An Efficient and Portable SIMD Algorithm for Charge/Current Deposition in Particle-In-Cell Codes✩
Computer Physics Communications 210 (2017) 145–154 Contents lists available at ScienceDirect Computer Physics Communications journal homepage: www.elsevier.com/locate/cpc An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codesI H. Vincenti a,b,∗, M. Lobet a, R. Lehe a, R. Sasanka c, J.-L. Vay a a Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA b Lasers Interactions and Dynamics Laboratory (LIDyL), Commissariat À l'Energie Atomique, Gif-Sur-Yvette, France c Intel Corporation, OR, USA a r t i c l e i n f o a b s t r a c t Article history: In current computer architectures, data movement (from die to network) is by far the most energy Received 9 January 2016 consuming part of an algorithm (≈20 pJ=word on-die to ≈10,000 pJ/word on the network). To increase Received in revised form memory locality at the hardware level and reduce energy consumption related to data movement, 10 August 2016 future exascale computers tend to use many-core processors on each compute nodes that will have Accepted 19 August 2016 a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine Available online 19 September 2016 vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. As Keywords: Particle-In-Cell method a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage OpenMP of these upcoming architectures.
[Show full text]