7057 Digrammia colorata. Creosote Moth. 6381 Digrammia irrorata (rubricata). 6395 Digrammia pictipennata. 6372 Digrammia puertata.
    [Show full text]