What Is the Difference Between OHV, OHC, SOHC and DOHC Engines?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer -
Timing Belt Interference Caution Note: Camshaft
Carmax 6067 170 Turnpike Rd Westborough, MA 01581 YMMS: 1991 Chevrolet Lumina Z34 Sep 3, 2020 Engine: 3.4L Eng License: VIN: Odometer: TIMING BELT INTERFERENCE CAUTION NOTE: CAMSHAFT DRIVE BELTS OR TIMING BELTS - The condition of camshaft drive belts should always be checked on vehicles which have more than 50,000 miles. Although some manufacturers do not recommend replacement at a specified mileage, others require it at 60,000-100,000 miles. A camshaft drive belt failure may cause extensive damage to internal engine components on most engines, although some designs do not allow piston-to-valve contact. These designs are often called "Free Wheeling". Many manufacturers changed their maintenance and warranty schedules in the mid-1980's to reflect timing belt inspection and/or replacement at 50,000- 60,000 miles. Most service interval schedules shown in this section reflect these changes. Belts or components should be inspected and replaced if any of the following conditions exist: Crack Or Tears In Belt Surface Missing, Damaged, Cracked Or Rounded Teeth Oil Contamination Damaged Or Faulty Tensioners Incorrect Tension Adjustment REMOVAL & INSTALLATION Tip: Timing belt CAUTION: For 1996-97 models, this application is an interference engine. Do not rotate camshaft or crankshaft when timing belt is removed, or engine damage may occur. NOTE: The camshaft timing procedure has been updated by TSB bulletin No. 47-61-34, dated December, 1994. REMOVAL Tip: timing 3.4 x motor 1. Disconnect negative battery cable. Remove air cleaner and duct assembly. Drain engine coolant. 2. Remove accelerator and cruise control cables from throttle body. -
Harrop Camshaft Grind Specifications
Harrop Engineering Australia Pty Ltd www.harrop.com.au ABN: 87 134 196 080 Phone: +61 3 9474 - 0900 96 Bell Street, Preston, Fax: +61 3 9474 – 0999 Melbourne, VIC, 3072, Australia Email: [email protected] Harrop Camshaft Grind Specifications Harrop HO1 Camshaft 226/232 .607”/.602” @ 112 LSA Great NA camshaft Lumpy idle but acceptable driveability, Great power and torque Manual or auto standard gear ratios are ok but 3.7 or 3.9 would be preferred. Automatic may require stall converter. Could be used in boosted application but due to low LSA Would require smaller pulley to be increase boost. Harrop HO2 camshaft 224/232 .610” / .610” @ 114 LSA Great blower camshaft offering acceptably lumpy idle and great drivability, this camshaft will give great power through the mid to high RPM range. As this camshaft is more aggressive then the H05. Normally this would require a stall converter, it can be run on a standard converter but it may push on it slightly. Sound clip: https://www.youtube.com/watch?v=NvOGohRd7-k Harrop H03 Camshaft 232/233 .610” / .602” @ 112 LSA Will give great lumpy cammed affect, Low LSA would take boost out of a forced induction motor. Largest recommend camshaft for a 5.7 N/A , Acceptable in 6.0L and 6.2L square port engines, Must have 3.7 (square port) or 3.9 (LS1) for the best results in a manual car. Auto would require stall converter. 1 / 2 File: Harrop Letter Head “Commercial in Confidence” Issue:12th January 2018 designdevelop deliver Print: Friday, 25 September 2020 ` Harrop HO4 camshaft 234/238 .593” / .595” @ 114 LSA The H04 is designed with Forced induction in mind but can be used as a naturally aspirated camshaft as well. -
Belt Drive Systems: Potential for CO2 Reductions and How to Achieve Them
19 Belt drive 19 Belt drive Belt drive 19 Belt drive systems Potenti al for CO2 reducti ons and how to achieve them Hermann Sti ef Rainer Pfl ug Timo Schmidt Christi an Fechler 19 264 Schaeffl er SYMPOSIUM 2010 Schaeffl er SYMPOSIUM 2010 265 19 Belt drive Belt drive 19 If required, double-row Introducti on Tension pulleys and angular contact ball Single and double eccentric tensioners bearings (Figure 3) are Schaeffl er has volume produced components for idler pulleys used that also have an belt drive systems since 1977. For the past 15 years, opti mized grease sup- Schaeffl er has worked on the development of com- One use of INA idler pulleys is to reduce noise in ply volume. These plete belt drive systems in ti ming drives (Figure 1) criti cal belt spans, to prevent collision problems bearings are equipped as well as in accessory drives (Figure 2). with the surrounding structure, to guide the belt with high-temperature or to increase the angle of belt wrap on neighbor- rolling bearing greases ing pulleys. These pulleys have the same rati ng and appropriate seals. life and noise development requirements as belt Standard catalog bear- tensioning systems. For this applicati on, high-pre- ings are not as suitable Pulleys Variable camsha ming cision single-row ball bearings with an enlarged for this applicati on. grease supply volume have proven suffi cient. The tension pulleys in- stalled consist of single or double-row ball bearings specially de- veloped, opti mized and manufactured by INA for use in belt drive ap- Idler pulleys plicati ons. -
The Achates Power Opposed-Piston Two-Stroke Engine
Gratis copy for Gerhard Regner Copyright 2011 SAE International E-mailing, copying and internet posting are prohibited Downloaded Wednesday, August 31, 2011 08:49:32 PM The Achates Power Opposed-Piston Two-Stroke 2011-01-2221 Published Engine: Performance and Emissions Results in a 09/13/2011 Medium-Duty Application Gerhard Regner, Randy E. Herold, Michael H. Wahl, Eric Dion, Fabien Redon, David Johnson, Brian J. Callahan and Shauna McIntyre Achates Power Inc Copyright © 2011 SAE International doi:10.4271/2011-01-2221 technical challenges related to emissions, fuel efficiency, cost ABSTRACT and durability - to name a few - and these challenges have Historically, the opposed-piston two-stroke diesel engine set been more easily met by four-stroke engines, as demonstrated combined records for fuel efficiency and power density that by their widespread use. However, the limited availability of have yet to be met by any other engine type. In the latter half fossil fuels and the corresponding rise in fuel cost has led to a of the twentieth century, the advent of modern emissions re-examination of the fundamental limits of fuel efficiency in regulations stopped the wide-spread development of two- internal combustion (IC) engines, and opposed-piston stroke engine for on-highway use. At Achates Power, modern engines, with their inherent thermodynamic advantage, have analytical tools, materials, and engineering methods have emerged as a promising alternative. This paper discusses the been applied to the development process of an opposed- potential of opposed-piston two-stroke engines in light of piston two-stroke engine, resulting in an engine design that today's market and regulatory requirements, the methodology has demonstrated a 15.5% fuel consumption improvement used by Achates Power in applying state-of-the-art tools and compared to a state-of-the-art 2010 medium-duty diesel methods to the opposed-piston two-stroke engine engine at similar engine-out emissions levels. -
Decoupled Pulley Fax +49 6201 25964-11 Fax +39 0121 369299
The typical crankshaft vibrations are compensated by employing high quality decoupled belt pulleys. This minimizes the transmission of vibrations to other vehicle components and the associated effects on the entire vehicle. So you can enjoy undisturbed ride comfort. CORTECO GmbH CORTECO S.r.l.u. SEALING VIBRATION CONTROL CABIN AIR FILTER Badener Straße 4 Corso Torino 420/D 69493 Hirschberg 10064 Pinerolo (TO) Germanny Italy Corteco original quality Tel. +49 6201 25964-0 Tel. +39 0121 369269 Decoupled PULLEY Fax +49 6201 25964-11 Fax +39 0121 369299 CORTECO S.A.S. CORTECO Ltd. Z.A. La Couture Unit 6, Wycliffe Industrial 87140 Nantiat Park Complex inner workings: France Lutterworth The decoupled belt pulley Tel. +33 5 55536800 Leicestershire is joined to the torsional Fax +33 5 55536888 LE17 4HG vibration damper by a United Kingdom highly elastic elastomer Tel. +44 1455 550000 part, thereby offering opti- www.corteco.com Fax +44 1455 550066 mum damping properties. 19036674 SIG-08/2012 THE belt DRIVE MOVES A EXPENSIVE economic Satisfied customers NUMBER OF THINGS MEASURES ARE GOOD customers No matter whether a drive belt is too loud or ancillary units are damaged by vibration – belt drive decoupling deficiencies are always associated with dissatisfaction. Anyone not using original parts for a decoupled belt pul- ley is making a false saving. Cheap counterfeit products generally lead to complaints after a short running time and loss of customer confidence. On the other hand, ori- ginal parts from CORTECO still work reliably, often after 100,000 kilometers. Transmission of crankshaft vibrations to ancillary units can produce an increased noise level, severe wear of adjoi- Original: after 100,000 km in the vehicle The decoupled belt pulley should be checked after about ning components and undesirable vehicle vibration. -
Understanding Overhead-Valve Engines Once Unheard of These Engines Now Supply the Power for Nearly All of Your Equipment
Understanding Overhead-Valve Engines Once unheard of these engines now supply the power for nearly all of your equipment. By ROBERT SOKOL Intertec Publishing Corp., Technical Manuals Division You've all heard about overhead valves when shopping Valve-Design Characteristics for power equipment, but what do they mean to you? Do The valves consist of a round head, a stem and a groove you need overhead valves? Do they cost more? What will at the top of the valve. The head of the valve is the larger they do for you? Twenty years ago, overhead valves were end that opens and closes the passageway to and from the unheard of in any type of power equipment. Nowadays, it combustion chamber. The stem guides the valve up and is difficult to find a small engine without them. down and supports the valve spring. The groove at the top In an engine with overhead valves, the intake and of the valve stem holds the valve spring in place with a exhaust valve(s) is located in the cylinder head, as opposed retainer lock. The valves must open and close for the air- to being mounted in the engine block. Many of the larger and-fuel mix to enter, then exit, the combustion chamber. engine manufacturers still offer "standard" engines that Proper timing of the opening and closing of the valves is have the valves in the block. Their "deluxe" engines have required for the engine to run smoothly. The camshaft con- overhead valves and stronger construction. Overhead trols valve sequence and timing. -
Poppet Valve
POPPET VALVE A poppet valve is a valve consisting of a hole, usually round or oval, and a tapered plug, usually a disk shape on the end of a shaft also called a valve stem. The shaft guides the plug portion by sliding through a valve guide. In most applications a pressure differential helps to seal the valve and in some applications also open it. Other types Presta and Schrader valves used on tires are examples of poppet valves. The Presta valve has no spring and relies on a pressure differential for opening and closing while being inflated. Uses Poppet valves are used in most piston engines to open and close the intake and exhaust ports. Poppet valves are also used in many industrial process from controlling the flow of rocket fuel to controlling the flow of milk[[1]]. The poppet valve was also used in a limited fashion in steam engines, particularly steam locomotives. Most steam locomotives used slide valves or piston valves, but these designs, although mechanically simpler and very rugged, were significantly less efficient than the poppet valve. A number of designs of locomotive poppet valve system were tried, the most popular being the Italian Caprotti valve gear[[2]], the British Caprotti valve gear[[3]] (an improvement of the Italian one), the German Lentz rotary-cam valve gear, and two American versions by Franklin, their oscillating-cam valve gear and rotary-cam valve gear. They were used with some success, but they were less ruggedly reliable than traditional valve gear and did not see widespread adoption. In internal combustion engine poppet valve The valve is usually a flat disk of metal with a long rod known as the valve stem out one end. -
Simulation Approaches for the Solution of Cranktrain Vibrations Pavel Novotný, Václav Píštěk, Lubomír Drápal, Aleš Prokop
Simulation Approaches for the Solution of Cranktrain Vibrations PaveL NOVOTNÝ, VÁCLav PíštěK, LUBOMÍR DRÁPAL, ALEš PROKOP 10.2478/v10138-012-0006-8 SIMULATION APPROACHES FOR THE SOLUTION OF CRANKTRAIN VIBRATIONS PAVEL NOVOTNÝ, VÁCLAV PíštěK, LubOMÍR DRÁPAL, ALEš PROKOP Institute of Automotive Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic Tel.: +420 541 142 272, Fax: +420 541 143 354, E-mail: [email protected] SHRNUTÍ Vývoj moderních pohonných jednotek vyžaduje využívání pokročilých výpočtových metod, nutných k požadovanému zkrácení času tohoto vývoje společně s minimalizací nákladů na něj. Moderní výpočtové modely jsou stále složitější a umožnují řešit mnoho různých fyzikálních problémů. V případě dynamiky pohonných jednotek a životnosti jejich komponent lze využít několik různých přístupů. Prvním z nich je přístup zahrnující samostatné řešení každého subsystému pohonné jednotky. Druhý přístup využívá model pohonné jednotky obsahující všechny hlavní subsystémy, jako klikový mechanismus, ventilový rozvod, pohon rozvodů nebo vstřikovací čerpadlo, a řeší všechny tyto subsystémy současně i s jejich vzájemným ovlivněním. Cílem článku je pomocí vybraných výsledků prezentovat silné a slabé stránky obou přístupů. Výpočty a experimenty jsou prováděny na traktorovém vznětovém šestiválcovém motoru. KlíčOVÁ SLOVA: POHONNÁ JEDNOTKA, DYNAMIKA, VIBRACE, KLIKOVÝ mechANISMUS, NVH, MKP ABSTRACT The development of modern powertrains requires the use of advanced CAE tools enabling a reduction in engine development times and costs. Modern computational models are becoming ever more complicated and enable integration of many physical problems. Concentrating on powertrain dynamics and component fatigue, a few basic approaches can be used to arrive at a solution. The first approach incorporates a separate dynamics solution of the powertrain parts. -
Overview the Ignition System Is Designed to Ignite the Compressed
« 1: Description and Operation» Overview The Ignition System is designed to ignite the compressed air/fuel mixture in an internal combustion engine by a high voltage spark from an ignition coil. The ignition system also provides engine timing information to the powertrain control module (PCM) for proper vehicle operation and misfire detection. Integrated Electronic Ignition System The Integrated Electronic Ignition (EI) system consists of a crankshaft position (CKP) sensor, coil pack(s), connecting wiring, and PCM. The Coil On Plug (COP) Integrated EI System uses a separate coil per spark plug and each coil is mounted directly onto the plug. The COP Integrated EI System eliminates the need for spark plug wires but does require input from the camshaft position (CMP) sensor. Operation of the components are as follows (Figure 49): 1. NOTE: Electronic Ignition engine timing is entirely controlled by the PCM. Electronic Ignition engine timing is NOT adjustable. Do not attempt to check base timing. You will receive false readings. The CKP sensor is used to indicate crankshaft position and speed by sensing a missing tooth on a pulse wheel mounted to the crankshaft. The CMP sensor is used by the COP Integrated EI System to identify top dead center of compression of cylinder 1 to synchronize the firing of the individual coils. 2. The PCM uses the CKP signal to calculate a spark target and then fires the coil pack(s) to that target shown in Figure 50. The PCM uses the CMP sensor not shown in Figure 50 on COP Integrated EI Systems to identify top dead center of compression of cylinder 1 to synchronize the firing of the individual coils. -
Design and Manufacturing of a Camshaft Used in Multi Cylinder Engine
ISSN 2348–2370 Vol.09,Issue.05, April-2017, Pages:0651-0654 www.ijatir.org Design and Manufacturing of a Camshaft Used in Multi Cylinder Engine DR. CH. S. NAGA PRASAD Professor & Principal, Dept of Mechanical, GIITS Engineering College, Aganampudi, Visakhapatnam(Dt), AP, India, Email: [email protected]. Abstract: The cam shaft and its associated parts control the It is often a part of a rotating wheel (e.g. an eccentric wheel) opening and closing of the two valves. The associated parts or shaft (e.g. a cylinder with an irregular shape) that strikes a are push rods, rocker arms, valve springs and tappets. It lever at one or more points on its circular path. The cam can consists of a cylindrical rod running over the length of the be a simple tooth, as is used to deliver pulses of power to a cylinder bank with a number of oblong lobes protruding steam hammer, for example, or an eccentric disc or other from it, one for each valve. The cam lobes force the valves shape that produces a smooth reciprocating (back and forth) open by pressing on the valve, or on some intermediate motion in the follower, which is a lever making contact with mechanism as they rotate. This shaft also provides the drive the cam. to the ignition system. The camshaft is driven by the II. LITERATURE REVIEW crankshaft through timing gears cams are made as integral DESIGN AND ANALYSIS OF CAM SHAFT FOR parts of the camshaft and are designed in such a way to open MULTI CYLINDER ENGINE and close the valves at the correct timing and to keep them The cam shaft and its associated parts control the open for the necessary duration. -
PDF of Catalog
Edition rd The Power Behind The Power 3 Marine & Industrial Accessories Guide Headquarters New England Carolinas Great Lakes 2365 Route 22, West 48 Leona Drive 4500 Northchase Pkwy., NE 1270 Kyle Court Union, NJ 07083 Middleborough, MA 02346 Wilmington, NC 28405 Wauconda, IL 60084 (908) 964-0700 (508) 946-9200 (910) 792-1900 (847) 526-9700 Fax: (908) 687-6725 Fax: (508) 946-0779 Fax: (910) 792-6266 Fax: (847) 526-9708 [email protected] [email protected] [email protected] [email protected] (800) MAC K-E N G • w w w.m a c k bo ring.c om • (8 00 ) MA C K-FAX TO OUR FRIENDS A Reputation Built On Dependable Service Since 1922 Dear Friends: As we enter into our 84th year in business, we still maintain the core values upon which Mack Boring was founded by our grandfather, Ed McGovern, Sr. Quality, Strong Support, Engineered Solutions, Superior Customer Service, and Added Value to the products we supply, has been the Mack Boring way. Mack Boring and the McGovern Family stand for Quality. We provide quality solutions, backed by quality support – with no compromise, to the challenges our customers face every day, and deliver high quality prod- ucts, services and resources. We hire high quality personnel. Mack Boring relentlessly strives to provide superior support in the form of friendly, technically-savvy customer service representatives in the field, or on the telephone when you call for parts or whole-goods. If you are performing a start-up or an application review, we will support your needs.