Connections: Investigating Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thanet Astronomy Group Astronomy for Everyone in Plain English
Thanet Astronomy Group Astronomy for Everyone in Plain English What to see December 29th Constellation (Orion) Stars (Betelguese, Bellatrix, Alnitak, Alnilam, Mintaka, Rigel, Saiph,) Asterism (The Winter Triangle) Stars (Betelguese, Sirius, Procyon) November to March the constellation Orion the Hunter is at its best. There are some 20 prominent stars in this constellation. The brightest and more easily observed stars are the 8 in the main body. The other stars form Orion's right arm with club, and a slain animal in his left hand. These stars are dimmer and difficult to see due to light pollution. At 8:00pm Looking South East at 119° up to 30° you see the star Betelguese, the top left corner of Orion, a red super giant, more than 1½ billion kms in diameter. Look at 127° up to 33° you see the star Bellatrix, the top right corner of Orion, at 8½ million kms in diameter. Look at 128° down to 24° you see Alnitak, the first of three stars side by side, forming Orion's belt. Alnitak, Alnilam (at 128° 25°) and Mintaka (at 129° 26°). Probably one of the more easily recognised groups of stars in this area of sky. Look at 137° down to 21° you see the star Rigel, the bottom right corner of Orion. A blue/white super giant, 108 million kms in diameter. Look at 130° down to 16° you see the star Saiph the bottom left corner of Orion, nearly 31 million kms in diameter. Orion Stars Orion the Hunter In August I wrote about The Summer Triangle. -
White Dwarfs
Chandra X-Ray Observatory X-Ray Astronomy Field Guide White Dwarfs White dwarfs are among the dimmest stars in the universe. Even so, they have commanded the attention of astronomers ever since the first white dwarf was observed by optical telescopes in the middle of the 19th century. One reason for this interest is that white dwarfs represent an intriguing state of matter; another reason is that most stars, including our sun, will become white dwarfs when they reach their final, burnt-out collapsed state. A star experiences an energy crisis and its core collapses when the star's basic, non-renewable energy source - hydrogen - is used up. A shell of hydrogen on the edge of the collapsed core will be compressed and heated. The nuclear fusion of the hydrogen in the shell will produce a new surge of power that will cause the outer layers of the star to expand until it has a diameter a hundred times its present value. This is called the "red giant" phase of a star's existence. A hundred million years after the red giant phase all of the star's available energy resources will be used up. The exhausted red giant will puff off its outer layer leaving behind a hot core. This hot core is called a Wolf-Rayet type star after the astronomers who first identified these objects. This star has a surface temperature of about 50,000 degrees Celsius and is A composite furiously boiling off its outer layers in a "fast" wind traveling 6 million image of the kilometers per hour. -
Pdf/44/4/905/5386708/44-4-905.Pdf
MI-TH-214 INT-PUB-21-004 Axions: From Magnetars and Neutron Star Mergers to Beam Dumps and BECs Jean-François Fortin∗ Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada Huai-Ke Guoy and Kuver Sinhaz Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA Steven P. Harrisx Institute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA Doojin Kim{ Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA Chen Sun∗∗ School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel (Dated: February 26, 2021) We review topics in searches for axion-like-particles (ALPs), covering material that is complemen- tary to other recent reviews. The first half of our review covers ALPs in the extreme environments of neutron star cores, the magnetospheres of highly magnetized neutron stars (magnetars), and in neu- tron star mergers. The focus is on possible signals of ALPs in the photon spectrum of neutron stars and gravitational wave/electromagnetic signals from neutron star mergers. We then review recent developments in laboratory-produced ALP searches, focusing mainly on accelerator-based facilities including beam-dump type experiments and collider experiments. We provide a general-purpose discussion of the ALP search pipeline from production to detection, in steps, and our discussion is straightforwardly applicable to most beam-dump type and reactor experiments. We end with a selective look at the rapidly developing field of ultralight dark matter, specifically the formation of Bose-Einstein Condensates (BECs). -
The Twenty−Eight Lunar Mansions of China
浜松医科大学紀要 一般教育 第5号(1991) THE TWENTY-EIGHT LUNAR MANSIONS OF CHINA (中国の二十八宿) David B. Kelley (英 語〉 Abstract: This’Paper attempts to place the development of the Chinese system ・fTw・nty-Eight Luna・ Man・i・n・(;+八宿)i・・血・lti-cult・・al f・am・w・・k, withi・ which, contributions from cultures outside of China may be recognized. lt・ system- atically compares the Chinese system with similar systems from Babylonia, Arabia,・ and lndia. The results of such a comparison not only suggest an early date for its development, but also a significant level of input from, most likely, a Middle Eastern source. Significantly, the data suggest an awareness, on the part of the ancient Chinese, of completely arbitrary groupings of stars (the twelve constellations of the Middle Eastern Zodiac), as well as their equally arbitrary syMbolic associ- ations. The paper also attempts to elucidate the graphic and organizational relation- ship between the Chinese system of lunar mansions and (1.) Phe twelve Earthly Branches(地支)and(2.)the ten Heavenly S.tems(天干). key words二China, Lunar calender, Lunar mansions, Zodiac. O. INTRODUCTION The time it takes the Moon to circle the Earth is 29 days, 12 hours, and 44 minutes. However, the time it takes the moon to return to the same (fixed一) star position amounts to some 28 days. ln China, it is the latter period that was and is of greater significance. The Erh-Shih-Pα一Hsui(一Kung), the Twenty-Eight-lnns(Mansions),二十八 宿(宮),is the usual term in(Mandarin)Chinese, and includes 28 names for each day of such a month. ln East Asia, what is not -
Vssc163 Draftv3 IBVS 2 Colour Correct Graph.Pmd
British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 163, March 2015 Contents IBVS 6080 – 6109 - J. Simpson ............................................... inside front cover From the Director - R. Pickard ........................................................................... 3 Polar V1432 Aquilae - Editor’s Note .................................................................. 4 Eclipsing Binary News - D. Loughney .............................................................. 4 Update on the Campaign to Observe the Dwarf Nova CSS 121005:212625+201948 - J. Shears ............... 6 How Variable Stars get Their Names - D. Griffin .............................................. 9 References to Naming of Variable Stars - D. Griffin ........................................ 11 The Discovery of Three New Variable Stars using the Bradford Robotic Telescope and the Software Package Muniwin - D. Conner .................. 12 FY Librae - a First Look at the Behaviour during 2014 - P. Williams .............. 16 FY Librae goes Active and Reaffirms the Howarth and Bailey Formula - J. Toone .............. 18 Refining the Period of V505 Scuti - I. Miller ................................................... 21 Binocular Programme - M. Taylor ................................................................... 21 Eclipsing Binary Predictions – Where to Find Them - D. Loughney .............. 22 Charges for Section Publications .............................................. inside back cover Guidelines for Contributing to the Circular ............................. -
Maps for GLOBE at Night at Latitude 40 , February 23, 21 H Local Time
< 0.50 mag < 1.50 mag < 2.50 mag < 3.50 mag < 4.50 mag < 5.50 mag < 6.50 mag < 7.50 mag Maps for GLOBE at Night at latitude 40◦, February 23, 21 h local time (deep night), assuming rather transparent air. Orion’s belt is 34◦ to the right from the south, at 43◦ height. The brightest fixed star, Sirius, is at left. Jan Hollan, Ecological Institute Veronica and http://www.astro.cz/darksky < 0.50 mag < 1.50 mag < 2.50 mag < 3.50 mag < 4.50 mag < 5.50 mag < 6.50 mag < 7.50 mag Maps for GLOBE at Night at latitude 40◦, March 2, 21 h local time (deep night), assuming rather transparent air. Orion’s belt is 42◦ to the right from the south, at 40◦ height. The brightest fixed star, Sirius, is at left. Jan Hollan, Ecological Institute Veronica and http://www.astro.cz/darksky Betelgeuse Rigel Pollux Procyon Sirius Sirius Arcturus Saturn < 0.50 mag < 1.50 mag S S Betelgeuse Big Dipper Big Big Dipper Big Betelgeuse Rigel Rigel Pollux Pollux Procyon Procyon Sirius Sirius Arcturus Regulus Arcturus Regulus Denebola Denebola Saturn Saturn < 2.50 mag < 3.50 mag S S Procyon Procyon Regulus Regulus Denebola Denebola < 4.50 mag < 5.50 mag Procyon Procyon Regulus Regulus Denebola Denebola < 6.50 mag < 7.50 mag Maps for GLOBE at Night at latitude 40◦, March 23, 21 h local time (Sun at -31◦). Lines from N(E,S,W) to zenith shown (crosses each 10◦). Regulus (α Leonis) is 32◦ to the left from S, at 58◦ height. -
Stars IV Stellar Evolution Attendance Quiz
Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today’s Topics Stellar Evolution • An alien visits Earth for a day • A star’s mass controls its fate • Low-mass stellar evolution (M < 2 M) • Intermediate and high-mass stellar evolution (2 M < M < 8 M; M > 8 M) • Novae, Type I Supernovae, Type II Supernovae An Alien Visits for a Day • Suppose an alien visited the Earth for a day • What would it make of humans? • It might think that there were 4 separate species • A small creature that makes a lot of noise and leaks liquids • A somewhat larger, very energetic creature • A large, slow-witted creature • A smaller, wrinkled creature • Or, it might decide that there is one species and that these different creatures form an evolutionary sequence (baby, child, adult, old person) Stellar Evolution • Astronomers study stars in much the same way • Stars come in many varieties, and change over times much longer than a human lifetime (with some spectacular exceptions!) • How do we know they evolve? • We study stellar properties, and use our knowledge of physics to construct models and draw conclusions about stars that lead to an evolutionary sequence • As with stellar structure, the mass of a star determines its evolution and eventual fate A Star’s Mass Determines its Fate • How does mass control a star’s evolution and fate? • A main sequence star with higher mass has • Higher central pressure • Higher fusion rate • Higher luminosity • Shorter main sequence lifetime • Larger -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Technical Activities 1983 Center for Basic Standards
Technical Activities 1983 Center for Basic Standards U S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1983 Final Issued January 1984 Prepared for: U S. DEPARTMENT OF COMMERCE National Bureau of Standards Qc /ashington, DC 20234 1 00 -USk p p p I p p V i I » i » i i » i [i fi n NBSIR 83-2793 TECHNICAL ACTIVITIES 1983 CENTER FOR BASIC STANDARDS Karl G. Kessler, Director U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Basic Standards Washington, DC 20234 November 1 983 Final Issued January 1984 Prepared for: U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, DC 20234 U.S. DEPARTMENT OF COMMERCE, Malcolm Baidrige. Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Part II Page Technical Activities: Introduction 1 Quantum Metrology Group 2 Electricity Division 21 Temperature and Pressure Division 81 Length and Mass Division 123 Time and Frequency Division 135 Quantum Physics Division 187 i i I 1 I II II i li 1 1 INTRODUCTION This book is Part II of the 1983 Annual Report of the Center for Basic Standards and contains a summary of the technical activities of the Center for the period October 1, 1982 to September 30, 1983. The Center is one of the five resources and operating units in the National Measurement Laboratory. The summary of activities is organized in six sections, one for the technical activities of the Quantum Metrology Group, and one each for the five divisions of the Center. -
FIXED STARS a SOLAR WRITER REPORT for Churchill Winston WRITTEN by DIANA K ROSENBERG Page 2
FIXED STARS A SOLAR WRITER REPORT for Churchill Winston WRITTEN BY DIANA K ROSENBERG Page 2 Prepared by Cafe Astrology cafeastrology.com Page 23 Churchill Winston Natal Chart Nov 30 1874 1:30 am GMT +0:00 Blenhein Castle 51°N48' 001°W22' 29°‚ 53' Tropical ƒ Placidus 02' 23° „ Ý 06° 46' Á ¿ 21° 15° Ý 06' „ 25' 23° 13' Œ À ¶29° Œ 28° … „ Ü É Ü 06° 36' 26' 25° 43' Œ 51'Ü áá Œ 29° ’ 29° “ àà … ‘ à ‹ – 55' á á 55' á †32' 16° 34' ¼ † 23° 51'Œ 23° ½ † 06' 25° “ ’ † Ê ’ ‹ 43' 35' 35' 06° ‡ Š 17° 43' Œ 09° º ˆ 01' 01' 07° ˆ ‰ ¾ 23° 22° 08° 02' ‡ ¸ Š 46' » Ï 06° 29°ˆ 53' ‰ Page 234 Astrological Summary Chart Point Positions: Churchill Winston Planet Sign Position House Comment The Moon Leo 29°Le36' 11th The Sun Sagittarius 7°Sg43' 3rd Mercury Scorpio 17°Sc35' 2nd Venus Sagittarius 22°Sg01' 3rd Mars Libra 16°Li32' 1st Jupiter Libra 23°Li34' 1st Saturn Aquarius 9°Aq35' 5th Uranus Leo 15°Le13' 11th Neptune Aries 28°Ar26' 8th Pluto Taurus 21°Ta25' 8th The North Node Aries 25°Ar51' 8th The South Node Libra 25°Li51' 2nd The Ascendant Virgo 29°Vi55' 1st The Midheaven Gemini 29°Ge53' 10th The Part of Fortune Capricorn 8°Cp01' 4th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Semisquare Mars 1°56' Applying The Moon Trine Neptune 1°10' Separating The Moon Trine The North Node 3°45' Separating The Moon Sextile The Midheaven 0°17' Applying The Sun Semisquare Jupiter 0°50' Applying The Sun Sextile Saturn 1°52' Applying The Sun Trine Uranus 7°30' Applying Mercury Square Uranus 2°21' Separating Mercury Opposition Pluto 3°49' Applying Venus Sextile -
194 9 Ce Le B Rating 65 Ye Ars O F Br Inging As Tr on Omy T O No Rth Te X As 2
1949 Celebrating 65 Years of Bringing Astronomy to North Texas 2014 Contact information: Inside this issue: Info Officer (General Info) – [email protected] Website Administrator – [email protected] Page Postal Address: November Club Calendar 3 Fort Worth Astronomical Society Celestial Events 4 c/o Matt McCullar 5801 Trail Lake Drive Sky Chart 5 Fort Worth, TX 76133 Moon Phase Calendar 6 Web Site: http://www.fortworthastro.org Facebook: http://tinyurl.com/3eutb22 Lunar Occultations/Conjs 7 Twitter: http://twitter.com/ftwastro Yahoo! eGroup (members only): http://tinyurl.com/7qu5vkn Mercury/Venus Chart 8 Officers (2014-2015): Mars/Minor Planets Charts 9 President – Bruce Cowles, [email protected] Jupiter Charts 10 Vice President – Russ Boatwright, [email protected] Sec/Tres – Michelle Theisen, [email protected] Planet Vis & ISS Passes 11 Board Members: CSAC Event Update 12 2014-2016 Mike Langohr Young Astronomer News 12 Tree Oppermann ‘66 Leonids Remembered 13 2013-2015 Bill Nichols Cloudy Night Library 15 Jim Craft Cover Photo: Monthly AL Observing Club 17 Composite image taken by FWAS mem- bers: Left to right, from top to bottom— Constellation of the Month 18 Laura Cowles, Mike Ahner, Brian Wortham, Constellation Mythology 19 Shawn Kirchdorfer, Mark Wainright, Phil Stage, Patrick McMahon, Dennis Webb, Ben Prior Club Meeting Minutes 20 Hudgens, Shawn Kirchdorfer, John McCrea, and Chris Mlodnicki General Club Information 21 That’s A Fact 21 Observing Site Reminders: Be careful with fire, mind all local burn bans! Full Moon Name 21 Dark Site Usage Requirements (ALL MEMBERS): FWAS Foto Files 22 Maintain Dark-Sky Etiquette (http://tinyurl.com/75hjajy) Turn out your headlights at the gate! Sign the logbook (in camo-painted storage shed. -
IAU Division C Working Group on Star Names 2019 Annual Report
IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.