A Biomechanical Analysis of Sprinters Vs. Distance Runners at Equal and Maximal Speeds
Total Page:16
File Type:pdf, Size:1020Kb
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2004-12-02 A Biomechanical Analysis of Sprinters vs. Distance Runners at Equal and Maximal Speeds Tyler D. Bushnell Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Exercise Science Commons BYU ScholarsArchive Citation Bushnell, Tyler D., "A Biomechanical Analysis of Sprinters vs. Distance Runners at Equal and Maximal Speeds" (2004). Theses and Dissertations. 217. https://scholarsarchive.byu.edu/etd/217 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. A BIOMECHANICAL ANALYSIS OF SPRINTERS VS. DISTANCE RUNNERS AT EQUAL AND MAXIMAL SPEEDS by Tyler D. Bushnell A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Department of Exercise Sciences Brigham Young University December 2004 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Tyler D. Bushnell This thesis has been read by each member of the following graduate committee and by a majority vote has been found to be satisfactory. _______________________ ________________________________ Date Iain Hunter, Chair _______________________ ________________________________ Date Ron Hager _______________________ ________________________________ Date Allen Parcell BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Tyler D. Bushnell in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library. __________________ _________________________________________ Date Iain Hunter Chair, Graduate Committee Accepted for the Department ________________________________________ Ruel Barker Chair, Department of Exercise Sciences Accepted for the College ________________________________________ Gordon B. Lindsay Associate Dean, College of Health and Human Performance ABSTRACT A BIOMECHANICAL ANALYSIS OF SPRINTERS VS. DISTANCE RUNNERS AT EQUAL AND MAXIMAL SPEEDS Tyler D. Bushnell Department of Exercise Sciences Master of Science In the sport of track and field, sprinting and distance running represent two major categories of athletes. Sprinting is associated with power and speed, whereas distance running focuses on the economy of movement. With distance running there are elements of sprint technique that overlap. With distance events, there comes a time near the end of the race where economy gives way to speed. If the distance runners knew how to alter their technique in a way to become more sprint-like, this process could possibly be more successful. PURPOSE: This study compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. METHODS: Subjects for the study consisted of 10 Division I collegiate distance runners, 10 Division I collegiate sprinters, and 10 healthy non-runners. The subjects performed two tests, with each consisting of a 60 meter run completed on the track. Test 1 was run at a pace of 5.81 m/s (4:37 min/mile), while Test 2 was completed at maximal speed. Video footage of each trial was collected at 180 Hz, monitoring hip, knee, thigh, and shank positions, as well as stride length, and contact time. RESULTS: Significant differences (p < .05) between the sprint and distance groups at maximal speed were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and the position of the recovery knee at touchdown. Sprinters and distance runners exhibited a significantly lower minimum knee angle than those in the control group. Significant differences between the sprint and control group existed at the minimum hip angle, speed, stride length, contact time, and the position of the recovery knee at touchdown. Regarding the paced trial, the sprinters and distance runners showed significant difference concerning the minimum hip angle, center of mass at touchdown, and recovery knee at touchdown. Sprinters differed significantly from the control group in contact time, the center of mass at touchdown and the position of the recovery knee at touchdown. CONCLUSION: As distance runners attempt to sprint, the desired adaptations do not necessarily occur. The development of economical distance form is a fairly natural process that occurs with the miles of training. Sprinting, however, is a separate, learned technique that often requires specific feedback. When attempting maximal speed, distance runners may benefit by focusing on one characteristic of technique. If knee extension at toe-off could be trained to become more sprint-like, the other characteristics unique to sprinters may follow. ACKNOWLEDGMENTS Special thanks to Dr. Hunter for his expertise, time, and enthusiasm in the development and completion of this thesis. I would also like to thank Mark Robison, Edward Eyestone, Leonard Myles-Mills, and the BYU Men’s Track and Field team for their assistance and willingness to be a part of this study. Additionally, I would like to thank my Mom and brother Tanner for their continued interest and support throughout the entire project. Finally, extra thanks to Sandy Alger and her uncanny editing ability. Table of Contents Page List of Tables .......................................................................................................... viii List of Figures............................................................................................................ix A Biomechanical Analysis of Sprinters vs. Distance Runners at Equal and Maximal Speeds Abstract...........................................................................................................3 Introduction.....................................................................................................5 Methods...........................................................................................................7 Results.............................................................................................................9 Discussion.....................................................................................................10 Conclusion ....................................................................................................16 References.....................................................................................................18 Appendix A Prospectus.............................................................................................25 Introduction...................................................................................................27 Review of Literature .....................................................................................32 Methods.........................................................................................................44 References.....................................................................................................46 Appendix B Additional Results ................................................................................49 vii List of Tables Table Page 1 Maximal Speed Trial Results................................................................................20 2 Pace Trial Results .................................................................................................21 viii List of Figures Figure Page 1 Picture Exhibiting Minimum Hip Angle ..............................................................22 2 Picture Exhibiting Minimum Knee Angle ............................................................23 3 Picture Exhibiting Knee Extension at Toe-off......................................................24 ix A Biomechanical Analysis of Sprinters vs. Distance Runners at Equal and Maximal Speeds Tyler D. Bushnell, MS, Exercise Sciences, Brigham Young University Iain Hunter, PhD, Exercise Sciences, Brigham Young University Ron Hager, PhD, Exercise Sciences, Brigham Young University Allen Parcell, PhD, Exercise Sciences, Brigham Young University Correspondence: Tyler D. Bushnell, 1933 Wooded Knolls Dr, Philomath, OR 97370, (541) 929-5032. Email: [email protected] 2 3 Abstract In the sport of track and field, sprinting and distance running represent two major categories of athletes. Sprinting is associated with power and speed, whereas distance running focuses on the economy of movement. With distance running there are elements of sprint technique that overlap. With distance events, there comes a time near the end of the race where economy gives way to speed. If the distance runners knew how to alter their technique in a way to become more sprint-like, this process could possibly be more successful. PURPOSE: This study compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. METHODS: Subjects for the study consisted of 10 Division I collegiate distance runners, 10 Division I collegiate sprinters, and 10 healthy non-runners. The subjects performed two tests, with each consisting