The Regress Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Progress in the R Ecosystem for Representing and Handling Spatial Data
Journal of Geographical Systems https://doi.org/10.1007/s10109-020-00336-0 ORIGINAL ARTICLE Progress in the R ecosystem for representing and handling spatial data Roger S. Bivand1 Received: 9 October 2019 / Accepted: 8 September 2020 © The Author(s) 2020 Abstract Twenty years have passed since Bivand and Gebhardt (J Geogr Syst 2(3):307–317, 2000. https ://doi.org/10.1007/PL000 11460 ) indicated that there was a good match between the then nascent open-source R programming language and environment and the needs of researchers analysing spatial data. Recalling the development of classes for spatial data presented in book form in Bivand et al. (Applied spatial data analysis with R. Springer, New York, 2008, Applied spatial data analysis with R, 2nd edn. Springer, New York, 2013), it is important to present the progress now occurring in representation of spatial data, and possible consequences for spatial data handling and the statistical analysis of spatial data. Beyond this, it is imperative to discuss the relationships between R-spatial software and the larger open-source geospatial software community on whose work R packages crucially depend. Keywords Spatial data analysis · Open-source software · R programming language JEL Classifcation C00 · C88 · R15 1 Introduction While Bivand and Gebhardt (2000) did provide an introduction to R as a statistical programming language and to why one might choose to use a scripted language like R (or Python), this article is both retrospective and prospective. It is possible that those approaching the choice of tools for spatial analysis and for handling spatial data will fnd the following less than inviting; in that case, perusal of early chapters of Lovelace et al. -
Sweave User Manual
Sweave User Manual Friedrich Leisch and R-core June 30, 2017 1 Introduction Sweave provides a flexible framework for mixing text and R code for automatic document generation. A single source file contains both documentation text and R code, which are then woven into a final document containing • the documentation text together with • the R code and/or • the output of the code (text, graphs) This allows the re-generation of a report if the input data change and documents the code to reproduce the analysis in the same file that contains the report. The R code of the complete 1 analysis is embedded into a LATEX document using the noweb syntax (Ramsey, 1998) which is usually used for literate programming Knuth(1984). Hence, the full power of LATEX (for high- quality typesetting) and R (for data analysis) can be used simultaneously. See Leisch(2002) and references therein for more general thoughts on dynamic report generation and pointers to other systems. Sweave uses a modular concept using different drivers for the actual translations. Obviously different drivers are needed for different text markup languages (LATEX, HTML, . ). Several packages on CRAN provide support for other word processing systems (see Appendix A). 2 Noweb files noweb (Ramsey, 1998) is a simple literate-programming tool which allows combining program source code and the corresponding documentation into a single file. A noweb file is a simple text file which consists of a sequence of code and documentation segments, called chunks: Documentation chunks start with a line that has an at sign (@) as first character, followed by a space or newline character. -
Supplementary Materials
Tomic et al, SIMON, an automated machine learning system reveals immune signatures of influenza vaccine responses 1 Supplementary Materials: 2 3 Figure S1. Staining profiles and gating scheme of immune cell subsets analyzed using mass 4 cytometry. Representative gating strategy for phenotype analysis of different blood- 5 derived immune cell subsets analyzed using mass cytometry in the sample from one donor 6 acquired before vaccination. In total PBMC from healthy 187 donors were analyzed using 7 same gating scheme. Text above plots indicates parent population, while arrows show 8 gating strategy defining major immune cell subsets (CD4+ T cells, CD8+ T cells, B cells, 9 NK cells, Tregs, NKT cells, etc.). 10 2 11 12 Figure S2. Distribution of high and low responders included in the initial dataset. Distribution 13 of individuals in groups of high (red, n=64) and low (grey, n=123) responders regarding the 14 (A) CMV status, gender and study year. (B) Age distribution between high and low 15 responders. Age is indicated in years. 16 3 17 18 Figure S3. Assays performed across different clinical studies and study years. Data from 5 19 different clinical studies (Study 15, 17, 18, 21 and 29) were included in the analysis. Flow 20 cytometry was performed only in year 2009, in other years phenotype of immune cells was 21 determined by mass cytometry. Luminex (either 51/63-plex) was performed from 2008 to 22 2014. Finally, signaling capacity of immune cells was analyzed by phosphorylation 23 cytometry (PhosphoFlow) on mass cytometer in 2013 and flow cytometer in all other years. -
The Split-Apply-Combine Strategy for Data Analysis
JSS Journal of Statistical Software April 2011, Volume 40, Issue 1. http://www.jstatsoft.org/ The Split-Apply-Combine Strategy for Data Analysis Hadley Wickham Rice University Abstract Many data analysis problems involve the application of a split-apply-combine strategy, where you break up a big problem into manageable pieces, operate on each piece inde- pendently and then put all the pieces back together. This insight gives rise to a new R package that allows you to smoothly apply this strategy, without having to worry about the type of structure in which your data is stored. The paper includes two case studies showing how these insights make it easier to work with batting records for veteran baseball players and a large 3d array of spatio-temporal ozone measurements. Keywords: R, apply, split, data analysis. 1. Introduction What do we do when we analyze data? What are common actions and what are common mistakes? Given the importance of this activity in statistics, there is remarkably little research on how data analysis happens. This paper attempts to remedy a very small part of that lack by describing one common data analysis pattern: Split-apply-combine. You see the split-apply- combine strategy whenever you break up a big problem into manageable pieces, operate on each piece independently and then put all the pieces back together. This crops up in all stages of an analysis: During data preparation, when performing group-wise ranking, standardization, or nor- malization, or in general when creating new variables that are most easily calculated on a per-group basis. -
Hadley Wickham, the Man Who Revolutionized R Hadley Wickham, the Man Who Revolutionized R · 51,321 Views · More Stats
12/15/2017 Hadley Wickham, the Man Who Revolutionized R Hadley Wickham, the Man Who Revolutionized R · 51,321 views · More stats Share https://priceonomics.com/hadley-wickham-the-man-who-revolutionized-r/ 1/10 12/15/2017 Hadley Wickham, the Man Who Revolutionized R “Fundamentally learning about the world through data is really, really cool.” ~ Hadley Wickham, prolific R developer *** If you don’t spend much of your time coding in the open-source statistical programming language R, his name is likely not familiar to you -- but the statistician Hadley Wickham is, in his own words, “nerd famous.” The kind of famous where people at statistics conferences line up for selfies, ask him for autographs, and are generally in awe of him. “It’s utterly utterly bizarre,” he admits. “To be famous for writing R programs? It’s just crazy.” Wickham earned his renown as the preeminent developer of packages for R, a programming language developed for data analysis. Packages are programming tools that simplify the code necessary to complete common tasks such as aggregating and plotting data. He has helped millions of people become more efficient at their jobs -- something for which they are often grateful, and sometimes rapturous. The packages he has developed are used by tech behemoths like Google, Facebook and Twitter, journalism heavyweights like the New York Times and FiveThirtyEight, and government agencies like the Food and Drug Administration (FDA) and Drug Enforcement Administration (DEA). Truly, he is a giant among data nerds. *** Born in Hamilton, New Zealand, statistics is the Wickham family business: His father, Brian Wickham, did his PhD in the statistics heavy discipline of Animal Breeding at Cornell University and his sister has a PhD in Statistics from UC Berkeley. -
R Generation [1] 25
IN DETAIL > y <- 25 > y R generation [1] 25 14 SIGNIFICANCE August 2018 The story of a statistical programming they shared an interest in what Ihaka calls “playing academic fun language that became a subcultural and games” with statistical computing languages. phenomenon. By Nick Thieme Each had questions about programming languages they wanted to answer. In particular, both Ihaka and Gentleman shared a common knowledge of the language called eyond the age of 5, very few people would profess “Scheme”, and both found the language useful in a variety to have a favourite letter. But if you have ever been of ways. Scheme, however, was unwieldy to type and lacked to a statistics or data science conference, you may desired functionality. Again, convenience brought good have seen more than a few grown adults wearing fortune. Each was familiar with another language, called “S”, Bbadges or stickers with the phrase “I love R!”. and S provided the kind of syntax they wanted. With no blend To these proud badge-wearers, R is much more than the of the two languages commercially available, Gentleman eighteenth letter of the modern English alphabet. The R suggested building something themselves. they love is a programming language that provides a robust Around that time, the University of Auckland needed environment for tabulating, analysing and visualising data, one a programming language to use in its undergraduate statistics powered by a community of millions of users collaborating courses as the school’s current tool had reached the end of its in ways large and small to make statistical computing more useful life. -
Changes on CRAN 2014-07-01 to 2014-12-31
NEWS AND NOTES 192 Changes on CRAN 2014-07-01 to 2014-12-31 by Kurt Hornik and Achim Zeileis New packages in CRAN task views Bayesian BayesTree. Cluster fclust, funFEM, funHDDC, pgmm, tclust. Distributions FatTailsR, RTDE, STAR, predfinitepop, statmod. Econometrics LinRegInteractive, MSBVAR, nonnest2, phtt. Environmetrics siplab. Finance GCPM, MSBVAR, OptionPricing, financial, fractal, riskSimul. HighPerformanceComputing GUIProfiler, PGICA, aprof. MachineLearning BayesTree, LogicForest, hdi, mlr, randomForestSRC, stabs, vcrpart. MetaAnalysis MAVIS, ecoreg, ipdmeta, metaplus. NumericalMathematics RootsExtremaInflections, Rserve, SimplicialCubature, fastGHQuad, optR. OfficialStatistics CoImp, RecordLinkage, rworldmap, tmap, vardpoor. Optimization RCEIM, blowtorch, globalOptTests, irace, isotone, lbfgs. Phylogenetics BAMMtools, BoSSA, DiscML, HyPhy, MPSEM, OutbreakTools, PBD, PCPS, PHYLOGR, RADami, RNeXML, Reol, Rphylip, adhoc, betapart, dendextend, ex- pands, expoTree, jaatha, kdetrees, mvMORPH, outbreaker, pastis, pegas, phyloTop, phyloland, rdryad, rphast, strap, surface, taxize. Psychometrics IRTShiny, PP, WrightMap, mirtCAT, pairwise. ReproducibleResearch NMOF. Robust TEEReg, WRS2, robeth, robustDA, robustgam, robustloggamma, robustreg, ror, rorutadis. Spatial PReMiuM. SpatioTemporal BayesianAnimalTracker, TrackReconstruction, fishmove, mkde, wildlifeDI. Survival DStree, ICsurv, IDPSurvival, MIICD, MST, MicSim, PHeval, PReMiuM, aft- gee, bshazard, bujar, coxinterval, gamboostMSM, imputeYn, invGauss, lsmeans, multipleNCC, paf, penMSM, spBayesSurv, -
R Programming for Data Science
R Programming for Data Science Roger D. Peng This book is for sale at http://leanpub.com/rprogramming This version was published on 2015-07-20 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do. ©2014 - 2015 Roger D. Peng Also By Roger D. Peng Exploratory Data Analysis with R Contents Preface ............................................... 1 History and Overview of R .................................... 4 What is R? ............................................ 4 What is S? ............................................ 4 The S Philosophy ........................................ 5 Back to R ............................................ 5 Basic Features of R ....................................... 6 Free Software .......................................... 6 Design of the R System ..................................... 7 Limitations of R ......................................... 8 R Resources ........................................... 9 Getting Started with R ...................................... 11 Installation ............................................ 11 Getting started with the R interface .............................. 11 R Nuts and Bolts .......................................... 12 Entering Input .......................................... 12 Evaluation ........................................... -
ESS — Emacs Speaks Statistics
ESS — Emacs Speaks Statistics ESS version 5.14 The ESS Developers (A.J. Rossini, R.M. Heiberger, K. Hornik, M. Maechler, R.A. Sparapani, S.J. Eglen, S.P. Luque and H. Redestig) Current Documentation by The ESS Developers Copyright c 2002–2010 The ESS Developers Copyright c 1996–2001 A.J. Rossini Original Documentation by David M. Smith Copyright c 1992–1995 David M. Smith Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Chapter 1: Introduction to ESS 1 1 Introduction to ESS The S family (S, Splus and R) and SAS statistical analysis packages provide sophisticated statistical and graphical routines for manipulating data. Emacs Speaks Statistics (ESS) is based on the merger of two pre-cursors, S-mode and SAS-mode, which provided support for the S family and SAS respectively. Later on, Stata-mode was also incorporated. ESS provides a common, generic, and useful interface, through emacs, to many statistical packages. It currently supports the S family, SAS, BUGS/JAGS, Stata and XLisp-Stat with the level of support roughly in that order. A bit of notation before we begin. emacs refers to both GNU Emacs by the Free Software Foundation, as well as XEmacs by the XEmacs Project. The emacs major mode ESS[language], where language can take values such as S, SAS, or XLS. -
Conference Brochure S P E a K E R S
04.07.2017 – 07.07.2017 www.user2017.brussels @useR_Brussels #user2017 CONFERENCE BROCHURE S P E A K E R S 2 As a student my use of R for data analyses was frowned upon - the suggestion was to stick with the existing software. P Access to R related literature was difficult. To admire R the very first R books one had to travel far, to the few enlightened universities. As a researcher I needed the help E of a secret floppy disk to dual boot into a GNU/Linux system with R, in order to escape from unnamed products. As a F starter in industry, people from unnamed companies made clear to my management that setting up R events for customers was A giving a ‘wrong signal to the market’. C Look how ‘wrong’ we have been... Fifteen years later R is shining brightly in the data science field. Students are E learning R before anything else and if statistics research is published without accompanying R package, it is considered a bad sign. Publishers have hundreds of books on display and major software houses are in a constant race against time to further integrate R into their product offerings. And now, more than 1000 people from all over the world have come to Brussels to discover the state of R at this conference. R has come a great way and the community that formed around the R project is and has always been critical to its success. The community has evolved in many ways and is active in many places throughout the year, but of all things the official useR conference still is the major community event of the year. -
August 12-14, Dortmund, Germany
AASC Austrian Association for Statistical Computing 2008 Program August 12-14, Dortmund, Germany useR! 2008, Dortmund, Germany 1 Contents Greetings and Miscellaneous 2 Maps 5 Social Program 8 Program 9 Tutorials 9 Schedule 10 List of Talks 14 2 useR! 2008, Dortmund, Germany Dear useRs, the following pages provide you with some useful information about useR! 2008, the R user con- ference, taking place at the Fakultät Statistik, Technische Universität Dortmund, Germany from 2008-08-12 to 2008-08-14. Pre-conference tutorials will take place on August 11. The confer- ence is organized by the Fakultät Statistik, Technische Universität Dortmund and the Austrian Association for Statistical Computing (AASC). Apart from challenging and likewise exciting scientific contributions we hope to offer you an attractive conference site and a pleasant social program. With best regards from the organizing team: Uwe Ligges (conference), Achim Zeileis (program), Claus Weihs, Gerd Kopp (local organiza- tion), Friedrich Leisch, and Torsten Hothorn Address / Contact Address: Uwe Ligges Fakultät Statistik Technische Universität Dortmund 44221 Dortmund Germany Phone: +49 231 755 4353 Fax: +49 231 755 4387 e-mail: [email protected] URL: http://www.R-Project.org/useR-2008/ Program Committee Micah Altman, Roger Bivand, Peter Dalgaard, Jan de Leeuw, Ramón Díaz-Uriarte, Spencer Graves, Leonhard Held, Torsten Hothorn, François Husson, Christian Kleiber, Friedrich Leisch, Andy Liaw, Martin Mächler, Kate Mullen, Ei-ji Nakama, Thomas Petzoldt, Martin Theus, and Heather Turner Conference Location Technische Universität Dortmund Campus Nord Mathematikgebäude / Audimax Vogelpothsweg 87 44227 Dortmund Conference Office Opening hours: Monday, August 11: 08:30–19:30 Tuesday, August 12: 08:30–18:30 Wednesday, August 13: 08:30–18:30 Thursday, August 14: 08:30–15:30 useR! 2008, Dortmund, Germany 3 Public Transport The conference site at the university campus and the city hall are best to be reached by public transport. -
Species' Traits and Phylogenetic
Northern Michigan University NMU Commons All NMU Master's Theses Student Works 8-2018 CLIMATE DRIVEN RANGE SHIFTS OF NORTH AMERICAN SMALL MAMMALS: SPECIES’ TRAITS AND PHYLOGENETIC INFLUENCES Katie Nehiba [email protected] Follow this and additional works at: https://commons.nmu.edu/theses Part of the Ecology and Evolutionary Biology Commons Recommended Citation Nehiba, Katie, "CLIMATE DRIVEN RANGE SHIFTS OF NORTH AMERICAN SMALL MAMMALS: SPECIES’ TRAITS AND PHYLOGENETIC INFLUENCES" (2018). All NMU Master's Theses. 557. https://commons.nmu.edu/theses/557 This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more information, please contact [email protected],[email protected]. CLIMATE DRIVEN RANGE SHIFTS OF NORTH AMERICAN SMALL MAMMALS: SPECIES’ TRAITS AND PHYLOGENETIC INFLUENCES By Katie R. Nehiba THESIS Submitted to Northern Michigan University In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE Office of Graduate Education and Research July 2018 ABSTRACT By Katie R. Nehiba Current anthropogenically-driven climate change is accelerating at an unprecedented rate. In response, species’ ranges may shift, tracking optimal climatic conditions. Species-specific differences may produce predictable differences in the extent of range shifts. I evaluated if patterns of predicted responses to climate change were strongly related to species’ taxonomic identities and/or ecological characteristics of species’ niches, elevation and precipitation. I evaluated differences in predicted range shifts in well-sampled small mammals that are restricted to North America: kangaroo rats, voles, chipmunks, and ground squirrels.