R Foundation News by Martin Mächler and Kurt Hornik

Total Page:16

File Type:pdf, Size:1020Kb

R Foundation News by Martin Mächler and Kurt Hornik NEWS AND NOTES 190 R Foundation News by Martin Mächler and Kurt Hornik New R Foundation board Subsequent to meetings of the R Foundation in the summer of 2014, and after a careful nomination and voting process, the election of a new board of the R Foundation was finalized on December 1. The new board consists of Presidents: Duncan Murdoch, Martyn Plummer Secretary General: Martin Mächler Treasurer: Kurt Hornik Members at Large: John Chambers, Brian Ripley, Dirk Eddelbuettel Peter Dalgaard and Roger Bivand will serve as auditors. Our many thanks go to the outgoing board members, who have led the R Foundation during the years of phenomenal growth and success since its creation in April 2003: These are Robert Gentleman and Ross Ihaka, our past presidents, and Friedrich Leisch, the former Secretary General. New ordinary members The following new ordinary members were elected, as announced on September 15.1 Dirk Eddelbuettel, USA Torsten Hothorn, Switzerland Michael Lawrence, USA Martin Morgan, USA Marc Schwartz, USA Hadley Wickham, USA Achim Zeileis, Austria This brings the total number of ordinary members to 29. As always, the complete member- ship list, along with other details, is available at http://www.r-project.org/foundation/. Donations and new supporting members Donations Shannon Callan, USA Rees Morrison, USA Carlos Ortega, Spain New supporting members Jose M. Benitez, Spain Daniel Emaasit, USA Jay Emerson, USA Bastiaan Quast, Switzerland 1https://stat.ethz.ch/pipermail/r-announce/2014/000577.html The R Journal Vol. 6/2, December 2014 ISSN 2073-4859 NEWS AND NOTES 191 Martin Mächler ETH Zurich, Switzerland [email protected] Kurt Hornik WU Wirtschaftsuniversität Wien, Austria [email protected] The R Journal Vol. 6/2, December 2014 ISSN 2073-4859.
Recommended publications
  • Progress in the R Ecosystem for Representing and Handling Spatial Data
    Journal of Geographical Systems https://doi.org/10.1007/s10109-020-00336-0 ORIGINAL ARTICLE Progress in the R ecosystem for representing and handling spatial data Roger S. Bivand1 Received: 9 October 2019 / Accepted: 8 September 2020 © The Author(s) 2020 Abstract Twenty years have passed since Bivand and Gebhardt (J Geogr Syst 2(3):307–317, 2000. https ://doi.org/10.1007/PL000 11460 ) indicated that there was a good match between the then nascent open-source R programming language and environment and the needs of researchers analysing spatial data. Recalling the development of classes for spatial data presented in book form in Bivand et al. (Applied spatial data analysis with R. Springer, New York, 2008, Applied spatial data analysis with R, 2nd edn. Springer, New York, 2013), it is important to present the progress now occurring in representation of spatial data, and possible consequences for spatial data handling and the statistical analysis of spatial data. Beyond this, it is imperative to discuss the relationships between R-spatial software and the larger open-source geospatial software community on whose work R packages crucially depend. Keywords Spatial data analysis · Open-source software · R programming language JEL Classifcation C00 · C88 · R15 1 Introduction While Bivand and Gebhardt (2000) did provide an introduction to R as a statistical programming language and to why one might choose to use a scripted language like R (or Python), this article is both retrospective and prospective. It is possible that those approaching the choice of tools for spatial analysis and for handling spatial data will fnd the following less than inviting; in that case, perusal of early chapters of Lovelace et al.
    [Show full text]
  • R Generation [1] 25
    IN DETAIL > y <- 25 > y R generation [1] 25 14 SIGNIFICANCE August 2018 The story of a statistical programming they shared an interest in what Ihaka calls “playing academic fun language that became a subcultural and games” with statistical computing languages. phenomenon. By Nick Thieme Each had questions about programming languages they wanted to answer. In particular, both Ihaka and Gentleman shared a common knowledge of the language called eyond the age of 5, very few people would profess “Scheme”, and both found the language useful in a variety to have a favourite letter. But if you have ever been of ways. Scheme, however, was unwieldy to type and lacked to a statistics or data science conference, you may desired functionality. Again, convenience brought good have seen more than a few grown adults wearing fortune. Each was familiar with another language, called “S”, Bbadges or stickers with the phrase “I love R!”. and S provided the kind of syntax they wanted. With no blend To these proud badge-wearers, R is much more than the of the two languages commercially available, Gentleman eighteenth letter of the modern English alphabet. The R suggested building something themselves. they love is a programming language that provides a robust Around that time, the University of Auckland needed environment for tabulating, analysing and visualising data, one a programming language to use in its undergraduate statistics powered by a community of millions of users collaborating courses as the school’s current tool had reached the end of its in ways large and small to make statistical computing more useful life.
    [Show full text]
  • Data Analysis in R
    Data Analysis in R Course at a Glance This course will provide an introduction to reproducible data analysis with R (see Syllabus). Instructor Gabriel Baud-Bovy ([email protected] ) Credits: 5 Synopsis This course aims at giving to the student a methodology to analyze experimental results, from how to organize data to the writing of a report. It includes: an introduction to R an introduction to reproducible research with R examples of statistical analysis with R During this course, the student will have to analyze his own data and is expected to read before each course the material that will be made available on this page. The final grade will consist in the evaluation of a report demonstrating familiarity with the concepts and methods presented in the course. As an editor, the instructor will use Notepad++ (together with NppToR) on a Windows Machines but the student might use other ones (e.g., R studio, EMACS+ESS, Lyx, TexWork). The course will use Mardown as typesetting language. For those desirous to work with Latex and/or generate pdf, you will need to install also MikeTex. Syllabus Total of 15 hours Class 1: Case study, Reproducible research Class 2: R fundamental Class 3: Exploratory data analysis and graphical methods in R Class 4: Basic statistics Class 5: To be determined There will be a final examination decided by the instructor. Prerequisites The course assumes some familiarity with programming concepts and data structures (MATLAB, C/C++, Java or any other programming language). Contact the instructor if you have never programmed anything.
    [Show full text]
  • A History of R (In 15 Minutes… and Mostly in Pictures)
    A history of R (in 15 minutes… and mostly in pictures) JULY 23, 2020 Andrew Zief!ler Lunch & Learn Department of Educational Psychology RMCC University of Minnesota LATIS Who am I and Some Caveats Andy Zie!ler • I teach statistics courses in the Department of Educational Psychology • I have been using R since 2005, when I couldn’t put Me (on the EPSY faculty board) SAS on my computer (it didn’t run natively on a Me Mac), and even if I could have gotten it to run, I (everywhere else) couldn’t afford it. Some caveats • Although I was alive during much of the era I will be talking about, I was not working as a statistician at that time (not even as an elementary student for some of it). • My knowledge is second-hand, from other people and sources. Statistical Computing in the 1970s Bell Labs In 1976, scientists from the Statistics Research Group were actively discussing how to design a language for statistical computing that allowed interactive access to routines in their FORTRAN library. John Chambers John Tukey Home to Statistics Research Group Rick Becker Jean Mc Rae Judy Schilling Doug Dunn Introducing…`S` An Interactive Language for Data Analysis and Graphics Chambers sketch of the interface made on May 5, 1976. The GE-635, a 36-bit system that ran at a 0.5MIPS, starting at $2M in 1964 dollars or leasing at $45K/month. ’S’ was introduced to Bell Labs in November, but at the time it did not actually have a name. The Impact of UNIX on ’S' Tom London Ken Thompson and Dennis Ritchie, creators of John Reiser the UNIX operating system at a PDP-11.
    [Show full text]
  • Conference Brochure S P E a K E R S
    04.07.2017 – 07.07.2017 www.user2017.brussels @useR_Brussels #user2017 CONFERENCE BROCHURE S P E A K E R S 2 As a student my use of R for data analyses was frowned upon - the suggestion was to stick with the existing software. P Access to R related literature was difficult. To admire R the very first R books one had to travel far, to the few enlightened universities. As a researcher I needed the help E of a secret floppy disk to dual boot into a GNU/Linux system with R, in order to escape from unnamed products. As a F starter in industry, people from unnamed companies made clear to my management that setting up R events for customers was A giving a ‘wrong signal to the market’. C Look how ‘wrong’ we have been... Fifteen years later R is shining brightly in the data science field. Students are E learning R before anything else and if statistics research is published without accompanying R package, it is considered a bad sign. Publishers have hundreds of books on display and major software houses are in a constant race against time to further integrate R into their product offerings. And now, more than 1000 people from all over the world have come to Brussels to discover the state of R at this conference. R has come a great way and the community that formed around the R project is and has always been critical to its success. The community has evolved in many ways and is active in many places throughout the year, but of all things the official useR conference still is the major community event of the year.
    [Show full text]
  • August 12-14, Dortmund, Germany
    AASC Austrian Association for Statistical Computing 2008 Program August 12-14, Dortmund, Germany useR! 2008, Dortmund, Germany 1 Contents Greetings and Miscellaneous 2 Maps 5 Social Program 8 Program 9 Tutorials 9 Schedule 10 List of Talks 14 2 useR! 2008, Dortmund, Germany Dear useRs, the following pages provide you with some useful information about useR! 2008, the R user con- ference, taking place at the Fakultät Statistik, Technische Universität Dortmund, Germany from 2008-08-12 to 2008-08-14. Pre-conference tutorials will take place on August 11. The confer- ence is organized by the Fakultät Statistik, Technische Universität Dortmund and the Austrian Association for Statistical Computing (AASC). Apart from challenging and likewise exciting scientific contributions we hope to offer you an attractive conference site and a pleasant social program. With best regards from the organizing team: Uwe Ligges (conference), Achim Zeileis (program), Claus Weihs, Gerd Kopp (local organiza- tion), Friedrich Leisch, and Torsten Hothorn Address / Contact Address: Uwe Ligges Fakultät Statistik Technische Universität Dortmund 44221 Dortmund Germany Phone: +49 231 755 4353 Fax: +49 231 755 4387 e-mail: [email protected] URL: http://www.R-Project.org/useR-2008/ Program Committee Micah Altman, Roger Bivand, Peter Dalgaard, Jan de Leeuw, Ramón Díaz-Uriarte, Spencer Graves, Leonhard Held, Torsten Hothorn, François Husson, Christian Kleiber, Friedrich Leisch, Andy Liaw, Martin Mächler, Kate Mullen, Ei-ji Nakama, Thomas Petzoldt, Martin Theus, and Heather Turner Conference Location Technische Universität Dortmund Campus Nord Mathematikgebäude / Audimax Vogelpothsweg 87 44227 Dortmund Conference Office Opening hours: Monday, August 11: 08:30–19:30 Tuesday, August 12: 08:30–18:30 Wednesday, August 13: 08:30–18:30 Thursday, August 14: 08:30–15:30 useR! 2008, Dortmund, Germany 3 Public Transport The conference site at the university campus and the city hall are best to be reached by public transport.
    [Show full text]
  • Dynamic Documents with R and Knitr, by Yihui Xie 116 Tugboat, Volume 35 (2014), No
    TUGboat, Volume 35 (2014), No. 1 115 ● ● ● Book review: Dynamic Documents with R ● ● ● and knitr, by Yihui Xie ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Boris Veytsman ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Yihui Xie, Dynamic Documents with R and knitr. ● ● ● ● ● ● ● ● ● ● ● ● ● ● Chapman & Hall/CRC Press, 2013, 190+xxvi pp. ● ● ● ● ● ● ● ● ● US$ ISBN ● Paperback, 59.95. 978-1482203530. ● ● ● ● Petal Length, cm Petal ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 2 3 4 5 6 7 0.5 1.0 1.5 2.0 2.5 Petal Width, cm This plot shows an almost linear dependence between the parameters. We can try a linear fit for these data: model <- lm(Petal.Length ˜ Petal.Width, data = iris) model$coefficients ## (Intercept) Petal.Width ## 1.084 2.230 summary(model)$r.squared ## [1] 0.9271 The large value of R2 = 0.9271 indicates the good quality of the fit. Of course we can replot the data There are several reasons why this book might be of together with the prediction of the linear model: interest to a TEX user. First, LATEX has a prominent place in the book. Second, the book describes a very plot(Petal.Length ˜ Petal.Width, interesting offshoot of literate programming, a topic data = iris, xlab = "Petal Width, cm", traditionally popular in the TEX community. Third, ylab = "Petal Length, cm") abline(model) since a number of TEX users work with data analysis and statistics, R could be a useful tool for them. Since some TUGboat readers are likely not fa- ● ● ● miliar with R, I would like to start this review with ● ● a short description of the software. R [1] is a free ● ● ● ● ● ● ● ● ● ● ● implementation of the S language (sometimes R is ● ● ● ● ● ● ● ● ● ● ● ● ● ● called GNU S).
    [Show full text]
  • The R Journal Volume 3/2, December 2011
    The Journal Volume 3/2, December 2011 A peer-reviewed, open-access publication of the R Foundation for Statistical Computing Contents Editorial..................................................3 Contributed Research Articles Creating and Deploying an Application with (R)Excel and R...................5 glm2: Fitting Generalized Linear Models with Convergence Problems.............. 12 Implementing the Compendium Concept with Sweave and DOCSTRIP............. 16 Watch Your Spelling!........................................... 22 Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming 29 Nonparametric Goodness-of-Fit Tests for Discrete Null Distributions............... 34 Using the Google Visualisation API with R.............................. 40 GrapheR: a Multiplatform GUI for Drawing Customizable Graphs in R............. 45 rainbow: An R Package for Visualizing Functional Time Series.................. 54 Programmer’s Niche Portable C++ for R Packages...................................... 60 News and Notes R’s Participation in the Google Summer of Code 2011....................... 64 Conference Report: useR! 2011..................................... 68 Forthcoming Events: useR! 2012.................................... 70 Changes in R............................................... 72 Changes on CRAN............................................ 84 News from the Bioconductor Project.................................. 86 R Foundation News........................................... 87 2 The Journal is a peer-reviewed publication
    [Show full text]
  • The R Journal, June 2012
    The Journal Volume 2/1, June 2010 A peer-reviewed, open-access publication of the R Foundation for Statistical Computing Contents Editorial..................................................3 Contributed Research Articles IsoGene: An R Package for Analyzing Dose-response Studies in Microarray Experiments..5 MCMC for Generalized Linear Mixed Models with glmmBUGS ................. 13 Mapping and Measuring Country Shapes............................... 18 tmvtnorm: A Package for the Truncated Multivariate Normal Distribution........... 25 neuralnet: Training of Neural Networks............................... 30 glmperm: A Permutation of Regressor Residuals Test for Inference in Generalized Linear Models.................................................. 39 Online Reproducible Research: An Application to Multivariate Analysis of Bacterial DNA Fingerprint Data............................................ 44 Two-sided Exact Tests and Matching Confidence Intervals for Discrete Data.......... 53 Book Reviews A Beginner’s Guide to R......................................... 59 News and Notes Conference Review: The 2nd Chinese R Conference........................ 60 Introducing NppToR: R Interaction for Notepad++......................... 62 Changes in R 2.10.1–2.11.1........................................ 64 Changes on CRAN............................................ 72 News from the Bioconductor Project.................................. 85 R Foundation News........................................... 86 2 The Journal is a peer-reviewed publication of
    [Show full text]
  • GEOG 4950/6950 Geospatial Analysis in R Day(S), Time, Place TBD
    GEOG 4950/6950 Geospatial Analysis in R Day(s), Time, Place TBD Dr. Emily Burchfield emily.burchfi[email protected] Office: NR 355B Office Hours: TBD 435-797-4089 Course Objectives By the end of this course, you will be able to: 1. Use R to summarize (spatial) data numerically and visually. 2. Explore (spatial) data patterns and relationships. 3. Conduct independent and reproducible research by applying techniques learned in class to novel datasets. DRAFT 4. Effectively communicate results and implications. 5. Critically assess data-driven assertions. Perhaps most importantly of all, you'll do this using the powerful, free, and open resources devel- oped by the community supporting the R programming language. These specific course objectives are connected to broader objectives to help you achieve greatness outside of the classroom: 1. Develop specific skills, competencies, and points of view needed by professionals. 2. Learn how to find and use resources for answering questions or solving problems. 3. Learn to analyze and critically evaluate ideas, arguments, and points of view. Prerequisites Basic understanding of statistics, introductory programming (Python, R, etc.), and/or geospatial software (i.e. ArcGIS, QGIS) is helpful, but not required. If you need additional resources to help get up to speed, check out the More Resources page on Canvas. 1 Course Materials Since we are working with open source tools, the resources we'll use in class are free. While there's no required textbook for the class, Applied Spatial Data Analysis with R by Roger Bivand, Edzer Pebesma, and Virgilio Gomez-Rubio is a fantastic resource. I will also frequently reference the R for Data Science text by Hadley Wickham, creator of dplyr and ggplot2 among other things.
    [Show full text]
  • Rtips. Revival 2012!
    Rtips. Revival 2012! Paul E. Johnson <pauljohn @ ku.edu> June 8, 2012 The original Rtips started in 1999. It became difficult to update because of limitations in the software with which it was created. Now I know more about R, and have decided to wade in again. In January, 2012, I took the FaqManager HTML output and converted it to LATEX with the excellent open source program pandoc, and from there I've been editing and updating it in LYX. From here on out, the latest html version will be at http://pj.freefaculty.org/R/Rtips. html and the PDF for the same will be http://pj.freefaculty.org/R/Rtips.pdf. You are reading the New Thing! The first chore is to cut out the old useless stuff that was no good to start with, correct mistakes in translation (the quotation mark translations are particularly dangerous, but also there is trouble with ~, $, and -. Original Preface (I thought it was cute to call this \StatsRus" but the Toystore's lawyer called and, well, you know. ) If you need a tip sheet for R, here it is. This is not a substitute for R documentation, just a list of things I had trouble remembering when switching from SAS to R. Heed the words of Brian D. Ripley, \One enquiry came to me yesterday which suggested that some users of binary distributions do not know that R comes with two Guides in the doc/manual directory plus an FAQ and the help pages in book form. I hope those are distributed with all the binary distributions (they are not made nor installed by default).
    [Show full text]
  • Statistics and Computing
    Statistics and Computing Series Editors: J. Chambers D. Hand W. Härdle Statistics and Computing Brusco/Stahl: Branch and Bound Applications in Combinatorial Data Analysis Chambers: Software for Data Analysis: Programming with R Dalgaard: Introductory Statistics with R Gentle: Elements of Computational Statistics Gentle: Numerical Linear Algebra for Applications in Statistics Gentle: Random Number Generation and Monte Carlo Methods, 2nd ed. Härdle/Klinke/Turlach: XploRe: An Interactive Statistical Computing Environment Hörmann/Leydold/Derflinger: Automatic Nonuniform Random Variate Generation Krause/Olson: The Basics of S-PLUS, 4th ed. Lange: Numerical Analysis for Statisticians Lemmon/Schafer: Developing Statistical Software in Fortran 95 Loader: Local Regression and Likelihood Ó Ruanaidh/Fitzgerald: Numerical Bayesian Methods Applied to Signal Processing Pannatier: VARIOWIN: Software for Spatial Data Analysis in 2D Pinheiro/Bates: Mixed-Effects Models in S and S-PLUS Unwin/Theus/Hofmann: Graphics of Large Datasets: Visualizing a Million Venables/Ripley: Modern Applied Statistics with S, 4th ed. Venables/Ripley: S Programming Wilkinson: The Grammar of Graphics, 2nd ed. John M. Chambers Software for Data Analysis Programming with R John Chambers Department of Statistics–Sequoia Hall 390 Serra Mall Stanford University Stanford, CA 94305-4065 USA [email protected] Series Editors: John Chambers W. Härdle David Hand Department of Statistics–Sequoia Institut für Statistik und Department of Mathematics Hall Ökonometrie South Kensington Campus 390 Serra Mall Humboldt-Universität zu Imperial College London Stanford University Berlin London, SW7 2AZ Stanford, CA 94305-4065 Spandauer Str. 1 United Kingdom USA D-10178 Berlin Germany Java™ is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries.
    [Show full text]