International Scientific Conference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modelamiento Y Simulación De Ambientes Virtuales Bajo
MODELAMIENTO Y SIMULACIÓN DE AMBIENTES VIRTUALES BAJO CRYSTAL SPACE 3D JUAN PABLO PINZÓN Tesis para optar al titulo de Ingeniero de Sistemas y Computación Director Profesor FERNANDO DE LA ROSA Ph.D. Informática UNIVERSIDAD DE LOS ANDES INGENIERÍA DE SISTEMAS Y COMPUTACIÓN BOGOTA, COLOMBIA 2002 CONTENIDO pág. CONTENIDO.......................................................................................................................III TABLA DE FIGURAS........................................................................................................VII GLOSARIO.......................................................................................................................... IX RESUMEN ..........................................................................................................................XII 1 INTRODUCCIÓN.......................................................................................................... 1 2 ASPECTOS DEL PROBLEMA A RESOLVER........................................................... 4 2.1 VISUALIZACIÓN Y SONIDO......................................................................................... 6 2.1.1 Representación tridimensional de sólidos. ........................................................ 7 2.1.2 Iluminación...................................................................................................... 9 2.1.3 Transformaciones Geométricas........................................................................12 2.1.4 Animación.......................................................................................................14 -
IAU Division C Working Group on Star Names 2019 Annual Report
IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials. -
Monitoring Ofchannel Processes on the Interfluve
Sediment Transfer through the Fluvial System (Proceedings of a symposium held in Moscow, August 2004). IAHS Publ. 288, 2004 261 Monitoring of channel processes on the interfluve between the Kama and the Vyatka rivers IVAN RYSIN & LARISA PETUKHOVA Department of Geography, Udmurt University, Izhevsk, Russia [email protected] Abstract Results of a survey of lateral channel shift from 54 control sections of different rivers that flow across various landscapes of Udmurtia are presented and discussed. The intensity of bank downcutting is controlled by a number of natural factors. Human economic activity in the drainage basin also exerts an important influence on the pattern of channel migration. Key words bank erosion; channel morphological type; channel shift; factors of channel processes; meandering; monitoring; Udmurt Republic INTRODUCTION AND STUDY AREA A network of numerous rivers belonging to the Kama and Vyatka river basins, dissect the plain territory of the Udmurt Respublic (UR). The most widespread type of river channel morphology is meandering. A survey of morphometrical and morphological characteristics of river channels has been carried out using published topographic maps (scale 1:25 000, 1:50 000, 1:100 000) to distinguish the type of meander. Rivers of Hortonian orders 2-4 have been chosen for this survey. The main aim of the work presented is a geographical analysis of morphodynamic river channel type distribution within the UR and determination of channel lateral migration rates (Fig. 1). Influence of natural and environmental factors on river channel dynamics is also discussed. Two main morphological types of river channels are distinguished within the region according to their pattern and tendency of lateral shift: relatively straight and meandering channels (Chalov et al.9 1998). -
THEORY of NAMES and COGNITIVE LINGUISTICS – the CASE of the METAPHOR Nikola Dobri Ć Alpen-Adria Universität Klagenfurt
31 This is a contribution from Filozofija i društvo , Vol. 21, No. 1, pp. 31-41, 2010 © 2010 Institute for Philosophy and Social Theory of the University of Belgrade This electronic file may not be altered or reproduced in any way. ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ THEORY OF NAMES AND COGNITIVE LINGUISTICS – THE CASE OF THE METAPHOR Nikola Dobri ć Alpen-Adria Universität Klagenfurt Abstract: The philosophical and, in a lesser degree, linguistic debate about the notion of names has been raging for a long time. The processes behind naming are presented and explained in various ways. This paper will try to give a new insight into the motivation behind the creation of new names as seen from the linguistics viewpoint. Metaphor, as one of the major sources of motivation from the perspective of cognitive linguistics, is the basic form of human conceptualization. The first part of the paper presents the current theories about names. The second part describes the basic principles of cognitive linguistics as related to metaphors. The third part deals with providing the evidence regarding metaphor involvement in original creation of people’s names, while -
Public Naming of Exoplanets and Their Stars: Implementation and Outcomes of the IAU100
Public Naming of Exoplanets and Their Stars: Implementation and Outcomes of the IAU100 Best Practice Best NameExoWorlds Global Project Eric Mamajek Debra Meloy Elmegreen Alain Lecavelier des Etangs Jet Propulsion Laboratory, California Vassar College Institut d’Astrophysique de Paris Institute of Technology [email protected] [email protected] [email protected] Eduardo Monfardini Penteado Lars Lindberg Christensen [email protected] NSF’s NOIRLab [email protected] Gareth Williams [email protected] Hitoshi Yamaoka National Astronomical Observatory of Guillem Anglada-Escudé Japan (NAOJ) Institute for Space Science (ICE/CSIC), [email protected] Queen Mary University of London Keywords [email protected] exoplanets, IAU nomenclature The IAU100 NameExoWorlds public naming campaign was a core project during the International Astronomical Union’s 100th anniversary (IAU100) in 2019, giving the opportunity to everyone, everywhere, to propose official names for exoplanets and their host stars. With IAU100 NameExoWorlds the IAU encouraged all peoples of Earth to consider themselves as “Citizens of the Universe”, united “under one sky”. The 113 national campaigns involved hundreds of thousands of people in a global effort to bring the public closer to science by allowing them to participate in the process of naming stars and planets, and learning more about astronomy in the process. The campaign resulted in nearly 425 000 votes, and 113 new IAU-recognised proper names for exoplanets and 113 new names for their stars. The IAU now officially recognises the chosen proper names in addition to their previous scientific designations, and they appear in popular databases. Introduction wished to contribute to the fraternity of all through international cooperation, the IAU people with a significant token of global is the authority responsible for assigning Over the past three decades, astronomers identity. -
Scientific & Technical Visualization I
SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 Scientific & Technical Visualization I http://www.intelegia.com/en/files/2013/05/datavisualisation.jpg 1 SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 This is an amended version of the NC Department of Education’s curriculum for Scientific Visualization I course number 7061. The changes were made by Tonja Canady for Atkins High School students. Any photographs or graphics taken from the Internet have a hyperlink to the webpage or website from where they were copied. In addition, some information from the original document has to corrected or reworded in this version. Furthermore, activities and answer keys have been removed; teachers should use the original document to access student activities and answer keys. It is my belief that this version is more technologically current, links to 3ds Max tutorials, and is more student oriented than teacher oriented. Should you find mistakes, please notify Ms. Canady at [email protected] indicating the page number and paragraph number along with the correction. The information will be updated as quickly as possible. 2 SCIENTIFIC & TECHNICAL VISUALIZATION I (Canady Version) Summer 2005 Table of Contents Unit 1: Leadership Development and Orientation .................................................................... 8 Objective: 1.01 Identify basic business meeting procedures. .................................................... 9 Objective: 1.02 Establish personal and organizational goals. ................................................. -
Class Exercise on Star Lists
Phys 102 Astronomy Name ___________________Key ATLAS CHARTS Find the atlas charts (two) for the Big & Little Dippers in the field guide and read the descriptions to complete the following: 1. The diagram shows the Dippers at 10 pm tonight over Canton. Label it with a) Greek letters of the Bayer designations of the stars in the Dippers b) Indicate the position of Thuban (α Dra) c)25 List the apparent magnitudes of the stars in each dipper (read the texts of the atlas charts!) α β Star Name Mag. α pointer Owl α UMa Dubhe 1.8 stars neb. δ β UMa Merak 2.4 Little Dipper γ γ UMa Phecda 2.4 ε δ δ UMa Megrez 3.3 ζ β ε UMa Alioth 1.8 ε Big η γ Dipper ζ UMa Mizar 2.2 ζ 80 UMa Alcor 3.9 η UMa Alkaid 1.9 α Dra: Thuban M101 η Star Name Magnitude α UMi Polaris 2.0 β UMi Kochab 2.1 γ UMi Pherkad 3.1 δ UMi Delta 4.4 ε UMi Epsilon 4.2 ζ UMi Zeta 4.3 η UMi Eta 5.0 2.16 List the proper names and magnitudes of the stars in the Big Dipper in order from brightest to dimmest Brightest Dimmest Name Dubhe Alioth Alkaid Mizar Merak Phecda Megrez Alcor Magnitude 1.8 1.8 1.9 2.2 2.4 2.4 3.3 3.9 Same Same 3.2 What’s special about the stars Mizar and Alcor? (READ both Atlas Chart TEXTS) Mizar & Alcor are a double star in the handle separated by 18°, 1/3 the moon’s diameter. -
Beginnings of Indian Astronomy with Reference to a Parallel Development in China
History of Science in South Asia A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia Beginnings of Indian Astronomy with Reference to a Parallel Development in China Asko Parpola University of Helsinki MLA style citation form: Asko Parpola, “Beginnings of Indian Astronomy, with Reference to a Parallel De- velopment in China” History of Science in South Asia (): –. Online version available at: http://hssa.sayahna.org/. HISTORY OF SCIENCE IN SOUTH ASIA A journal for the history of all forms of scientific thought and action, ancient and modern, in all regions of South Asia, published online at http://hssa.sayahna.org Editorial Board: • Dominik Wujastyk, University of Vienna, Vienna, Austria • Kim Plofker, Union College, Schenectady, United States • Dhruv Raina, Jawaharlal Nehru University, New Delhi, India • Sreeramula Rajeswara Sarma, formerly Aligarh Muslim University, Düsseldorf, Germany • Fabrizio Speziale, Université Sorbonne Nouvelle – CNRS, Paris, France • Michio Yano, Kyoto Sangyo University, Kyoto, Japan Principal Contact: Dominik Wujastyk, Editor, University of Vienna Email: [email protected] Mailing Address: Krishna GS, Editorial Support, History of Science in South Asia Sayahna, , Jagathy, Trivandrum , Kerala, India This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Copyrights of all the articles rest with the respective authors and published under the provisions of Creative Commons Attribution- ShareAlike . Unported License. The electronic versions were generated from sources marked up in LATEX in a computer running / operating system. was typeset using XƎTEX from TEXLive . -
Third Party Software Note of the Physik Instrumente
Third Party Software Note of Physik Instrumente (PI) GmbH & Co. KG Issued: June 17, 2020 Page 1 / 33 I. Overview - Third-party software components, copyrights and licenses Software provided by PI as well as firmware installed on PI’s systems may incorporate and/or make use of third-party software components (including freeware and open source software components). The components listed below are covered by and shall be subject to their respective copyrights, license agreements and/or disclaimers of warranty, presented in the following table and the following section II. In the event an applicable open source license agreement requires the provision of the source code and/or object code of Software or parts thereof provided by PI, such source code and/or object code will be made available to the Customer within a reasonable period of time upon legitimate request via e-mail to [email protected] for a charge limited to the expenses PI has in complying with such Customer request; provided, however, that PI shall be entitled to reject such Customer request if it is made after the third anniversary of the delivery date of the Software. In the event a certain source code is delivered in executable form and has to be made available pursuant to the terms of the applicable open source license agreement, please follow the corresponding link in the ‘URL’ column of the table below or contact [email protected]. Component/Software URL License Copyright owner Incorporated in dglOpenGL.pas 1.8 https://github.com/saschawillems/ MPL 1.1 Copyright © DGL-OpenGL-Portteam - All Hexapod_Simutool BETA dglopengl Rights Reserved eventlog 0.2.x https://github.com/balabit/eventlo BSD 3-Clause License Copyright © by Balazs Scheidler C-884 FW g C-885 FW C-886 FW C-887 FW Expat XML Parser http://expat.sourceforge.net/ MIT License Copyright © 1998, 1999, 2000 Thai Open PI C++ Std. -
Star Name Database
Star Name Database Patrick J. Gleason April 29, 2019 Copyright © 2019 Atlanta Bible Fellowship All rights reserved. Except for brief passages quoted in a review, no part of this book may be reproduced by any mechanical, photographic, or electronic process, nor may it be stored in any information retrieval system, transmitted or otherwise copied for public or private use, without the written permission of the publisher. Requests for permission or further information should be addressed to S & R Technology Group, Suite 250, PMB 96, 15310 Amberly Drive, Tampa, Florida 33647. Star Names April 29, 2019 Patrick J. Gleason Atlanta Bible Fellowship Table of Contents 1.0 The Initiative ................................................................................................... 1 1.1 The Method ......................................................................................................... 2 2.0 Key Fields ........................................................................................................ 3 3.0 Data Fields ....................................................................................................... 7 3.1 Common_Name (Column A) ............................................................................. 7 3.2 Full_Name (Column B) ...................................................................................... 7 3.3 Language (Column C) ........................................................................................ 8 3.4 Translation (Column D).................................................................................... -
Annual Report of Sogaz Insurance Group
ANNUAL REPORT OF SOGAZ INSURANCE GROUP CONTENTS 03 BRAND PROMOTION 33 04 Address by the Chairman of the Board of Directors 6 Address by the Chairman of the Management Board 7 SOCIAL RESPONSIBILITY 35 01 05 SOGAZ INSURANCE GROUP PROFILE 9 OPERATING EFFICIENCY OF THE GROUP 39 Group Management 10 > Personnel Management 39 Group’s Position in the Insurance Market 11 > Location of Head Office 41 > Information Technology 42 > Risk Management 43 02 SOGAZ GROUP’S BUSINESS DEVELOPMENT IN 2010 15 06 Corporate Insurance 15 INVESTMENT POLICY 47 > Insurance of the Fuel and Energy Industry 15 > Industrial Insurance 18 > Transport Insurance 18 07 > Agricultural Sector Insurance 20 > Insurance of Federal and Regional Targeted FINANCIAL STATEMENTS 49 Investment Programs 21 > Balance Sheet of OJSC SOGAZ 49 > Personal Insurance 22 > Income Statement of OJSC SOGAZ 53 Reinsurance 25 > Auditor’s Report 56 Regional Network Development 27 International Development 28 Loss Adjustment 29 08 RETAIL INSURANCE 31 CONTACT INFORMATION 59 Annual Report, 2010 г. CONTENTS 5 Dear shareholders, One of the milestone events in the Russian insurance market in 2010 was the adoption of the law regarding obligatory insurance of hazardous production facility owners’ liability. Today, work is underway to develop a number of key legislative drafts aimed at expanding the application field of insurance as an efficient risk management tool, which will provide a great spark to the development of insurance in Russia. In many respects, the crucial factor at this stage will be the activities of the industry’s leaders. They are to play the key role in formation of insurance culture in Russia, establish new quality standards of insurers’ activities and enhance public confidence in the institution of insurance at large. -
Motor De Física Multifuncional
PROYECTO DE SISTEMAS INFORMÁTICOS FACULTAD DE INFORMÁTICA UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2009/2010 MOTOR DE FÍSICA MULTIFUNCIONAL PROFESOR DIRECTOR: Dr. Segundo Esteban San Román AUTORES: Jaime Sánchez-Valiente Blázquez Santiago Riera Almagro Matías Salinero Delgado 2 Resumen. Tanto la industria de los videojuegos como la de la animación requieren motores físicos que permitan reproducir fielmente el comportamiento de los elementos presentes en una escena. El papel de estos motores es esencial para que el trabajo final muestre un resultado realista. El objetivo de este proyecto es el desarrollo e implementación de un motor físico multifuncional, modular y ampliable que pueda ser usado en diferentes campos, como los videojuegos y la simulación de sistemas físicos. Este proyecto implementa los conceptos de dinámica de sólidos rígidos y dinámica de partículas. Además se han introducido otras funcionalidades derivadas del tratamiento de estos cuerpos como son las colisiones de sólidos rígidos y las uniones elásticas. El motor se realizará sobre el lenguaje C++, siendo el lenguaje más común en la realización de este tipo de aplicaciones y permitiendo así su fácil acoplamiento en los campos anteriormente mencionados. Abstract. Both the video game industry such as animation industry requires physics engines that allow to faithfully reproducing the behavior of the elements present in a scene. The role of these motors is essential for the final work to show a realistic outcome. The aim of this project is the development and implementation of a multi- physics engine, modular and expandable, that can be used in different fields, such as video games and simulation of physical systems.