ANNEX 45 GUIDEBOOK ON ENERGY EFFICIENT ELECTRIC FOR BUILDINGS

Espoo 2010 Edited by Liisa Halonen, Eino Tetri & Pramod Bhusal

AaltoUniversity SchoolofScienceandTechnology DepartmentofElectronics LightingUnit Espoo2010

GUIDEBOOKONENERGYEFFICIENT ELECTRICLIGHTINGFORBUILDINGS

1

GuidebookonEnergyEfficientElectricLightingforBuildings IEA-InternationalEnergyAgency ECBCS-EnergyConservationinBuildingsandCommunitySystems Annex45-EnergyEfficientElectricLightingforBuildings Distribution: AaltoUniversity SchoolofScienceandTechnology DepartmentofElectronics LightingUnit P.O.Box13340 FIN-00076Aalto Finland Tel:+358947024971 Fax:+358947024982 E-mail:[email protected] http://ele.tkk.fi/en http://lightinglab.fi/IEAAnnex45 http://www.ecbcs.org AaltoUniversitySchoolofScienceandTechnology ISBN978-952-60-3229-0(pdf) ISSN1455-7541

2 ABSTRACT

Abstract

Lightingisalargeandrapidlygrowingsourceofenergydemandandgasemissions.At thesametimethesavingspotentialoflightingenergyishigh,evenwiththecurrenttechnology,and therearenewenergyefficientlightingtechnologiescomingontothemarket.Currently,morethan 33billionlampsoperateworldwide,consumingmorethan2650TWhofenergyannually,whichis 19%oftheglobalelectricityconsumption. The goal of IEA ECBCS Annex 45 was to identify and to accelerate the widespread use of appropriate energy efficient high-quality lighting technologies and their integration with other buildingsystems,makingthemthepreferredchoiceoflightingdesigners,ownersandusers.The aimwastoassessanddocumentthetechnicalperformanceoftheexistingpromising,butlargely under-utilized,innovativelightingtechnologies,aswellasfuturelightingtechnologies.Thesenovel lighting system concepts have to meet the functional, aesthetic, and comfort requirements of buildingoccupants.Theguidebookmostlyconcernsthelightingofofficesandschools. The content of the Guidebook includes an Introduction, Lighting energy in buildings, Lighting quality,Lightingandenergystandardsandcodes,Lightingtechnologies,Lightingcontrolsystems, Lifecycleanalysisandlifecyclecosts,Lightingdesignandasurveyonlightingtodayandinthe future,Commissioningoflightingsystems,Casestudies, Technical potential for energy efficient lightingandsavings,Proposalstoupgradelightingstandardsandrecommendations,andaSummary andconclusions. Thereissignificantpotentialtotheimproveenergyefficiencyofoldandnewlightinginstallations evenwiththeexistingtechnology.Theenergyefficiencyoflightinginstallationscanbeimproved withthefollowingmeasures: − the choice of lamps. Incandescent lamps should be replaced by CFLs, infrared coated tungsten halogen lamps or LEDs, mercury lamps by high-pressure sodium lamps, metal halidelamps,orLEDs,andferromagneticballastsbyelectronicballasts − theusageofcontrollableelectronicballastswithlowlosses − thelightingdesign:theuseofefficientluminairesandlocalizedtasklighting − the control of light with manual dimming, presence sensors, and dimming according to daylight − theusageofdaylight − theuseofhighefficiencyLED-basedlightingsystems. Annex45suggeststhatclearinternationalinitiatives(bytheIEA,EU,CIE, IEC,CENandother internationalbodies)aretakenupinorderto: − upgradelightingstandardsandrecommendations − integratevaluesoflightingenergydensity(kWh/m2,a)intobuildingenergycodes − monitorandregulatethequalityofinnovativelightsources − pursue research into fundamental human requirements for lighting (visual and non-visual effectsoflight) − stimulatetherenovationofinefficientoldlightinginstallationsbytargetedmeasures Theintroductionofmoreenergyefficientlightingproductsandprocedurescanatthesametime providebetterlivingandworkingenvironmentsandalsocontributeinacost-effectivemannertothe globalreductionofenergyconsumptionandgreenhousegasemissions.

3 PREFACE

Preface

INTERNATIONALENERGYAGENCY The International Energy Agency (IEA) was established in 1974 within the framework of the OrganisationforEconomicCo-operationandDevelopment(OECD)toimplementaninternational energyprogramme.AbasicaimoftheIEAistofosterco-operationamongthetwenty-eightIEA participatingcountriesandtoincreaseenergysecuritythroughenergyconservation,developmentof alternativeenergysourcesandenergyresearch,developmentanddemonstration(RD&D).

ENERGYCONSERVATIONINBUILDINGSANDCOMMUNITYSYSTEMS(ECBCS) TheIEAco-ordinatesresearchanddevelopmentinanumberofareasrelatedtoenergy.Themission ofoneofthoseareas,theECBCS-EnergyConservationfor Building andCommunitySystems Programme,istodevelopandfacilitatetheintegrationoftechnologiesandprocessesfor energy efficiencyandconservationintohealthy,lowemission,andsustainablebuildingsandcommunities, throughinnovationandresearch. The research and development strategies of the ECBCS Programme are derived from research drivers, national programmes within IEA countries, and the IEA Future Building Forum Think Tank Workshop, held in March 2007. The R&D strategies represent a collective input of the Executive Committee members to exploit technological opportunities to save energy in the buildings sector, and to remove technical obstacles to market penetration of new energy conservationtechnologies.TheR&Dstrategiesapplytoresidential,commercial,officebuildings and community systems, and will impact the building industry in three focus areas of R&D activities: − Dissemination − Decision-making − Buildingproductsandsystems

THEEXECUTIVECOMMITTEE OverallcontroloftheprogramismaintainedbyanExecutiveCommittee,whichnotonlymonitors existingprojectsbutalsoidentifiesnewareaswherecollaborativeeffortmaybebeneficial.Todate thefollowingprojectshavebeeninitiatedbytheexecutivecommitteeonEnergyConservationin BuildingsandCommunitySystems: ONGOINGANNEXES

Annex Title Duration 55 ReliabilityofEnergyEfficientBuildingRetrofitting-ProbabilityAssessmentof 2009-2013 Performance&Cost(RAP-RETRO) WG WorkingGrouponEnergyEfficientCommunities 2009-2012 54 AnalysisofMicro-Generation&RelatedEnergyTechnologiesinBuildings 2009-2013 53 TotalEnergyUseinBuildings:Analysis&EvaluationMethods 2008-2012 52 TowardsNetZeroEnergySolarBuildings 2008-2013 51 EnergyEfficientCommunities 2007-2011 50 PrefabricatedSystemsforLowEnergyRenovationofResidentialBuildings 2006-2010 49 LowExergySystemsforHighPerformanceBuildingsandCommunities 2006-2010 48 HeatPumpingandReversibleAirConditioning 2006-2009 47 CostEffectiveCommissioningofExistingandLowEnergyBuildings 2005-2008 46 HolisticAssessmentTool-kitonEnergyEfficientRetrofitMeasuresforGovernment 2005-2008 Buildings(EnERGo) 45 Energy-EfficientFutureElectricLightingforBuildings 2004-2008 44 IntegratingEnvironmentallyResponsiveElementsinBuildings 2004-2009 5 AirInfiltrationandVentilationCentre 1979- 4 PREFACE

COMPLETEDANNEXES Annex Title Duration 43 TestingandValidationofBuildingEnergySimulationTools 2003-2007 42 TheSimulationofBuilding-IntegratedFuelCellandOtherSystems 2003-2007 (COGEN-SIM) 41 WholeBuildingHeat,AirandMoistureResponse(MOIST-EN) 2003-2007 40 CommissioningofBuildingHVACSystemsforImprovedEnergyPerformance 2001-2004

39 HighPerformanceThermalInsulation(HiPTI) 2001-2004 38 SolarSustainableHousing 1999-2003 37 LowExergySystemsforHeatingandCooling 1999-2003 36 RetrofittinginEducationalBuildings-EnergyConceptAdviserforTechnical 1998-2002 RetrofitMeasures 36WG Annex36WorkingGroupExtension'TheEnergyConceptAdviser' 2003-2005 35 ControlStrategiesforHybridVentilationinNewandRetorfittedOfficeBuildings 1998-2002 (HybVent) 34 Computer-AidedEvaluationofHVACSystemPerformance 1997-2001 33 AdvancedLocalEnergyPlanning 1996-1998 32 IntegralBuildingEnvelopePerformanceAssessment 1996-1999 31 EnergyRelatedEnvironmentalImpactofBuildings 1996-1999 WG WorkingGrouponIndicatorsofEnergyEfficiencyinColdClimateBuildings 1995-1999 30 BringingSimulationtoApplication 1995-1998 29 DaylightinBuildings 1995-1999 28 LowEnergyCoolingSystems 1993-1997 27 EvaluationandDemonstrationofDomesticVentilationSystems 1993-2002 26 EnergyEfficientVentilationofLargeEnclosures 1993-1996 25 RealTimeHEVACSimulation 1991-1995 24 Heat,AirandMoistureTransportinInsulatedEnvelopeParts 1991-1995 23 MultizoneAirFlowModelling 1990-1996 22 EnergyEfficientCommunities 1991-1993 21 EnvironmentalPerformanceofBuildings 1988-1993 20 AirFlowPatternswithinBuildings 1988-1991 19 LowSlopeRoofSystems 1987-1993 18 DemandControlledVentilatingSystems 1987-1992 17 BuildingEnergyManagementSystems-EvaluationandEmulationTechniques 1988-1992

16 BuildingEnergyManagementSystems-UserInterfacesandSystemIntegration 1987-1991

15 EnergyEfficiencyinSchools 1988-1990 15WG WorkingGrouponEnergyEfficiencyinEducationalBuildings 1992-1995 14 CondensationandEnergy 1987-1990 13 EnergyManagementinHospitals 1985-1989 12 WindowsandFenestration 1982-1986 11 EnergyAuditing 1982-1987 10 BuildingHEVACSystemsSimulation 1982-1987 9 MinimumVentilationRates 1982-1986 8 InhabitantBehaviourwithRegardtoVentilation 1984-1987 7 LocalGovernmentEnergyPlanning 1981-1983 6 EnergySystemsandDesignofCommunities 1979-1981 4 GlasgowCommercialBuildingMonitoring 1979-1982 3 EnergyConservationinResidentialBuildings 1979-1982 2 EkisticsandAdvancedCommunityEnergySystems 1976-1978 1 LoadEnergyDeterminationofBuildings 1977-1980

5 ACKNOWLEDGEMENTS

Acknowledgements

ThematerialpresentedinthispublicationwascollectedanddevelopedwithinanAnnexoftheIEA Implementing Agreement Energy Conservation in Buildings and Community Systems (IEA ECBCS),Annex45EnergyEfficientElectricLightingforBuildings. TheGuidebookistheresultofajointeffortbymanycountries.Allthosewhohavecontributedto the project by taking part in the writing process or the numerous discussions are gratefully acknowledged. A list of the 20 participating and corresponding countries and members can be found in Chapter 14 of the Guidebook. Some of the Annex participants have taken more responsibilityforcollectingtheinformationorwritingthechaptersintheGuidebook.Theyare: PeterDehoff ZumtobelLighting Austria WilfriedPohl BartenbachLichtLaborGmbH Austria SubtaskBleader ArnaudDeneyer CSTC Belgium AlexanderRosemann UniversityofBritishColumbia Canada ChenYuming FudanUniversity China LiisaHalonen AaltoUniversity Finland OperatingAgent EinoTetri AaltoUniversity Finland SubtaskDleader PramodBhusal AaltoUniversity Finland MarjukkaPuolakka AaltoUniversity Finland PauloPinho AaltoUniversity Finland AhmadHusaunndee VeoliaEnvironnement France LaurentEscaffre Ingelux France MarcFontoynont ÉcoleNationaledesTravauxPublics France SubtaskAleader del'État(ENTPE) MireilleJandon CSTB France SubtaskCleaderfromApril2006 NicolasCouillaud CSTB France SubtaskCleaderfromApril2006 FelixSerick TechnischeUniversitätBerlin Germany HeinrichKaase TechnischeUniversitätBerlin Germany SubtaskCleaderuntilApril2006 FabioBisegna UniversitàdiRoma"LaSapienza" Italy SimonettaFumagalli ENEA Italy TruusdeBruin-Hordijk TUDelft Netherlands BarbaraMatusiak NorwegianUniv.ofScienceandTech. Norway ToreKolås NTNU Norway ZbigniewMantorski WASKOS.A. Poland JulianAizenberg Svetotehnika,LightHouseMoscow, Russia VNISI LarsBylund BASBergenschoolofarchitecture Norway NilsSvendenius LundUniversity Sweden PeterPertola WSPLjusdesign Sweden Onbehalfofalltheparticipants,themembersoftheExecutiveCommitteeofIEAECBCS,aswell asthefundingbodies,arealsogratefullyacknowledged. The authors want to acknowledge the financial and other support from the following: Federal MinistryofTransport,Innovation,andTechnology(BMVIT), Austria; BBRI through funding of the Walloon Region, Belgium; Tekes – the Finnish Funding Agency for Technology and Innovation, Helvar, Senate Properties, Philips Valaistus, Finland; SenterNovem, Netherlands; WASKOS.A.,Poland;SwedishEnergyAgency,Sweden.

6 CONTENTS

Contents

Abstract...... 3

Preface...... 4

Acknowledgements...... 6

Contents ...... 7

1 Introduction...... 13 1.1 HowtousetheGuidebook...... 13 1.2 AbouttheAnnex45 ...... 13 1.2.1 Background...... 13 1.2.2 Objectivesandscope...... 14 1.2.3 StructureofAnnex45...... 14

2 Lightingenergyinbuildings ...... 19 2.1 Holisticviewofenergyuseinbuildings...... 19 2.2 Factsandfiguresonlightingenergyusage...... 22 2.2.1 Background...... 22 2.2.2 WorldwideEnergyandLightingScenario ...... 22 2.2.3 Impactsoflightingenergyconsumptionontheenvironment ...... 26 2.2.4 Lightingenergyusageinbuildings...... 28 2.2.5 Evaluationoflightingenergyuseforbuildings...... 36

3 Lightingquality...... 43 3.1 Lightingpracticesandqualityinthepast:historicalaspects...... 43 3.2 Defininglightingquality...... 43 3.3 Visualaspects...... 45 3.3.1 Visualperformance...... 45 3.3.2 Visualcomfort ...... 45 3.4 Psychologicalaspectsoflight...... 48 3.5 Non–visualaspectsoflight...... 49 3.6 Lightingandproductivity...... 50 3.7 Effectsofelectromagneticfieldsonhealthandopticalradiationsafetyrequirements.. 51 3.8 Conclusions:opportunitiesandbarriers...... 52 3.8.1 Opportunities...... 52 3.8.2 Risks...... 53

4 Lightingandenergystandardsandcodes ...... 59 4.1 Reviewoflightingstandardsworldwide...... 59 4.1.1 Introduction...... 59 4.1.2 Datacollection ...... 60 4.1.3 Method...... 61 4.1.4 Displayusingworldmaps...... 61 4.1.5 Recommendedilluminancelevels ...... 70 4.2 Energycodesandpolicies...... 70

7 CONTENTS

4.2.1 Europe–Energyperformanceofbuildingsdirective...... 70 4.2.2 EnergyefficientbuildingcodesandpoliciesintheUS...... 71 4.2.3 EnergyefficientbuildingcodesandpoliciesinChina ...... 71 4.2.4 EnergyefficientbuildingcodesandpoliciesinBrazil ...... 71 4.2.5 EnergyefficientbuildingcodesandpoliciesinSouthAfrica ...... 72 4.2.6 25EnergyEfficiencyPolicyRecommendationsbyIEAtoTHEG8...... 72 4.3 Energy-relatedlegislationintheEuropeanUnion...... 73 4.3.1 Introduction...... 73 4.3.2 EuPDirective...... 73 4.3.3 Energyperformanceofbuildings...... 76 4.3.4 EnergyEfficiencyLabel ...... 78 4.3.5 DisposalphaseofLightingEquipmentinEurope ...... 78 4.3.6 Notes ...... 81 4.3.7 Reviewofstandardsonelectricandelectromagneticaspects ...... 81 4.4 Examplesoflightingrelatedenergyprograms ...... 85 4.4.1 ENERGYSTAR...... 85 4.4.2 TopRunnerprogram...... 86

5 Lightingtechnologies...... 93 5.1 Introduction...... 93 5.2 Lightsources...... 94 5.2.1 Overview...... 94 5.2.2 Lampsinuse ...... 96 5.2.3 Lamps...... 98 5.2.4 Auxiliaries...... 106 5.3 Solid-statelighting ...... 111 5.3.1 Light-emittingdiodes(LEDs)...... 111 5.3.2 OLEDs-Organiclight-emittingdiodes...... 117 5.3.3 LEDdrivers...... 118 5.3.4 LEDdimmingandcontrol ...... 120 5.3.5 LEDroadmaps ...... 122 5.4 Trendsinthefutureinlightsources...... 123 5.5 Luminaires...... 124 5.5.1 Introduction...... 124 5.5.2 Definitionofaluminaire...... 125 5.5.3 Energyaspects ...... 126 5.5.4 LEDLuminaires...... 127 5.6 Networkaspects ...... 128 5.7 Hybridlighting...... 132 5.7.1 Introduction...... 132 5.7.2 Energysavings,lightingqualityandcosts...... 132 5.7.3 Examples...... 133 5.7.4 Summary...... 134

6 Lightingcontrolsystems...... 139 6.1 Introduction...... 139 6.2 Identificationofthelightingcontrolneeds...... 140 6.2.1 Specificationbook ...... 141 6.3 SuitableLightingControlStrategies...... 142 6.3.1 Introduction...... 142

8 CONTENTS

6.3.2 Predictedoccupancycontrolstrategy ...... 144 6.3.3 Realoccupancycontrolstrategy(ROCS)...... 145 6.3.4 Constantilluminancecontrolstrategy ...... 146 6.3.5 Daylightharvestingcontrolstrategy...... 146 6.3.6 Lightingmanagementsystemandbuildingmanagementsystem...... 147 6.3.7 Lightingcontrolintegrationlevels...... 148 6.3.8 Lightingcontrolstrategyanalysis...... 152 6.4 Lightingcontrolarchitecture...... 153 6.4.1 Lightingcontrollevels...... 153 6.4.2 Lightingcontrolcomponents...... 157 6.5 Recommendations...... 169 6.6 Illustrations...... 172 6.6.1 Illustration1:NOSSNationalOfficeforSocialSecurity–Belgium...... 172 6.6.2 Illustration2:TheBerlaymontBuilding-alouvresfaçade–Belgium...... 173 6.6.3 Illustration3:Intecomproject-France ...... 176 6.6.4 Illustration3:DAMEXproject-Finland...... 178 6.7 Conclusions...... 180

7 Lifecycleanalysisandlifecyclecosts ...... 185 7.1 Lifecycleanalysis...... 185 7.2 Calculationoflightingenergy...... 187 7.3 Economicevaluationoflighting...... 190 7.4 Examplesoflifecyclecosts...... 195 7.5 Longtermassessmentofcostsassociatedwithlightingandtechniques.. 199

8 Lightingdesignandsurveyonlightingtodayandinthefuture...... 205 8.1 Thoughtsonlightingdesign...... 205 8.2 Atechnologicalapproach...... 208 8.3 TheroleofLEDs...... 209 8.4 Architecturalviewonilluminants...... 210 8.5 Energyefficientlightingculture ...... 211 8.6 Surveyontheopinionsoflightingprofessionalsonlightingtodayandinthefuture . 211 8.6.1 Introduction...... 211 8.6.2 Results...... 212 8.6.3 Summaryanddiscussion...... 225

9 Commissioningoflightingsystems...... 231 9.1 DefinitionofCommissioning...... 231 9.2 DefinitionoftheCommissioningProcess...... 232 9.3 Thecommissioningplan:Atooltostructurethecommissioningprocess...... 235 9.3.1 Standardmodelofcommissioningplans...... 236 9.3.2 Checklist ...... 236 9.3.3 Matrixforqualitycontrol...... 237 9.4 Howtoexecutethecommissioningplan ...... 237 9.4.1 Functionalperformancetesting(FTP)...... 237 9.4.2 Usingthebuildingcontrolsystemforcommissioning ...... 238 9.4.3 Usingmodelsatthecomponentlevel...... 239 9.5 Applyingcommissioningprocesstothelightingcontrolsystem ...... 240 9.5.1 Objectivesoflightingsystems...... 240

9 CONTENTS

9.5.2 Criteriaforlightingsystemsquality ...... 240 9.5.3 Indicatorstoevaluatetheperformanceoflightingsystem ...... 240 9.6 ExampleofaCommissioningPlanappliedtothelightingsystem...... 242

10 Casestudies...... 247 10.1 Introductionandmainresults...... 247 10.2 Casestudy1:Optimizingofdaylightingandartificiallightinginoffices...... 248 10.3 CaseStudy2:OfficesofaFinnishresearchunit ...... 250 10.4 CaseStudy3:RenovationofaGermanbank ...... 260 10.5 Casestudy4:Highlightingqualitytargetswithminimumelectricpowerdensity..... 265 10.6 CaseStudy5:Renovationofaculturalcentre...... 271 10.7 Casestudy6:StureLibraryinStockholmfullylitbyLEDlighting ...... 272 10.8 Casestudy7:TownhallinStockholm ...... 273 10.9 Casestudy8:TurningTorso...... 274 10.10 Casestudy9:ComparisonofLEDandfluorescentlightinginameetingroom ...... 275 10.11 Casestudy10:FactoryinNetherlands...... 279 10.12 Casestudy11:FactoryinItaly...... 282 10.13 Casestudy12:School-lightingrefurbishment...... 285 10.14 Casestudy13:School-brightclassroom...... 289 10.15 Casestudy14:Primaryschool-brightclassroom...... 292 10.16 Casestudy15:PrimaryschoolBeveren-Leie-lightingrefurbishment...... 294 10.17 Casestudy16:HighschoolofStEligius-lightingrefurbishment...... 296 10.18 Casestudy17:PrimarySchoolinRoma(1)...... 298 10.19 Casestudy18:PrimarySchoolinRoma(2)...... 301 10.20 CaseStudy19:EnergysavingpotentialintheUniversity...... 304 10.21 CaseStudy20:Renovationofanauditorium ...... 307 10.22 CaseStudy21:Replacementofmetalhalidelampbyinductionlamp...... 309 10-23Appendix1.Datalistforcasestudies...... 312

11 Technicalpotentialforenergyefficientlightingandsavings ...... 315 11.1 Lightconsumptionin2005 ...... 315 11.2 Estimatedelectriclightconsumptionin2015/2030...... 318 11.3 Estimatedelectricenergyconsumptionforlightingin2005/2015/2030...... 320 11.4 Conclusions...... 322

12 Proposalstoupgradelightingstandardsandrecommendations ...... 327 12.1 Adifficulttrade-offbetweenenergyconservationandsatisfactionofhumanneeds.. 327 12.2 Theoriginsoflightingstandardsandrecommendations ...... 327 12.3 Challengesfornewlightingstandardsandrecommendations...... 328

13 Summaryandconclusions...... 333

14 Participantsandcorrespondingmembers...... 339

15 Glossary ...... 341

16 Abbreviations ...... 345

Appendix...... A1-C1

10 1INTRODUCTION

Chapter1:Introduction Topicscovered 1 Introduction...... 13 1.1 HowtousetheGuidebook...... 13 1.2 AbouttheAnnex45 ...... 13 1.2.1 Background...... 13 1.2.2 Objectivesandscope...... 14 1.2.3 StructureofAnnex45...... 14 References...... 16

11 1INTRODUCTION

12 1INTRODUCTION

1 Introduction

1.1 HowtousetheGuidebook

ThisGuidebookistheachievementoftheworkdoneintheIEAECBCSAnnex45 Energyefficient ElectricLightingforBuildings .TheSummaryoftheGuidebookisavailableasaprintedcopy.The wholeGuidebookisavailableontheinternet(http://lightinglab.fi/IEAAnnex45,andhttp://www.ec bcs.org). Additional information in the whole Guidebook includes Annex 45 newsletters, a brochure,andappendices. This Guidebook is intended to be useful for lighting designers and consultants, professionals involvedinbuildingoperationandmaintenance,systemintegratorsinbuildings,endusers/owners, andallothersinterestedinenergyefficientlighting.

1.2 AbouttheAnnex45

1.2.1 Background Lightingisalargeandrapidlygrowingsourceofenergydemandandgreenhousegasemissions.In 2005grid-basedelectricityconsumptionforlightingwas2650TWhworldwide,whichwasabout 19%ofthetotalglobalelectricityconsumption.Furthermore,eachyear55billionlitresofgasoline anddieselareusedtooperatevehiclelights.Morethanone-quarterofthepopulationoftheworld usesliquidfuel(keroseneoil)toprovidelighting(IEA2006).Globalelectricityconsumptionfor lightingisdistributedapproximately28%totheresidentialsector,48%totheservicesector,16%to theindustrialsector,and8%tostreetandotherlighting.Intheindustrializedcountries,national electricity consumption for lighting ranges from 5% to 15%, on the other hand, in developing countriesthevaluecanbeashighas86%ofthetotalelectricityuse(Mills2002). Moreefficientuseoftheenergyusedforlightingwouldlimittherateofincreaseofelectricpower consumption, reduce the economic and social costs resulting from the construction of new generating capacity, and reduce the emissions of greenhouse gases and other pollutants into the environment.Atthemomentfluorescentlampsdominateinofficelighting.Indomesticlightingthe dominantlightsourceisstilltheinefficientincandescentlamp,whichismorethanacenturyold.At themoment,importantfactorsconcerninglightingare energy efficiency, daylight use, individual controloflight,qualityoflight,emissionsduringthelife-cycle,andtotalcosts. Efficient lighting has been found in several studies to be a cost effective way to reduce CO 2 emissions.TheIntergovernmentalPanelonClimateChangefornon-residentialbuildingsconcluded thatenergyefficientlightingisoneofthemeasurescoveringthelargestpotentialandalsoproviding the cheapest mitigation options. Among the measures that have potential for CO 2 reduction in buildings,energyefficientlightingcomes firstlargest in developing countries, second largest in countrieswiththeireconomiesintransition,andthirdlargestintheindustrializedcountries(Ürge- Vorsatz,Novikova&Levine2008). The report by McKinsey (McKinsey 2008) shows the cost-effectiveness of lighting systems in reducingCO 2emissions;seeFigure1-1.Theglobal"carbonabatementcostcurve"providesamap oftheworld'sabatementopportunitiesrankedfromtheleast-costtothehighest-costoptions.This costcurveshowsthestepsthatcanbetakenwithtechnologiesthateitherareavailabletodayorlook verylikelytobecomeavailableinthenearfuture.Thewidthofthebarsindicatestheamountof CO 2emissionsthatwecouldabatewhiletheheightshowsthecostpertonabated.Thelowest-cost

13 1INTRODUCTION opportunitiesappearontheleftofthegraph.

Figure1-1. CostsofdifferentCO 2abatementopportunities.(McKinsey2008)

1.2.2 Objectivesandscope ThegoalofAnnex45wastoidentifyandtoacceleratethewidespreaduseofappropriateenergy efficient high-quality lighting technologies and their integration with other building systems, makingthemthepreferredchoiceoflightingdesigners,ownersandusers. The aim was to assess and document the technical performance of the existing promising, but largely underutilized, innovative lighting technologies, as well as future lighting technologies. These novel lighting system concepts have to meet the functional, aesthetic, and comfort requirementsofbuildingoccupants. Thisguidebookmostlyconcernsthelightingofofficesandschools.

1.2.3 StructureofAnnex45 TheworkofAnnex45wasconductedduring2005-2009.TheworkofAnnex45wasdividedinto fourSubtasks. ― SubtaskATargetsforEnergyPerformanceandHumanWell-being ― SubtaskBInnovativeTechnicalSolutions ― SubtaskCEnergyefficientControlsandIntegration ― SubtaskDDocumentationanddissemination SubtaskA:TargetsforEnergyPerformanceandHumanWell-Being Theobjectivesofthissubtaskweretosettargetsforenergyuse,lightingqualityandhumanwell- being.Anotheraimwastoproposeanupgradeoflightingrecommendationsandcodestoimprove theenergyperformanceofindoorlightinginstallations.Theperformancecriteriaincludethequality of light (spectrum, colour rendering and colour temperature) and user acceptance. The energy criteria include the energy efficiency of lighting, life-cycle energy considerations, and the maintenanceandcontroloflight.Theeconomiccriteriaincludetheinitialcostsandoperatingcosts.

14 1INTRODUCTION

SubtaskB:InnovativeTechnicalSolutions TheobjectiveofthisSubtaskwastoidentify,assess and document the performance, energy and economicalcriteriaoftheexistingpromisingandinnovativefuturelightingtechnologiesandtheir impact on other building equipment and systems. The purpose was to reduce the energy use of buildingsbyinvestigating thesavingpotentialbycomparingtheexistingandfuturetechnologies andbyprovidinginformationonconcepts,productsandlightingsolutions.Thetechnicalsolutions coverconnectiondevices(ballast,controlgear,currentsources,etc.),lightsources,luminaries,and controltechniques. SubtaskC:Energy-EfficientControlsandIntegration SubtaskCfocusedontheoptimaluseofcontrolsthatenableenergysavingstobemadewhilstthe user (occupant, facility manager, operation and maintenance team) has the chance to adjust the electric lighting according to their personal needs and preferences, within acceptable building operationrequirements. SubtaskD:DocumentationandDissemination TheobjectiveofSubtaskDwastocompileandwidelydisseminatetheresultsofSubtasksA,Band Candtoidentifywaystoinfluenceenergypoliciesandregulationsinordertopromotetheuseof energy efficient lighting. The aim of Subtask D was to improve current lighting practices in a mannerthatacceleratestheuseofenergyefficientproducts,improvesoverallbuildingperformance andenhancestheoccupants’environmentalsatisfaction. Simulation SubtaskB InnovativeTechnicalSolutions B1 Identifyingknowledgeablepeopleintheindustryand SubtaskA collectinginformation B2 Performancecriteriaoflightingtechnologies TargetsforEnergy B3 Trendsinexistingandfuturelightingtechnologies B4 Comparisonofinstallations Performanceand B5 Proofingoftechnologyinformation(casestudies) HumanWell-being A1Lightingqualitycriteriawith energyrequirements A2 Reviewofrecommendations SubtaskC worldwide A3 Reviewofenergycodesworldwide Energy-efficientControlsand A4 Proposalstoupgrade recommendationsandcodes Integration A5 Coordinateresearchprograms C1 Definitionofrequirementsandconstraintslinkedtothe

Information onlightingqualitywithinnovative differentplayers C2 Stateofartoflightingcontrolsystems

lightingsolutions CaseStudies A6 Supplyofdeliverables C3 Casestudiesonexistingandinnovativelightingcontrol strategies C4 Impactofthewholeenvironmentconceptonlightingcontrol ChangetoPractice C5 Commissioningprocessforlighting/lightingcontrolsystems SubtaskD DocumentationandDissemination Measurements Figure1-2. StructureofAnnex45.

15 1INTRODUCTION

References IEA,2006InternationalEnergyAgency.Light’sLabour’sLost.IEAPublications,France.360p. McKinsey, 2008. The carbon productivity challenge: Curbing climate change and sustaining economic growth. McKinseyglobalinstitute.http://www.mckinsey.com/mgi/publications/Carbon_Productivity/index.asp.(Accessedon4 July2008) MillsE.,2002.Whywe’rehere:The$320-billiongloballightingenergybill.RightLight5,Nice,France.pp.369-385. Ürge-Vorsatz, Novikova & Levine, 2008. Non-residential buildings for mitigating climate change: Summary of the findingsoftheIntergovernmentalPanelonClimateChange.ImprovingEnergyEfficiciencyinCommercialBuildings Conference.Frankfurt2008.

16 2LIGHTINGENERGYINBUILDINGS

Chapter2:Lightingenergyinbuildings Topicscovered 2 Lightingenergyinbuildings...... 19 2.1 Holisticviewofenergyuseinbuildings...... 19 Introduction...... 19 Holisticview–WholeBuildingDesign ...... 19 Designissues...... 20 PlanningandProductionprocess...... 20 Environmentalimpact...... 20 Lifecycleanalysis(LCA)andLifecyclecosts(LCC)...... 20 Energyrequirements ...... 21 2.2 Factsandfiguresonlightingenergyusage...... 22 2.2.1 Background...... 22 2.2.2 WorldwideEnergyandLightingScenario ...... 22 Worldwideenergyconsumption...... 22 Energyconsumptioninbuildings ...... 23 Worldwideelectricityconsumption...... 24 Electricityconsumptionforlighting ...... 24 Fuel-basedlightingandvehiclelighting...... 24 Consumptionoflight ...... 25 2.2.3 Impactsoflightingenergyconsumptionontheenvironment ...... 26

PrimaryenergyandCO 2emissions ...... 26 2.2.4 Lightingenergyusageinbuildings...... 28 Overview...... 28 Residentialbuildings...... 28 CommercialBuildings ...... 32 IndustrialBuildings...... 34 2.2.5 Evaluationoflightingenergyuseforbuildings...... 36 Codesandcriteriaforevaluatingenergyuseforbuildings ...... 36 LightingimpactsonHVACsystems ...... 37 Lightingimpactsonpeakelectricityloads ...... 38 References...... 38

17 2LIGHTINGENERGYINBUILDINGS

18 2LIGHTINGENERGYINBUILDINGS

2 Lightingenergyinbuildings

2.1 Holisticviewofenergyuseinbuildings

Introduction Whyarewedesigningandconstructingbuildings? − toshieldourselvesandvariousprocessesfromweatherandclimaticconditions − tocreateagoodindoorenvironment − touseresourcesasefficientlyaspossibleduringtheconstructionphase − tomakebuildingseconomicalfortheuserandowner Humanneedsaswellasenergyandenvironmentalissuesareessentialinthebuildingprocess.The InternationalEnergyAgency(IEA)hasclearlyshownin“Light’sLabour’sLost”(IEA,2006)that energyinbuildingscoversalargepartoftheenergyconsumptionintheworldandhasthereforea significantimpactontheenvironment.Amoreholisticviewwithfocusinsustainabilitycouldhelp ustoprotecttheenvironment. Holisticview–WholeBuildingDesign The introduction above shows clearly that it isnot possible to make adecision in one question withoutconsideringtheothers.Aholisticviewtakesintoaccountallenergyflowsinthebuilding over time in order to reach a sustainable approach (Diemer, 2008). In order to build high performancebuildings(WBDG,2008)wehavetoconsiderallthedifferentdesignprocessesand aspectsofbuildings(seefigure2-1)andallthewayshowbuildingsareusedbyownersandusers.

Figure2-1. GlobalobjectivesforHighPerformanceBuildings.(WBDG,2008) Considering the façade as an energy filter should be the starting point of the building design process.Afaçadesystem,dynamicforthedifferentseasonsofaspecificcountry,haspossibilities foranoverallenergyreductionforheating,coolingandlighting.Preventingsolarheatradiation fromenteringthebuilding,whennotneeded,isagoodstarttokeeptheuseofcoolingsystemlow.

19 2LIGHTINGENERGYINBUILDINGS

Usefuldaylightcouldbeusedinadditiontoelectriclightingtofulfillightingforvisualtasksandto saveenergy. Thesustainabilityofthehighperformancebuildingsshouldbeachievedbyusingaslittleenergy resourcesaspossibleduringthebuildingprocessaswellasduringthelifecycleofthebuilding. Materials should be recycled as much as possible. The means and ways for reducing energy consumptionshouldbeachievedinaneconomicalwayforthebuildingowneranduserinorderto motivatethemtoreduceenergyconsumption(SEA2007,STIL2007). Designissues Thefollowingissuesinthebuildingdesignphaseshouldbetakenintoaccount: − tocarryoutdetailedanalysisofsolarshading,daylightlinking,lightingandvisual comfortneeds − todeterminehowthefaçadeshouldbedesigned(e.g.thermalinsulation,airtightness etc.) − tostudythedesignandoperationoftheventilationsystem − tostudyhowmuchtheinternalheatgainsfromofficeequipment,lightingetc.canbe minimizedandwhetherthisisenoughtoavoidinstallingmechanicalcooling − tocarryoutenergyandindoorclimatesimulations, where secondary and primary energyconsumptionaredetermined − tocalculatelifecyclecosts PlanningandProductionprocess Theplanningandproductionprocessisshortincomparisontothelifetimeofthebuilding.Inthe decision process, lifetime of the building has to be considered together with the knowledge of buildingphysics. Environmentalimpact Inadditiontomovingthefocusfrominvestmentissuestolifecycleanalysisandcalculations,itis necessarytoconsiderasustainableprocess.Thismeansthatenvironmentalissueshavetobetaken intoaccountatanearlystage,suchas : − Energyuseandpeakload − Materialsusedinluminaires,lightsources,chemicals(forexamplemercury) − Productionoflightingequipmentandtransportations − Lightpollution − Lighttrespass(unwantedlightthroughneighbouringwindows) − Noise Lifecycleanalysis(LCA)andLifecyclecosts(LCC) Initialinvestmentinbuildingscoversonlylessthan20%ofthelongtermcosts.Themainlongterm costs are related to operation and maintenance of the buildings. Energy consumption in the buildingscontributesalargepartoftheoperationcost.AnexampleisgiveninFigure2-2,where the use of energy, carbon dioxide (CO 2) emissions, solid wastes, and water use are studied in procurement,construction,operationanddemolitionphasesofthebuilding(Janssen1999).Wecan seethatthelargestimpactiscausedbytheenergyuseduringtheOperation&Maintenancephase ofthebuilding.ThisstudywascommissionedbyMultiplexConstructionsandcarriedoutwiththeir assistancebytheNewSouthWalesDepartmentofPublicWorksandServicesandERMMitchell McCotter(DPWSNSW,1998).

20 2LIGHTINGENERGYINBUILDINGS

6000

2250

680 90 80 5 50 160 Wateruse(ktonnes) 140 1370 385 10 470 Solidwaste(ktonnes) 150 5 CO2(ktonnes) 80 Procurement Energy(TJ) Construction& Reconfiguration Operation& maintenance Demolition Figure2-2. StadiumAustraliaLCAresults. (Janssen,1999) Energyrequirements Lightingconsumesabout19%ofthetotalgeneratedelectricity(IEA2006).Itaccountsfor30%to 40% of the total energy consumption in office buildings. The annual lighting electricity consumptionpersquaremeterofthebuildingvariesbetween20to50kWh/m 2,a(SEA2007,STIL 2007). Thereisatrendintheinternationalcommunityto reducetheelectricity consumptionoflighting withnewtechnologytobelow10kWh/m 2peryear.Thepossiblewaystoreducelightingenergy consumptioninclude:minimumpossiblepowerdensity,useoflightsourceswithhighluminous efficacy,useoflightingcontrolsystemsandutilizationofdaylight. The quality of light must be maintained when installed power for lighting is reduced. In this Guidebook different design concepts and new products, illustrated with case studies, show how lightingenergyconsumptioncanbereduced. Inthebuildingsector,thepotentialforenergysavingsandimprovementsinindoorenvironmentis oftenhigh.Newbuildingsmayhavelowenergyconsumptionforheating,butontheotherhand have higher electricity consumption than older ones. This is due to increased electricity use for ventilation,cooling,lightingandofficeequipment(Blomsterbergetal,2007). Daylightandsolarradiationhaveagreatinfluenceontheenergyflowsinthebuilding.Therefore thefaçade,andespeciallytheglassedareaofthefaçadecouldbeseenasanenergyfilter.Awayto reduce the energy flow through the façade is to use shades to block the solar radiation, utilize daylighttoreducetheneedofartificiallightingandthereforereducetheneedofenergyforcooling (Poirazis2008,LEED2009).Butatthesametime,theindoorenvironmenthastobemaintainedto preventdiscomfortfortheusers.

21 2LIGHTINGENERGYINBUILDINGS

Energyconsumptionofbuildingscoversabout40%ofthetotalenergyconsumptioninEurope.In severalEuropeancountries,thereareinitiativesforreducingenergyconsumption.Theseinitiatives havetimetablesforimplementationwithaimtoreducetheenergyrelatedCO 2emissionsby20%by 2020.

2.2 Factsandfiguresonlightingenergyusage

2.2.1 Background Energyisanessentialcommodityinourlivesandtheuseofenergyisincreasingwithindustrial development. Energy security and the environmental impacts of energy use are major concerns worldwide. Theacceleratingincreaseofgreenhousegasesintheatmospherehascausedtheworldtowarmby morethanhalfadegreeCelsiusinthelastcentury.Itisexpectedthattherewillbeatleastafurther warmingofhalfadegreeoverthenextfewdecades(Stern2006).Useofenergyisthemainfactor intheclimatechange,contributingamajorportionofthegreenhousegasemissions(IPCC2007). Industrializednationsarecurrentlythesourcesofmostofthegreenhousegasemissionsbutthis maychangeinthefutureasthedevelopingcountriespursueindustrialization.TheUnitedStatesand Europe together consume almost 40% while producing only 23% of the total energy use of the world.Europedependsonimportsforabouthalfofitstotalenergyneeds.Withthecurrenttrendof energyconsumption,theEUexpects65%ofitsenergyneedstobefulfilledbyimport,whichposes criticalchallengeontheenergysecurity(Belkin2007). Energy efficiency is one of the most effective means to solve these problems. It can both save energy and reduce greenhouse gas emissions. The EU hasbeentheleaderinthefieldofenergy efficiencyandistakingnewmeasurestopromoteit.Thesemeasuresincludeminimumefficiency requirementsforenergyusingequipment,strongeractionsonenergyuseinbuildings,transportand energygeneration.TheEUhascommittedtoitsnewenergypolicytoimproveenergyefficiencyby 20%by2020(COM2007).

2.2.2 WorldwideEnergyandLightingScenario Worldwideenergyconsumption Global energy consumption is rising continually every year. Total global primary energy consumptionin2006was472quadrillion(10 15) British Thermal Units (BTU) (1 BTU = 1055.1 joules),whichisequivalentto138330TWh(EIA2006).

Worldprimaryenergysupply,2006 Regionalenergyconsumptionshares,2006

22.80% 30% 35.90% 33%

3% 27.40% 5.90% 5% 19% 1.00% 10% 6.30% Petrolium Nuclearpower Nonhydrorenewables Americancontinent Europe Eurasia Hydroelectricpower Coal Naturalgas MiddleEast Africa AsiaandOceania Figure2-3. Worldprimaryenergysupplyandregionalconsumptionsharesin2006(EIA2006).

22 2LIGHTINGENERGYINBUILDINGS

Theincreaseintheglobalenergyconsumptionbetween1996and2006continuedatanaverage annualrateof2.3%.In2006thethreemostimportant energy sources were petroleum, coal and natural gas, accounting for 35.9%, 27.4%, and 22.8%, respectively, of total primary energy production(Figure2-3). Energyconsumptioninbuildings Buildings,includingresidential,commercial,andinstitutionalbuildingsaccountformorethanone thirdofprimaryglobalenergydemand.Thebuildingsectoristhebiggestenergyconsumeramong thethreeenergy-usingsectors:transportation,industryandbuildings.Globalenergydemandinthe buildingsectorhasbeenincreasingatanaveragerateof3.5%per year since1970(DOE2006). Urbanbuildingsusuallyhavehigherlevelsofenergyconsumptionperunitofareathanbuildingsin rural areas. According to a projection by the United Nations, the percentage of the world’s populationlivinginurbanareaswillincreasefrom49%(in2005)to61%by2030(UN2005).Thus thegrowthofenergyconsumptioninbuildingisexpectedtocontinueinthelongtermasaresultof populationgrowth,andalsoasaresultofurbanization. Energy is consumed in buildings for various end use purposes: space heating, water heating, ventilation, lighting, cooling, cooking, and other appliances. Lighting is the leading energy consumer(25%)inUScommercialbuildingsaheadofspacecooling(13%)whilelightingenergy consumption is less than that of space heating, space cooling and water heating in residential buildings (Figure 2-4). Heating (space and water) is the leading energy consumer in the EU domesticandcommercialbuildingsectorsfollowedbylighting(Figure2-5).Othermainconsumers arecooking,coolingandotherappliances.

Commercialsector Residentialsector lighting25% lighting12% spacecooling13% spacecooling13% spaceheating12% spaceheating26% electronics7% electronics8% ventilation7% waterheating13% waterheating6% refrigeration7% refrigeration4% cooking5% computers4% wetclean6% cooking2% computers1% others22% others9% Figure2-4. EnergyconsumptionbyenduseinUScommercialandresidentialbuildings(DOE2009).

Commercialsector Domesticsector

spaceheating52%

w aterheating9% spaceheating57%

lighting14% w aterheating25%

cooking5% lighting+appliances 11% cooling4% cooking7% other16%

Figure2-5.EnergyconsumptionbyenduseinEUdomesticandcommercialbuildings(EC2007).

23 2LIGHTINGENERGYINBUILDINGS

Worldwideelectricityconsumption The global consumption of electricity has been increasing faster than the overall energy consumption because of the versatile nature of the production of electricity, as well as its consumption(EIA2006).Worldwideelectricityconsumptionin2006was16378TWh,whichwas 11.8%ofthetotalprimaryenergyconsumption(EIA 2006).Becauseoflossesinthegeneration process,theamountofinputenergyforelectricitygenerationismuchhigherthantheamountof electricityatitspointofuse.Worldwideelectricity generationuses40%oftheworld’sprimary energysupply(Hore-Lacy2003).AccordingtotheInternationalEnergyOutlook2009(EIA2009), the world’s total net electricity generation in 2030isexpectedtobeincreasedby77%fromthe 2006 level. The growth of the primary energy consumption for the same period will be 44%, expandingfrom472quadrillionBTUin2006to678quadrillionBTUin2030. Electricityconsumptionforlighting Lightingwasthefirstserviceofferedbyelectricutilitiesanditcontinuestobeamajorsourceof electricityconsumption(IEA2006).

PrimaryEnergy Electricity

19%

12%

88% 81%

Figure2-6.Globallightingenergyuse(EIA2006,IEA2006). Globally,almostonefifthofthetotalamountofelectricitygeneratedisconsumedbythelighting sector.Thetotalelectricityconsumptionoflightingismorethantheglobalelectricityproducedby hydroornuclearpowerplants,andalmostthesameasthe electricity producedwithnatural gas. Morethan50%oftheelectricityusedbylightingisconsumedinIEAmembercountries,butthisis expectedtochangeinthecomingyearsbecauseoftheincreasinggrowthrateoflightingelectricity useinnon-IEAcountries. Almosthalfofthegloballightingelectricity(48%)isconsumedbytheservicesector.Therestis distributed between the residential sector (28%), industrial sector (16%), and street and other lighting (8%). The share of electricity consumption of lighting of total electricity consumption variesfrom5%to15%intheindustrializedcountries,whereastheshareisupto86%(Tanzania)in developingcountries(Mills2002). Fuel-basedlightingandvehiclelighting Despitethedominanceofelectriclighting,asignificantamountofenergyisalsousedinvehicle lightingandoff-gridfuel-basedlighting.Morethanonequarteroftheworld’spopulationisstill without access to electricity networks and uses fuel-based lighting to fulfill their lighting needs (Mills2002).IEA(IEA2006)estimatesthattheamountofenergyconsumedannuallyinfuel-based

24 2LIGHTINGENERGYINBUILDINGS lighting is equivalent to 65.6 million tons of oil equivalent (Mtoe) of final energy usage. The estimated amount of global primary energy used for lighting is 650 Mtoe. The fuel-based light sourcesincludecandles,oillamps,ordinarykerosenelamps,pressurizedkerosenelamps,biogas lamps, propane lamps, and resin-soaked twigs as used in remote Nepali villages (Bhusal et al. 2007). Indevelopingcountries,themostwidelyused fuel-based lighting is ordinary wick-based kerosene lamps. For example, nearly 80 million people in India alone light their houses using keroseneastheprimaryfuelforlighting(Shailesh2006). Anestimated750millionlight-dutyvehicles(cars,lighttrucks,andminivans),50milliontrucks, 14millionbusesandminibuses,and230milliontwo-threewheelerswereusedin2005worldwide. Theyconsumefueltoprovideilluminationfordrivingandsecurityneeds.Althoughtheamountof fuelusedforlightingaccountsasmallportion(3.2%)ofallroadvehicleenergyusage,55billions litresofpetroleum,amountingto47.1Mtoeoffinalenergy,wasusedtooperatevehiclelightsin 2002.Thepowerdemandforlightinginthevehicleisincreasingtoimprovethedrivingsafetyand comfort. Also, an increasing number of countries are introducing policy measures to promote greateruseofdaytimevehiclelightingthroughregulationorincentives.Thiswillfurtherincrease theamountofglobalenergyuseofvehiclelighting(IEA2006). Consumptionoflight Theamountofconsumptionoflightintheworldhasconstantlybeenincreasingwiththeincreasein thepercapitalightconsumptionandtheincreaseinthepopulation.AccordingtoIEAestimation (IEA2006),theamountofglobalconsumptionoflightin2005was134.7petalumen-hours(Plmh). The electric lighting accounted for 99% of the total light consumption while vehicle lighting accountedfor0.9%,andfuelbasedlightingaccountedforonly0.1%.Theaverageannualpercapita lightconsumptionofpeoplewithaccesstoelectricityis27.6Mlmh,whereasthepeoplewithout access to electricity use only 50 kilolumen-hours (klmh) per person per annum. Thus the light consumptionofpeoplewithaccesstoelectricityismorethan500timesmorecomparedtopeople withoutaccesstoelectricity.Evenwithintheelectrifiedplaces,thereexistlargevariationsinthe consumptionoflight.Thevariationinlightconsumptionamongthedifferentregionsoftheworldis showninFigure2-7. Despitetheinequalityintheconsumptionoflightindifferentpartsoftheworld,therehadbeen remarkable increase in the amount of light used all over the world in past century. The annual growthof artificiallightingdemandin IEA countrieswas1.8%inlast decade,whichwaslower thanduringthepreviousdecades.Thismightbean indicationofthestartofdemandsaturation. However,thegrowthoflightingdemandinthedevelopingcountriesisincreasingduetotherising averageilluminancelevelsinthosecountriesandalsoduetonewconstructionofbuildings. Theconsumptionoflightindevelopingcountriesisexpectedtoincreasemoreinthefuturedueto increasingelectrificationrateintheregionswithnoaccesstoelectricityatthemoment.

25 2LIGHTINGENERGYINBUILDINGS

120

101 100

80 72 62 60

42 40 32

20 10 8

0 North Europe Japan/ Australia/New China Former RestofWorld America Korea Zealand SovietUnion Figure2-7.Estimatedpercapitaconsumptionofelectriclightin2005(IEA2006).

2.2.3 Impactsoflightingenergyconsumptionontheenvironment The environmental impacts of lighting are caused by the energy consumption of lighting, the materialusedtoproducelightingequipment,andthedisposalofusedequipment.Emissionsduring theproductionofelectricityandalsoasaresultoftheburningoffuelinvehiclelightingandinfuel- basedlightingareresponsibleformostofthelighting-relatedgreenhousegasemissions.Hazardous materials (e.g. lead, mercury, etc.) used in the lamps and ballasts, if not disposed properly, can causeharmfulimpactsontheenvironment.Lightingalsoaffectstheenvironmentduetowastefully escapedlightintothenightsky(lightpollution). The environmental impacts of electric lighting depend on the electricity generation method. Thermalpowergenerationsystemhasthehighestimpactontheenvironmentduetocombustion fuel,gasemissions,solidwasteproduction, waterconsumption,andthermalpollution.Electricity generatedfromrenewableenergysourceshasthelowesteffectontheenvironment.Lightingisone of the biggest causes of energy-related greenhouse gas emissions. The total lighting-related CO 2 emissionswereestimatedtobe1900milliontons(Mt)in2005,which wasabout7%ofthetotal global CO 2 emissions from the consumption and flaring of fossil fuels (EIA 2007, IEA 2006). Energyefficientlightingreducesthelightingenergyconsumptionandisthusameanstoreduce CO 2 emissions. Fuel based lighting used in developing countries is not only inefficient and expensive,butalsoresultsinthereleaseof244milliontonsofCO 2totheatmosphereeveryyear, which is 58% of the CO 2 emissions from residential electric lighting globally (Mills 2002). Replacing fuel based lighting with energy efficient electric lighting (based e.g. on LEDs) will providemeanstoreducegreenhousegasemissionsassociatedwithlightingenergy consumption. PrimaryenergyandCO 2emissions Primary energy is the energy that has not been subjected to any conversion or transformation process.Primaryenergyistransformedinenergyconversionprocessestomoreconvenientformsof energy,suchaselectricity.Electricitycanbetransformedfromcoal,oil,naturalgas,wind,etc.The totalprimaryenergyfactorisdefinedasthenon-renewableandrenewableprimaryenergydivided bythedeliveredenergy.Heretheprimaryenergyistheamountofenergythatisrequiredtosupply oneunitofdeliveredenergy,takingintoaccountthe energy required for extraction, processing, storage,transport,generation,transformation,transmission,distribution,andanyotheroperations necessarytodelivertheenergytotheplacewhereitisused.Thetotalprimaryenergyfactorfor electricityis2.5inEurope.Thisvaluereflectsanefficiencyof40%,whichistheaverageefficiency

26 2LIGHTINGENERGYINBUILDINGS ofelectricityproduction(Eurostat2009). TheCO 2intensityinpowergenerationindifferentEuropeancountriesisshowninFigure2-8.The carbon footprint calculator takes CO 2 emission factor for electricity to be 527 g/kWh in the calculations(Carbonindependent2009).

1000 900 800 700 600 500 400 300 200 100 0 ITA FIN LVA BEL AUT SVK LTU FRA ESP POL CYP CZE PRT NLD DNK DEU GBR CHE HUN SWE NOR Figure2-8.CO2intensity,gCO 2/kWh,inelectricitygenerationinEuropeancountriesfor2001.(StatisticsFinland 2003) Figure2-9presentsthecomparisonofCO 2emissionsduringlifetimeofanincandescentlamp,CFL andafuture LEDlightsource.A75Wincandescentlampwithluminousefficacyof12lm/W,a 15WCFLwithluminousefficacyof60lm/Wanda6WLEDlightsourcewithluminousefficacy of150lm/Wwerecomparedtoprovidethesamelightoutput.ThelifetimeoffutureLEDlight sourceisassumedtobe25000h.Thecalculationwasdonefor25000lampburninghours.During this period one LED, 3 CFLs and 21 incandescent lamps were needed. Most of the energy consumptionandCO 2emissionswerecausedintheoperatingphaseofthelamps.CO 2emissionsof theelectricityproductionwereconsideredtobe527g/kWh.TheCO 2emissionsduringproduction ofthelampsarealsoconsideredinthecalculation.

1200

1000

800

600

400 CO2emission(kg) 200

0 Incandesent75 CFL15W FutureLED6W W Figure2-9.ComparisonofCO 2emissionsduringlifecycle(calculatedfor25000hoursoftime)ofanincandescent lamp(12lm/W),CFL(60lm/W)andfutureLEDlightsource(150lm/W).

27 2LIGHTINGENERGYINBUILDINGS

2.2.4 Lightingenergyusageinbuildings Overview Lightingaccountsforasignificantpartofelectricityconsumptioninbuildings.Forexample,inthe US,morethan10%ofallenergyisusedforlightinginbuildings(Loftness2004).Theamountof electricity used for lighting in buildings differs according to the type of buildings. In some buildings,lightingisthelargestsinglecategoryofelectricityconsumption;officebuildings,onthe average,usethelargestshareoftheirtotalelectricityconsumptioninlighting. European office buildings use 50% of their total electricity consumption for lighting, while the shareofelectricityforlightingis20-30%inhospitals,15%infactories,10-15%inschoolsand10% in residential buildings (EC 2007). Furthermore, the heat produced by lighting represents a significantfractionofthecoolingloadinmanyofficescontributingtothefurtherconsumptionof electricity indirectly. On the other hand, heat produced by lighting can reduce the heating load duringwinterintheareaswithcoldclimate.Intheresidentialbuildings,theshareofelectricityfor lightingovertotalelectricityuseisquitelowcomparedtothecommercialbuildings.However,in thedevelopingcountries,especiallyinelectrifiedruralareas,almostalloftheelectricityconsumed at homes is used for lighting. Residential buildings use the most inefficient lighting technology (incandescentlamps)comparedtothecommercialandindustrialbuildings.Theshareofdifferent lighting technology used in the US building sector for year 2001 is shown in the Figure 2-10 togetherwithannualenergyconsumptionbyeachbuildingsector.

450

400 HighIntensityDischarge

350 Fluorescent GLS 300

250

200

150

100

AnnualEnergyConsumption(TWh/yr) 50

0 Outdoorstationary Industrial Residential Commercial Figure2-10.SharesofUSsectoralelectricityusedbydifferentlightsourcesforlighting(Navigant2002). Residentialbuildings Energyusage Theglobalresidentiallightingelectricityconsumptionin2005wasestimatedbytheIEAtobe811 TWh(IEA2006),whichaccountsforabout31%oftotallightingelectricityconsumptionandabout 18.3%ofresidentialelectricityconsumption.Theestimatedelectricityconsumptioninresidential lighting in IEA member countries was 372 TWh, which accounts for about 14.2% of total residentialelectricityconsumption.Electriclightingisusedinpracticallyallhouseholdsthroughout Europeandrepresentsakeycomponentofpeakelectricitydemandinmanycountries.Accordingto

28 2LIGHTINGENERGYINBUILDINGS theDELight(EnvironmentalChangeUnit1998)study,lightingintheresidentialsectorconsumed 86TWh(17%ofallresidentialelectricityconsumption)peryearintheEU-15in1995.Arecent study carried out by the European Commission’s Institute of Environment and Sustainability reportedtheconsumptionofelectricityforlightingtobe77TWhfortheEU-15,13.6TWhforthe 10newmemberstates,and4.9TWhforthenewest3memberstates(BertoldiandAtanasiu2006). The household energy consumption for lighting varies greatly among EU member states. The lowest consumption is in Germany where the average annual household lighting electricity consumptionis310kWh,whilethehighestannualconsumptionisinMaltawiththevalue1172 kWh per household. In the EU-15 Member states, the lighting consumption as a share of total residentialelectricityconsumptionrangesbetween6%and18%,buttheshareisashighas35%in oneofthenewestmemberstates. TheUSLightingMarketCharacterizationstudy(Navigant2002)calculatedinthesurveyof4832 households that the average US household used 1946 kWh of electricity for lighting in 2001. AccordingtotheIEAassessment(IEA2006),theaverageEuropeanhouseholdused561kWhof electricityforlighting, whichisvery closetotheannuallightingelectricityconsumptionforan averageAustralianhousehold,whichis577kWh.Theannualelectricityconsumptionforlighting byanaverageJapanesehouseholdwas939kWhin2004. Consumption of electricity for residential lighting in Russia, China, and other non OECD (Organisation for Economic Co-operation and Development) countries is lower compared to the OECDcountries.TheaverageelectricityconsumptionforlightinginRussianhouseholdswas394 kWh per household, which provided 2 Mlmh electric light per annum per person in 2000 (IEA 2006).Withtherisingincomeofhouseholds,therehasbeenasubstantialincreaseintheresidential lightingelectricityconsumptioninRussia.TheChineseaverageresidentialpercapitaconsumption oflightin2003was1.4Mlmhwhichaccountedfor181kWhofelectricityperhousehold(IEA 2006). The share of lighting electricity consumption over total electricity consumption of householdswas28%,whichwasquitehighduetothefactthatthemajorityofChinesepopulation livesinruralareasandtheelectricityinruralhousesismainlyusedforlighting. Table2-1.NationalresidentiallightingenergycharacteristicsofEU-28countries(BertoldiandAtanasiu2006). Countries Number of Residential Lighting Lighting Average Households electricity electricity consumption lighting (millions) consumption consumption as share of electricity (TWh/a) (TWh/a) total electricity consumption consumption per household (%) (kWh/a) Austria 3.08 16.00 1.10 6.88 357.14 Belgium 3.90 18.20 2.23 12.23 343.22 Denmark 2.31 9.71 1.36 14.00 589.00 Finland 2.30 12.20 1.70 13.93 739.00 France 22.20 141.06 9.07 6.43 409.00 Greece 3.66 18.89 3.40 18.00 1012.00 Germany 39.10 140.00 11.38 8.13 310.00 Ireland 1.44 7.33 1.32 18.00 1000.00 Italy 22.50 66.67 8.00 12.00 370.00 Luxembourg 0.20 0.75 0.01 13.00 487.50 Netherlands 6.73 23.75 3.80 16.00 524.00

29 2LIGHTINGENERGYINBUILDINGS

Portugal 4.20 11.40 1.60 14.04 427.00 Spain 17.20 56.11 10.10 18.00 684.00 Sweden 3.90 43.50 4.60 10.57 1143.00 United 22.80 111.88 17.90 16.00 785.00 Kingdom Czech 3.83 14.53 1.74 12.00 455.37 Republic Cyprus 0.32 1.32 0.33 25.00 1040.70 Estonia 0.60 1.62 0.45 28.00 753.81 Hungary 3.75 11.10 2.775 25.00 740.48 Latvia 0.97 1.47 0.41 28.00 424.16 Lithuania 1.29 2.07 0.62 30.00 479.72 Malta 0.13 0.60 0.15 25.00 1172.15 Poland 11.95 22.80 6.38 28.00 534.40 Slovakia 1.67 4.82 0.40 8.30 240.05 Slovenia 0.68 3.01 0.43 14.30 628.90 Bulgaria 2.90 8.77 0.90 10.00 420.00 Romania 8.13 8.04 2.91 35.18 356.75 Hungary 1.42 6.07 1.10 18.11 773.76 Inothernon-OECDcountries,theconsumptionofelectriclightinginhouseholdsislowerthanin RussiaandChina.Inmostofthesecountriestheconsumptionoflightingelectricityinruralareasis quitelowcomparedtotheurbanhomes.Overall,theaverageannualconsumptionofelectricityfor residentiallightinginthesenon-OECDcountries(exceptRussiaandChina)isestimatedtobe84 kWh per capita (IEA 2006). The share of lighting electricity consumption of total electricity consumption in homes is very high (up to 86%) in developing countries, compared to OECD countries(Mills2002).Apartfromelectriclighting,therearestill1.6billion(1billion=10 9)people intheworldwhousefuel-basedlightsourcesduetothelackofelectricity.Almostallthepeople without electricity live in the developing countries (IEA 2002). In 2000 roughly 14% of urban householdsand49%ofruralhouseholdsindevelopingcountrieswere withoutelectricity,andin someoftheleastprivilegedpartsofAfrica,e.g.EthiopiaandUganda,only1%ofruralhouseholds wereelectrified(Mills2005). Lightsourcesandlightingcharacteristics Residentiallightingisdominatedbytheuseofincandescentlampsbutcompactfluorescentlamps (CFLs)aretakingtheirsharegraduallyandLEDlampswilldosointhefuture.Thehighpurchase priceofCFLscomparedtoincandescentlampshasbeenamajorbarriertotheirmarketpenetration, eventhoughtheylastmuchlonger,saveenergy,andhaveshortpaybackperiods.Thoughtheprice ofCFLshasdecreasedduetotheincreasedcompetitionandtheyareavailableinmanyvarieties, thereisstilllackofawarenessinthepublicabouttheirbenefits. The majority of the estimated 372 TWh of electricityusedfordomesticlightingin2005inIEA countrieswasusedbyinefficientincandescentlamps.Theaverageof27.5lampsperhouseholdwas sharedby19.9incandescentlamps,5.2LFLs(linearfluorescentlamps),0.8halogenlampsand1.7 CFLs.ThesevaluesareaveragevaluesofIEAcountriesandtherearesignificantdifferencesfrom countrytocountry.ExampleofsomeIEAcountriesinTable2-2showsthattheaveragenumberof lamps per households varies from 10.4 (Greece) to 43 (USA). The average lamp luminous efficiencyislowinthecountriesdominatedbyincandescentlamp(USA)comparedtothecountries wherefluorescentlampsoccupyalargershare(Japan).Someofthepracticesofusingtheparticular

30 2LIGHTINGENERGYINBUILDINGS typeoflamparequitesimilarinEuropean,AmericanandAustralian/NewZealandhouseholds.For example,inallthosecountriestheuseofLFLsismostlyconfinedtothekitchenandbathrooms, whileintherestofthehousethechoiceisdividedamongincandescentlamps,CFLs,andhalogen lamps(IEA2006). Table2-2.EstimatednationalaverageresidentiallightingcharacteristicsforsomeIEAmembercountries(IEA2006). Countries Lighting No.of Average Light Lighting Lamp electricity lampsper lamp consumpti electricity operating (kWh/ household luminous on consumption hoursper household efficacy (Mlmh/m 2, (kWh/m 2,a) day ,a) (lm/W) a) UK 720 20.1 25 0.21 8.6 1.60 Sweden 760 40.4 24 0.16 6.9 1.35 Germany 775 30.3 27 0.22 9.3 1.48 Denmark 426 23.7 32 0.10 3.3 1.59 Greece 381 10.4 26 0.09 3.7 1.30 Italy 375 14.0 27 0.09 4.0 1.03 France 465 18.5 18 0.22 5.7 0.97 USA 1946 43.0 18 0.27 15.1 1.92 Japan 939 17.0 49 0.49 10.0 3.38 Table2-3.UnitedStatesResidentiallightingcharacteristicsfordifferentlamptypesin2001(Navigant2002). Lamptype Lighting Percentage Average Percentageof Percentage electricity ofinstalled operating household oflumen consumption lamps hoursper electricity outputby (TWh/year) day consumption sourcetype GLS 187.6 86% 1.9 90% 69% Fluorescent 19.9 14% 2.2 10% 30% HID(High Intensity 0.7 0% 2.8 0.3% 1% Discharge) Total 208.2 100% 2.0 100% 100% Incandescentlampsconstituted86%of4.6billionlampsusedintheUSresidentialbuildingsin 2001 (Navigant 2002). Although the incandescent lamps were responsible for 90% of the total lighting electricity consumption, their share of the total available lumen output was only 69% (Table2-3)duetotheirpoorluminousefficacy.HouseholdsinAustraliaandNewZealandhavea similar trend of the dominance of incandescent lamps. In Japan, the dominating light source in residentialsectoristhefluorescentlampwith65%share(LFSs57%andCFLs8%);therestis distributedbetweenincandescentlamps22%,halogenlamps2%,andotherlamps11%(IEA2006). ThoughmostofthelampsusedintheJapanesehouseholdsarefluorescentlampsandtheiraverage luminousefficacyisquitehigh,theJapaneseresidentialelectricityconsumptionishighcomparedto thoseoftheEuropeanandAustralian/NewZealandhouseholds.ThisisduetothefactthatJapanese households have high average illuminance levels and relatively long average operating times of lamps(Table2-2). InRussia,ontheotherhand,theincandescentlampsdominateintheresidentialsector,where98% of total installed lamps are incandescent lamps. This is not very common for other non-OECD countries,wheretheshareoffluorescentlampsoverotherlamptypesisrelativelyhigher.Theshare offluorescentlampswas43%inChineseresidentiallightingalreadyin2003.Similarly,mostofthe

31 2LIGHTINGENERGYINBUILDINGS

IndianelectrifiedhomeshaveatleastfourLFLsandthenationalLFLsalesisaboutonethirdof totalincandescentlampsales(IEA2006). CommercialBuildings Energyusage Lightingisoneofthesinglelargestelectricityusersinmostcommercialbuildings.TheIEA(IEA 2006)estimatedthat1133TWhofelectricitywasconsumedintheworldbycommerciallightingin 2005.Thiswasequivalentto43%oftotallightingelectricityconsumptionandover30%oftotal electricityconsumptioninthecommercialbuildings,whichwasusedtoproduce59.5Plmhoflight at an average source luminous efficacy of 52.5 lm/W. The total consumption of 1133 TWh of electricityisdistributedamongdifferenttypesofbuildings,inwhichretail,offices,warehousesand educationalbuildingswerethelargestusers(Figure2-11). ThelightingelectricityconsumptioninthecommercialbuildingsoftheIEAcountriescomprises 63%oftheworld’stotalelectricityconsumptionforlightinginthissectorand28.3%ofthetotal OECD electricity consumption in commercial buildings(IEA2006).IntheOECDcountriesthe lighting energy intensities in commercial buildings are higher than the world average for all commercial building sectors. The US commercial lighting accounted for more than 40% of the commercialsectorelectricityconsumption,atotalof391TWhperyearin2001(Navigant2002). TheUScommercialbuildingsusedmorethanhalf(51%)ofthetotallightingconsumption.Offices, retailandwarehousesarethelargestcontributorstoUScommerciallightingenergyuse(Figure2- 12).

17% 19% 14% 20% 4% 8% 5% 5% 5% 16% 20% 8%

10% 25% 13% 11%

Offices Warehouses Education Office Retail Education Retail Hotels Healthcare Warehouses Healthcare Lodging Other Service Publicassembly Other Figure2-11.Globalcommerciallightingenergy Figure2-12.UScommerciallighting energyconsumption consumptionbybuildingtype(IEA2006). bybuildingtype(Navigant2002). The consumption of electricity for commercial sector lighting in the EU member states was estimatedtobe185TWhin2005(IEA2006).Therepreviouslywasavarietyofestimationsfor Europeancommerciallightingenergy consumptionwithlargevariationintheestimatedlighting energyintensities.TheIEAanalysishasclaimedtobereliableandconsistentinitsestimationsof commerciallightingenergyconsumption.Inthenon-OECDcountries,thetrendofusinglighting electricity for commercial buildings is growing with the increasing economic and construction growths.In2005,itwasestimatedthat41%ofelectricityofthenon-OECDcommercialbuildings wasconsumedbylightingprovidingilluminationfor17.5billionsquaremetresoffloorarea(IEA 2006).

32 2LIGHTINGENERGYINBUILDINGS

Lightsourcesandlightingcharacteristics Mostofthelightdeliveredtocommercialbuildingsisprovidedbyfluorescentlamps.Itiscommon to use fluorescent lamps in the open space facilities such as open space for work or shopping. Another reason for the increased use of fluorescent lamps in commercial sector is the implementationofdifferentenergyefficiencyimprovementprogrammes. FluorescentlampsprovidedmostofthelighttotheOECDcommercialbuildingsin2005;linear fluorescentlampsprovided76.5%ofthelightoutputandtherestofthelightoutputwasprovided by a mixture of incandescent, compact fluorescent, and HID lamps (IEA 2006). Similarly, fluorescentlampswerethemajorlightsourcesintheUScommerciallightingin2001(Navigant 2002),accountingfor56%oflightingenergyconsumption, while incandescent lamps consumed 32%andHIDlamps12%oftheUScommerciallightingenergy.Theshareoffluorescentlamps was78%ontotallumenoutput,whiletheincandescentandHIDlampsprovidedonly8%and14% respectively. In European office buildings, fluorescentlampsarethedominantlightsources,the LFL(linearfluorescentlamp)beingmostcommonlamp(Tichelen etal. 2007).Inacomparison between existing office lighting and new office lighting in three European countries (Belgium, GermanyandSpain),itwasfoundthatexistingofficelightinginBelgiumandSpainstillhasalarge numberofotherlampsthanfluorescent(Table2-4).Inthenon-OECDcommercialsector,theshare ofincandescentlampsisevenlowerthanthatintheOECDcommercialsector.Theestimatedshare ofincandescentandhalogenlampsinthenon-OECDcommerciallightingwas4.8%in2005(IEA 2006). Table2-4. LamptypesusedforfewEuropeancountries’sofficelighting(Tichelenetal.2007). Typeoflamps Belgium Germany Spain Existingofficelighting Fluorescentlamps 80% 99% 70% CFL 10% 5% 15% T8LFL 80% 90% 75% T5LFL 10% 5% 10% Other 20% 1% 30% Newofficelighting Fluorescentlamps 95% 100% 85% CFL 16% 10% 20% T8LFL 52% 45% 50% T5LFL 32% 45% 30% Other 5% 0% 15% Thereisalargevariationintheannuallightingenergyconsumptionperunitareabetweendifferent typesofcommercialbuildings(Figure2-13).Thisisduetothedifferentoccupancylevelsofthe buildings.Theaverageelectricityconsumptionforlightingpersquaremetreinhealthcarebuildings isthehighestofalltypesofbuildingsbecauseofthelongoperatingperiods. In additiontothe efficacyofthelightingsystems,lightingpracticesineachcountryandregionhavesignificanteffect ontheannuallightingenergyconsumptionperunitareaofbuildings,e.g.thelengthofoperating periods and the average lighting levels provided. European buildings have quite short operating hours,whiletheoperatinghoursinNorthAmericancommercialbuildingsarelongerthanthatof Europe, Japan/Korea, and Oceania (Table 2-5). The averageannuallightingenergyconsumption per unit area in US commercial buildings was 60.9 kWh/m 2 in 2001 (Navigant 2002). In the Canadiancommercialbuildingsthisvaluewas80.2kWh/m 2in2003(IEA2006).Thenon-OECD commercialbuildingsconsumeelectricityatthelowestaverageamongalltheregions,consumingat anaverageof24.1kWh/m 2in2005(IEA2006).

33 2LIGHTINGENERGYINBUILDINGS

Table2-5.Estimatedaveragelightingcharacteristicsofcommercialbuildingsin2000(IEA2006). Region Average Annuallighting Average Lighting Commerci Total lightingpower energy operating system albuilding electricity density consumption period efficacy floorarea consumptio (W/m 2) perunitarea (h/a) (lm/W) (billionm 2) n (kWh/m 2) (TWh/a) Japan/Kore 12.6 33.0 2583 62.7 1.7 54.6 a Australia/NZ 16.5 31.7 1924 43.5 0.4 12.7 North 17.4 59.4 3928 50.1 7.3 435.1 America OECD 15.5 27.7 1781 46.1 6.7 185.8 Europe OECD 15.6 43.1 2867 49.6 16.1 688.2

50

45 ,a) 2 40

35

30

25

20

15 alenergyconsumption(kWh/m

10 Electric 5

0 Offices Warehouses Education Retail Hotel Healthcare Other

Figure2-13.Estimatedgloballightingelectricityconsumptionbycommercialbuildingtypein2005 (IEA2006). IndustrialBuildings Energyusage Mostoftheelectricityinindustrialbuildingsisusedforindustrialprocesses.Althoughtheshareof lighting electricity of total electricity consumption in industrial buildings was only 8.7%, it accounted for about 18% of total global lighting electricity consumption in 2005 (IEA 2006). Comparedtotheresidentialandcommercialsectors,therehavebeenveryfewsurveysandstudies abouttheindustrialbuildinglightingenergyconsumption. The IEA estimation of European OECD countries industrial lighting consumption in 2005 was 100.3 TWh per annum, amounting to 8.7% of total industrial electricity consumption in the

34 2LIGHTINGENERGYINBUILDINGS

EuropeanOECDcountries,thesameshareasestimatedfortheglobalaverage.Theestimationof Japaneseindustriallightingelectricityconsumptionwas34.9TWh,accountingforabout7.8%ofall industrial electricity consumption. The Australian industrial lighting electricity consumption accountedfor7.6%ofallindustrialelectricityconsumption.Asurveyofindustriallightingenergy useconductedbytheUSDepartmentofEnergyin2001(Navigant2002)estimatedthatthetotalUS industrial lighting energy use was 108 TWh, accounting for 10.6% of industrial electricity consumption. InRussia,industryandagriculturewasestimatedtohaveconsumedabout56.3TWhofelectricity for lighting in 2000, of which 12.3 TWh was for agriculture (52% of agricultural electricity consumption)and42TWhforotherindustries(13.9%ofindustrialelectricityconsumption)(IEA 2006). Lightsourcesandlightingcharacteristics Amongthethreesectors(residential,commercialandindustrial),industrialsectorhasthehighest source-lumenefficacy.Theelectricityconsumptionforglobalindustriallightingwas490TWhin 2005,whichproduced38.5Plmhofindustriallightwithanaveragesource-lumenefficacyof79 lm/W(IEA2006).Thisisduetothefactthatmostofthelightinindustrialbuildingscomesfrom efficientfluorescentlampsandHIDlamps. Most of the US industrial lighting electricity is consumed by fluorescent lamp and HID lamps, accountingfor67%and31%ofindustriallightingelectricity (Table 2-6). Only 2% of all lamps installedintheUSindustrialbuildingsareincandescentlamps.Theoperatingperiodoflampsis 13.5hoursperdayintheUS,whichismuchlongerthanintheothersectors.Theaverageannual lighting energy consumption per unit area varies according to the different industry buildings, rangingfrom37to107kWh/m 2.TheIEAestimatedthattheUSandCanadianindustrialsectors togetherhadaveragesource-lumenefficacyof80.4lm/Win2005(IEA2006). The IEA has estimated an average source-lumen efficacy of 81.6 lm/W for Japanese industrial- sector lighting. According to the IEA estimation for OECD Europe, the average lamp luminous efficacyinindustrialsectoris81.9lm/W.Fluorescentlampscontributeforabout62%ofOECD industrialillumination,HIDsfor37%andothers1%.Similarly,theAustralianindustriallightingis dominatedbyfluorescentlamps,accountingfor55%oftotallighting,andthemajorityofremaining 45%isattributedtoHIDlamps. Table2-6. USindustriallightingcharacteristicsfordifferentlamptypesin2001(Navigant2002). Lamptype Lighting Percentage Average Percentage Percentage electricity of operating ofelectricity oflumen consumption installed hoursper consumption outputby (TWh/a) lamps day(h/day) source type Incandescent 2.6 2% 16.7 2% - Fluorescent 72.3 93% 13.4 67% 71% HID 33.0 5% 13.9 31% 29% Total 107.9 100% 13.5 100% 100% Outside the OECD countries, the Chinese industrial lighting has a mixture of lamps similar to Europe.TheuseoftheefficientT5fluorescentlampsinChineseindustrialsectorishigherthanin theEuropeanindustrialsector.InRussia,theHIDlampsaredominantinindustriallighting.Only

35 2LIGHTINGENERGYINBUILDINGS

36.5%oflightinRussianindustrialbuildingsisprovidedbyLFLs,while56.3%isbymercury- vapourlampsandtherestfromotherHIDlampsand incandescent lamps. The average Russian industrial lighting sector source-lumen efficacy was61lm/Win2000,whichwasfarbehindthe EuropeanandAmericanaverage(IEA2006).

2.2.5 Evaluationoflightingenergyuseforbuildings Codesandcriteriaforevaluatingenergyuseforbuildings Variouscodesandlegislationsprovidingguidelinesfordesigningandinstallinglightingsystemsin buildingsevaluatetheenergyefficiencycriteriaintermsofenergyuse.Themostcommoncodesset themaximumallowableinstalledlightingpowerdensity(LPD).TheAmericanSocietyofHeating, RefrigerationandAir-ConditioningEngineers(ASHRAE)andtheIlluminatingengineeringSociety ofNorthAmerica(IESNA)haveprovidedtherecommendedbuildingcodeintheUS(ASHRAE 2004).Thiscodeappliestoallbuildingsexceptlowriseresidentialbuildingsandhasalighting section which specifies maximum “lighting power density” limits, in units of Watts per square metre(W/m 2).LightingcodesinmostoftheUSstatesareusuallybasedonASHRAEorIECwhile CaliforniahasitsowncodenamedTitle24(Title242007).TheTitle24codeof2001forresidential buildingsrecommendedenergyefficientlightingwiththeinstalledlightingsystemefficacygreater than 40 lm/W. The 2005 version of the code defines efficient lighting based on the wattage of lamps,accordingtowhichtheefficacyhastobegreaterthan40lm/Wforlampsratedlessthan15 W,50lm/Wfor15–40Wlamps,and60lm/Wforlampsratedmorethan40Winpower. Before the adoption of the European Union’s Energy Performance in Building Directive (2002/91/EC), very few European countries had provisions addressing lighting in their codes (ENPER-TEBUC2003).InDenmark,somevoluntarystandardsrecommendmaximumLPDlevels inwattspersquaremetre(ENPER-TEBUC2003).TheFrenchregulationRT2000(Réglementation Thermique2000)specifiesminimumlightingenergyperformancerequirementsfornewbuildings and new extensions to existing buildings (IEA 2006). The regulation specifies the efficiency requirements in three different ways, namely; whole building LPD levels, space-by-space LPD levelsandnormalizedlightingpowerdensitylimits.Thenormalizedlightingpowerdensitylimits aregivenas:4W/m 2per100lxforspacesoflessthan30m 2,and3W/m 2per100lxforspacesof more than 30 m 2. The United Kingdom building codes for domestic as well as for commercial lightingevaluatetheefficiencyasaluminousefficacyoftheinstalledlightingsystem.The2002 edition of the UK building code requires that the office, industrial and storage area luminaires shouldhaveanaverageefficacyofatleast45lm/W(IEA2006). Similarly, the Australian energy efficiency provisions in Australian commercial and residential buildings have LPD limits for different areas. For large areas, the requirements include time switchingoroccupancysensors(IEA2006).MexicoandChinaalsoapplybuildingcodestandards for the energy performance of lighting in buildings, where the requirements are LPD limits expressedinwattspersquaremetre.MaximumLPDthresholdinChinesehouseholdsis7W/m 2, andfornormaloffices11W/m 2(IEA2006). Lightingpowerdensity limitsareonlyoneissueinfluencing the lighting energy use. The other importantissuesarethecontroloftimeofuseandtheuseofdaylight.Themetricwhichincludesall these elements and represents the lighting system’s performance is the annual lighting energy intensity,expressedinannuallightingenergyconsumptionperunitarea(kWh/m 2,a).Thismetric wouldpromotetheuseofefficientlightsourcesandeffectivecontrolsystemsbyconsideringthe occupancyandtheutilizationofdaylight.Therearealsolimitationsaboutthismetricasabuilding with high occupancy rates will use more lighting energy than one with a lower occupancy rate

36 2LIGHTINGENERGYINBUILDINGS becauseofthelongeroperatingperiods.Thusbuildingswithdifferentbehaviourhavetobegrouped anddifferentrequirementshavetobesetindevelopinglightingenergycodes. International Energy Conservation Code (IECC 2003) specifies that lighting control systems are required for each area, and each area must have light reduction controls and automatic lighting scheduling (DOE 2005). The most recent versions of the ASHRAE and IEC codes which are followedbymostoftheUSstateshavealsostartedplacingcontrolanddaylightingoptions intheir codes. Four European countries (Flanders-Belgium, France, Greece and the Netherlands) used a detailed calculation procedure for lighting already before the adoption of the new European Directive, Energy Performance of Buildings Directive (EPBD) (ENPER-TEBUC 2003). The EPBD,whichisunderimplementationintheEuropeanUnion,directsthemembercountriestouse a comprehensive method to calculate the energy consumption of buildings and incorporate mandatoryminimumenergyefficiencyrequirementsforallbuildingtypes(EC2002). LightingimpactsonHVACsystems Ineverylightingsystem,asubstantialproportionoftheinputelectricalenergyisdissipatedasheat. Also,whenthevisibleradiationmeetsthesurface,partofitisabsorbedandpartofitisreflected. Through successive reflections, the visible radiation is also absorbed by room surfaces. Hence, variationsinthelightingenergyuseinbuildingschangestheenergyrequirementsforspaceheating and cooling. Generally, reducing the lighting energy increases heating requirements during cold periodswhileitlowersthecoolingrequirementsinthesummer.However,thenetenergybalance differsfromplacetoplacedependingonthebuildingcharacteristics,operatingconditions,andlocal climaticconditions.

Figure2-14.Changesinheatingandcoolingloadscausedbya1kWhdeclineinlightingloadsinexistingUS commercialbuildings (SezganandKoomey2000). Thechangeintheheating/coolingloadduetothechangeinthelightingloadfordifferenttypesof UScommercialbuildingsisshowninFigure2-14.Ananalysisoftheimpactoflightingenergy

37 2LIGHTINGENERGYINBUILDINGS consumptiononheating/coolingrequirementsindifferentcommercialbuildingsshowedthatlarge savingsarepossibleinhospitals,largeoffices,andlargehotelsbythereductionoflightingenergy consumption(SezganandKoomey2000).However,inschoolsandwarehouses,increasesinthe heating load are greater than the reduction in the cooling load due to lower lighting energy consumption. A study of existing commercial buildings in different parts of the US showed that the warmest stateshavethelargestreduction(30%ormore)incoolingloadswithareductioninlightingenergy use.Thecoolerstatescanhaveanincreaseofabout20%inthenetheatingloadinsmallbuildings thataredominatedbyheatlosses.However,netcostsavingsfromreductionsinlightingenergyare expectedeveninthecoolerclimatesduetothehighercostofelectricityforcoolingcomparedtothe costofheatingfuels,andtheshorterheatingseasons(Weigand2003). Lightingimpactsonpeakelectricityloads Thepeakelectricityconsumptionperiodvariesfromplacetoplace.Thedevelopmentstageofthe country,geographicallocationandtheseasonofthe yearaswellasbuildingtype(windowsand shading types, etc.) have great impact on the time of peak electricity demand. For example, the electricitypeakdemandofmostofthedevelopingcountriesoccursduringtheeveningduetothe useofelectricityforresidentiallightingandcooking.Formanyutilitiesinindustrializedcountries, peakelectricityconsumptionperiodoccursduringtheafternoonwhencommercialandindustrial electricitydemandsarehigh. Thepeakdemandforresidentiallightingalwaysoccursintheevenings,atthetimebetween6to10 pmdependingonthecountries.InameteringcampaignofsampleofhouseholdsacrossfourEU countriesitwasfoundthatlightingaccountedforbetween10%(Portugal)and19%(Italy)ofthe residentialpeakpowerdemand(Sidler2002).Indevelopingcountrieswherethelightinghasupto 86%shareonthetotalelectricityconsumption,lightingaccountsforthemajorityofthepeakpower demand. In industrialized countries, commercial sector lighting peak demands coincide with the overallelectricalsystempeakdemand.Theindirectinfluenceoflightingonair-conditioningloads affects the peak demand. The reduction in peak demand is a very important aspect of energy efficiencyoflighting. References ASHRAE, 2004. ANSI/ASHRAE/IESNA Standard 90.1.2004. Energy Standard for Buildings Except low-rise residentialbuildings .ISSN1041-2336. BELKIN,P.,2007.TheEuropeanUnion’sEnergySecurityChallenges.CRSReportforCongress,NCSE,Washington. (http://www.cnie.org/NLE/CRSreports/08Feb/RL33636.pdf ) Bertoldi,P.,Atanasiu,B., 2006.ResidentialLightingConsumptionandSavingPotentialintheEnlargedEU. ProceedingsofEDAL’06Conference,London,UK. Bhusal,P.,Zahnd,A.,Eloholma,M.,Halonen,L.,2007.ReplacingFuelBasedLightingwithLightEmit-tingDiodesin Developing Countries: Energy and Lighting in Rural Nepali Homes. LEUKOS, The Journal of the lllu-minating EngineeringSocietyofNorthAmerica,Vol3,no.4,pp.277–291. BlomsterbergEtAl.UniversityOfLund.Bestfaçade.2004.EBD-R-07/15,www.bestfacade.com,EU-project. BOVERKET, National Board of Housing Building and Planning, Building/Living Project. Available from: www.byggabodialogen.se/templates/Page_3477.aspx CarbonIndependent2009.Availablefrom:http://www.carbonindependent.org/

38 2LIGHTINGENERGYINBUILDINGS

COM, 2007 . An Energy Policy for Europe: Communication from the commission to the European council and the Europeanparliament.CommissionoftheEuropeancommunities,Brussels,2007. Diemer,H.K.,DiemerR.F.M.TheLightingPractice,Inc.Article:Sustainablebuilding,PLDALightFocus2008. DOE(U.S.DepartmentofEnergy),2005.CommercialEnergyCodeComplianceIECC2000/2001/2003,Compliance LightingRequirements,Chapter8IECC.BuildingEnergyCodesProgram,Washington,DC. Availablefrom:www.energycodes.gov DOE(U.S.DepartmentofEnergy)2006.StrategicPlan.ClimateChangeTechnologyProgram. Availablefrom:http://www.climatetechnology.gov/stratplan/final/CCTP-StratPlan-Sep-2006.pdf DOE(U.S.DepartmentofEnergy)2009.2009BuildingEnergyDataBook. Availablefrom:http://buildingsdatabook.eren.doe.gov/ DPWS NSW, 1998, Department of Public Works and Services, New South Wales: Stadium Australia Life Cycle Assessment (Inventory Results). Conducted for Multiplex Constructions (NSW) by DPWS and ERM Mitchell McCotter.ReportpreparedbyDPWSEnvironmentalandEnergyServices. EC(EuropeanCommission),2002.EnergyPerformanceofBuildingsDirective.2002/91/EC EC(EuropeanCommission),2007. Availablefrom:http://www.ec.europa.eu/comm/energy_transport/atlas/html/buildings.html EIA(EnergyInformationAdministration),2006.InternationalEnergyAnnual2006.Availablefrom http://www.eia.doe.gov EIA(EnergyInformationAdministration),2009.InternationalEnergyOutlook2009.DOE/IEA-0484(2009). EIA (Energy Information Administration), 2007. International emissions data: Energy Related Carbon Emissions. Availablefromhttp://www.eia.doe.gov/environment.html EnvironmentalChangeUnit1998.DomesticEfficientLighting(DELight),UniversityofOxford(UK),1998.ISBN1- 874370-20-6. ENPER-TEBUC,2003.EnergyPerformanceofBuildings:CalculationProceduresUsedinEuropeanCountries,forthe commissionoftheEuropeanCommunities,DG-TRENSAVEContractNo.4.1031/C/00018/2000ENPERTEBUC. Eurostat2009.EuropeanCommission–Eurostat.Availablefrom: http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ HORE-LACY,I.2003.NuclearElectricity,7thedition. Uranium Information Centre -Australia, and World Nuclear Association-UK.ISBN0-9593829-8-4. IEA,2006.InternationalEnergyAgency.Light’sLabour’sLost.IEAPublications,France. IEA,2002.InternationalEnergyAgency.WorldEnergyOutlook.IEAPublications,France. IPCC, 2007. Climate Change 2007: Mitigation of Climate Change, Intergovernmental Panel on Climate Change WorkingGroupIII,NetherlandsEnvironmentalAssessmentAgency. Janssen,M,1999,http://buildlca.rmit.edu.au/CaseStud/Stadium/Stadium.html Janssen, M. and Buckland, B. (2000). Stadium Australia Life Cycle Assessment – Energy Use and energy Efficient Design. LEED2009.http://www.usgbc.org/DisplayPage.aspx?CategoryID=19

39 2LIGHTINGENERGYINBUILDINGS

LOFTNESS,V.,2004.ImprovingBuildingEnergyEfficiencyintheU.S:TechnologiesandPoliciesfor2010to2050. Proceedings of the workshop The 10-50 Solution: Technologies and Policies for a Low-Carbon Future . The PEW CenteronGlobalClimateChangeandtheNationalCommissiononEnergyPolicy.WashingtonDC. Mills, E., 2002. Why we’re here: The $320-billion global lighting energy bill. Proceedings of the 5th International ConferenceonEnergyefficientLighting ,Nice,France29-31May2002.pp.369-385. Mills,E., 2005.TheSpecterofFuelbasedLighting.Science,Vol.308,No.5726,pp.1263-1264 MTPROG(UKMarketTransformationProgramme).2007.Availablefrom:http://www.mtprog.com/ NAVIGANT (Navigant Consulting) 2002. U. S. Lighting Market Characterization Volume I: National Lighting InventoryandEnergyConsumptionEstimate.BuildingTechnologiesProgram,USDepartmentofEnergy,Washington DC. PoirazisH.,2008.Singleanddoubleskinglazedofficebuildings:Analysesofenergyuseandindoorclimate.(Report EBD-T-08/8).LundUniversity. SEA(SwedishEnergyAgency),2007.Energystatisticsforoffices. STI,2007.ER2007:34.STIL1,(Förbättradenergistatistikförlokaler–StegvisSTIL–Rapportförår1–Inventering avkontorochförvaltningsbyggnader.StatensEnergimyndighet). Sezgan,O.,Koomey,J.G.,2000.InteractionsbetweenlightingandspaceconditioningenergyuseinUScommercial buildings.Energy,Vol25,no.8,pp793-805. Shailesh, K.R. 2006. White LED Based Illumination Systems for Indian Villages. LEUKOS, The Journal of the IlluminatingEngineeringSocietyofNorthAmerica,Vol3,no.2,pp167-173. Sidler, O., 2002. Demand side management. End-use metering campaign in 400 households of the European Community.SAVEProgramme,ProjectEURECOFrance:CommissionoftheEuropeanCommunities,2002 Statistics Finland. 2003. 15.8.4. Carbon Dioxide Intensity in Power Generation in Some European Countries, g CO 2/kWh.http://pxweb2.stat.fi/sahkoiset_julkaisut/energiatilasto2003/html/suom0015.htm. Stern,N.,2006.SternReview:TheEconomicsofClimatechange.HMTreasury,UK. Tichelen,P.V.,Jansen,B.,Geerken,T.,Vanden,B.M.,Hoof,V.V.,Vanhooydonck,L.,Vercalsteren,A.2007. PreparatoryStudiesforEco-designRequirementsofEuPsFinalReportLot8:Officelighting.StudyfortheEuropean CommissionDGTRENunitD3. Availablefrom:http://www.eup-richtlinie.at/download/lot8/finalreport.pdf TITLE24,2007.California’sEnergyEfficiencyStandardsforResidentialandNon-residentialBuildings. Availablefrom:http://www.energy.ca.gov/title24/ UN(UnitedNationsPopulationDivision),2005.Worldpopulationprospects:the2004revisionpopulationdatabase. Availablefrom:http://esa.un.org/unpp/ WBDG(WholeBuildingDesignGuide).2008.WholeBuildingDesign.www.wbdg.org/wbdg_approach.php Weigand,D.E.2003.AdvancedLightingGuidelines2003.NewBuildingInstitute.WhiteSalmon,WA98672. Availablefrom:http://www.newbuildings.org

40 3LIGHTINGQUALITY

Chapter3:Lightingquality Topicscovered 3 Lightingquality...... 43 3.1 Lightingpracticesandqualityinthepast:historicalaspects...... 43 3.2 Defininglightingquality...... 43 3.3 Visualaspects...... 45 3.3.1 Visualperformance...... 45 3.3.2 Visualcomfort ...... 45 Colorcharacteristics...... 46 Uniformityoflighting...... 47 Glare...... 47 Veilingreflections...... 48 Shadows ...... 48 Flicker ...... 48 3.4 Psychologicalaspectsoflight...... 48 3.5 Non–visualaspectsoflight...... 49 3.6 Lightingandproductivity...... 50 3.7 Effectsofelectromagneticfieldsonhealthandopticalradiationsafetyrequirements.. 51 3.8 Conclusions:opportunitiesandbarriers...... 52 3.8.1 Opportunities...... 52 3.8.2 Risks...... 53 References...... 54

41 3LIGHTINGQUALITY

42 3LIGHTINGQUALITY

3 Lightingquality

3.1 Lightingpracticesandqualityinthepast:historicalaspects Theuseofelectricallighting,evenintheindustrialisedworld,isquiterecent.Electricallighting began to spread widely with the development and use of the incandescent lamps. The use of incandescentlampreachedalargescaleatthebeginningofthe20 th century. Forthousandsofyears,peoplereliedmainlyondaylightandfire(bonfire,torches,candlesandoil). Thefundamentalsoflightingatthattimewererelatedtothequantityoflightthatwastoprovide lightforpeopletoseeandcopeinthevisualenvironmentalsoduringthedarkhours. Powerful lamps such as fluorescent lamps came to the market in the 1950s with the following introductionofhigh-intensitydischargelamps.Thedevelopmentofpowerfulbrightlightsources lead to considerations of avoiding glare (using light diffusers, later light louvres). Moving from incandescentlightsourcestodischargelightsourcesraisedtheissueofcolorrenderingandcolor temperature. Today, LEDs are entering the lighting marketandasnewlightsourcestheyenable new approaches to lighting design and practice. LEDs introduce new possibilities for tuning the coloroflightandcomparedtoconventionallightsourcestheyaresmallinsizegivingalsofreedom forluminairedesign. Today, the variety and number of lighting equipment manufacturers has grown, but the fundamentalsoflightingremainsthesame.Thesearetosupplyenoughlightwithproperlighting distributioninspace,withgoodspectralqualitiesandlittleornoglare,atreasonablecosts.The developmentoflightsourcesandlightingequipmentprovidesbothopportunitiesandchallengesfor thelightingdesignersinprovidinglightingthatisnotonlyadequateintermsofquantity,butalso meetsthelightingqualitydemands.

Figure3-1.LEDsareusedtodaytoprovidelightinginversatile applications;rangingfromlightingofofficebuildings tolightingofhomesindevelopingcountries. 3.2 Defininglightingquality Whatdoeslightingqualitymean?Thereisnocompleteanswertothequestion.Lightingqualityis depends on several factors. It depends largely on people’s expectations and past experiences of electriclighting.Thosewhoexperienceelementaryelectriclightingforthefirsttime,forexample, in remote villages in developing countries, have different expectations and attitudes towards lightingfromofficeworkersinindustrializedcountries.Therearealsolargeindividualdifferences inwhatisconsideredcomfortablelighting,aswellasculturaldifferencesbetweendifferentregions.

43 3LIGHTINGQUALITY

Visualcomfortisalsohighlydependentontheapplication,forexamplelightingthatisconsidered comfortable in an entertainment setting may be disliked and regarded as uncomfortable in a workingspace(Boyce2003). Lightingqualityismuchmorethanjustprovidinganappropriatequantityoflight.Otherfactorsthat are potential contributors to lighting quality include e.g. illuminance uniformity, luminance distributions,lightcolorcharacteristicsandglare(VeitchandNewsham1998). There are many physical and physiological factors that can influence the perception of lighting quality.Lightingqualitycannotbeexpressedsimplyintermsofphotometricmeasuresnorcan therebeasingleuniversallyapplicablerecipeforgoodqualitylighting(Boyce2003,Veitch2001). Lightqualitycanbejudgedaccordingtothelevelofvisualcomfortandperformancerequiredfor ouractivities.Thisisthevisualaspect.Itcanalsobeassessedonthebasisofthepleasantnessofthe visualenvironmentanditsadaptationtothetypeofroomandactivity.Thisisthepsychological aspect.Therearealsolongtermeffectsoflightonourhealth,whicharerelatedeithertothestrain onoureyescausedbypoorlighting(again,thisisavisualaspect),ortononvisualaspectsrelated totheeffectsoflightonthehumancircadiansystem(Brainard etal. 2001,Cajochen etal. 2005). A number of different approaches have been suggestedtodefinelightingquality(BearandBell 1992,LoeandRowlands1996,VeitchandNewsham1998,BoyceandCuttle1998).Thedefinition thatseemsmostgenerallyapplicableisthatlightingqualityis givenby theextenttowhichthe installationmeetstheobjectivesandconstraintssetbytheclientandthedesigner(Boyce2003).In this way lighting quality is related to objectives like enhancing performance of relevant tasks, creatingspecificimpressions,generatingdesiredpatternofbehaviourandensuringvisualcomfort. The constraints may be set by the available financial budgets and resources, set time-lines for completingtheprojectandpossiblepredeterminedpracticesanddesignapproachesthatneedtobe followed. Lightingqualityisalsoafinancialissuewhichcanbebestillustratedinthecaseoftheluminous environmentofworkspaces.AnassessmentinFrenchofficesshowsthatatypicalyearlyelectric lighting consumption amounts for about 4 €/m 2, and total yearly ownership cost of lighting installationsisaround8to10€/m 2(Fontoynont2008).Thishastobecomparedtotheyearlycostof salariesforthecompanies,ofabout3,500€/m 2,withthehypothesisofanemployeecosting35,000 €/year,requiringabout10m 2ofofficespace.Thus,averagetotallightingcostsperemployeeare between80to100€/year.Assumingworkinghoursof1,600hrs/year,oracostperhourof35,000€ /1,600hour=21€/hour,itcanbeseenthatthetotalcostoflightingrequiredbyanemployeeis equivalentto4to5hoursofworkper year,or0.3% of the yearly employee costs. This figure demonstratestheriskofofferingpoorlightingenvironmenttotheofficeemployees.Poorlighting conditionscaneasilyresultinlossesinproductivityoftheemployeesandtheresultingproduction costsoftheemployercanbemuchhigherthantheannualownershipcostoflighting. Thus, any attempt to develop energy efficient lighting strategy should, as the first priority, guaranteethatthequalityoftheluminousenvironmentisashighaspossible.Theresultspresented in this guidebook demonstrate that this is achievable, even with high savings in electricity consumption.Inthesearchforhighlyefficientlightingschemes,itisessentialtofullyunderstand the detailed lighting specification of given environments. The integration of this knowledge in lightingdesignleadstoopportunitiestodevelopwin-winscenarios,offeringcombinationofenergy performanceandlightingquality.

44 3LIGHTINGQUALITY

3.3 Visualaspects 3.3.1 Visualperformance One of the major aspects of the lighting practice and recommendations is to provide adequate lightingforpeopletocarryouttheirvisualtasks.Visibilityisdefinedbyourabilitytodetectobjects orsignsofgivendimensions,atgivendistancesandwithgivencontrastswiththebackground(CIE 1978). In buildings, typical applications include lighting conditions for writing, typing, reading, communicatingandviewingslidesandvideos,orperformingdetailedtaskslikesortingproducts. Visualperformanceisdefinedbythespeedandaccuracyofperformingavisualtask(CIE1987) and visual performance models are used to evaluate the interrelationships between visual task performance,visualtargetsizeandcontrast,observerageandluminancelevels(CIE2002).Light levels that are optimised in terms of visual performance should guarantee that the visual performancecanbecarriedoutwell abovethe visibility threshold limits. Visual performance is improved with increasing luminance. Yet, there is a plateau above which further increases in luminancedonotleadtoimprovementsinvisualperformance(ReaandOuellette1991,CIE2002). Thusincreasingluminancelevelsabovetheoptimumforvisualperformancemaynotbejustified and can on the contrary lead to excessive use of energy. The visual performance aspect and consumptionofelectricityforlightingshouldbeinbalanceinordertoincreaseenergyefficiency, notofcourse,forgettingthelightingqualityaspects.

Figure3-2. Relativevisualperformanceasafunctionofbackgroundluminanceandtargetcontrast.(Halonen1993) Ensuring adequate and appropriate light levels (quantity of light) is only an elementary step in creatingcomfortableandgood-qualityluminousandvisualenvironments.Itcanbeagreedthatbad- quality lighting does not allow people to see what they need to see and/or it can cause visual discomfort.Ontheotherhand,lightingthatisadequateforvisualtasksanddoesnotcausevisual discomfortisnotnecessarilygood-qualitylighting.Also,dependingonthespecificapplicationand case,bothinsufficientlightingandtoomuchlightcanleadtobad-qualitylighting. 3.3.2 Visualcomfort There are a number of lighting-related factors that may cause visual discomfort and there is no straight-forward path to follow in creating visually comfortable luminous environments (Boyce 2003,Veitch1998).Thecurrentindoorlightingrecommendationsgiverangesofilluminancevalues for different types of rooms and activities (EN12464-1 2002, CIBSE 1997, IESNA 2000). In

45 3LIGHTINGQUALITY addition, guidelines on light distribution in a space, the limitation of glare, and the light color characteristicsaregiven.Attentionalsoneedstobepaidtotheeliminationofveilingreflectionsand totheformationofshadowsinthespace.Therecommendationsandguidelinesconcernmainlythe eliminationofvisualdiscomfort,butlightingdesignercanaddonthattoprovidevisualcomfort. Causes of visual discomfort can be too little light and too much light, too much variation in luminousdistribution,toouniformlighting,annoyingglare,veilingreflections,toostrongshadows andflickerfromlightsources. Colorcharacteristics Thecolorcharacteristicsoflightinspacearedeterminedbythespectralpowerdistribution(SPD) of the light source and the reflectance properties ofthesurfacesintheroom.Thecoloroflight sourcesisusuallydescribedbytwoproperties,namelythecorrelatedcolortemperature(CCT)and general color rendering index (CRI). The color appearance of a light source is evaluated by its correlatedcolortemperature(CCT).Forexample,incandescentlampswithCCTof2700Khavea yellowishcolorappearanceandtheirlightisdescribedas warm .Certaintypeoffluorescentlamps orwhiteLEDshaveCCTofaround6000Kwithbluishappearanceandlightdescribedas cool .The CRIoftheCIEmeasureshowwellagivenlightsource renders a set of test colors relative to a reference source of the same correlated color temperature as the light source in question (CIE 1995).ThegeneralCRIoftheCIEiscalculatedastheaverageofspecialCRIsforeighttestcolors. ThereferencelightsourceisPlanckianradiator (incandescenttypesource)forlightsourceswith CCTbelow5000KandaformofadaylightsourceforlightsourceswithCCTabove5000K.The higherthegeneralCRI,thebetteristhecolorrenderingofalightsource,themaximumvaluebeing 100. TheCIEgeneralCRIhasitslimitations.TheshortcomingsoftheCRImaybecomeevident when applied to LED light sources as a result of their peaked spectra. The CIE (CIE 2007) recommends the development of a new color rendering index (or a set of new color rendering indices), which should be applicable to all types of light sources including white LEDs. CIE technicalcommitteeTC1-69ColorrenderingofWhiteLightSourcesiscurrentlyinvestigatingthe issue.

Figure3-3. Lightsourcespectrum,i.e.radiantpowerdistributionoverthevisible wavelengths,determinesthelight colorcharacteristics.Examplesofspectraofanincandescentlamp(CCT=2690K,CRI=99),acompactfluorescent lamp(CCT=2780K,CRI=83)andawhiteLEDlamp(CCT=6010K,CRI=78). The Kruithof effect describes the psychological effects of preferences for varying CCT and illuminancelevel.ItproposesthatlowCCTsarepreferredatlowilluminances,andhighCCTsare preferredoverhighilluminances(Kruithof1941).The Kruithof effect is not, however, generally supportedinlaterstudies(BoyceandCuttle1990,DavisandGinthner1990).Itisalsosuggested thatcoloradaptationoccurswhenpeoplespendcertaintimeinaspace,afterwhichitisnomore possibletocomparelampswithdifferentCCT.Itisobviousthatthecolortemperaturepreferences ofpeoplearecultureandclimate-related,aswellasdependentoftheprevailinglightingpracticesin differentregions(Miller1998,Ayama etal. 2002).Recently,ithasbeensuggestedthathighcolor

46 3LIGHTINGQUALITY temperature light could be used in increasing human alertness (see Ch. 3.5). More research is neededtoconfirmthisandtoapplythesepostulatesinlightingdesign. Uniformityoflighting Uniformityoflightinginspacecanbedesirableorlessdesirabledependingonthefunctionofthe spaceandtypeofactivities.Acompletelyuniformspaceisusuallyundesirablewhereastoonon- uniform lighting may cause distraction and discomfort. Lighting standards and codes usually providerecommendedilluminanceratiosbetweenthetaskarea anditssurroundings (EN12464-1 2002, CIBSE 1997, IESNA 2000). Most indoor lighting design is based on providing levels of illuminanceswhilethevisualsystemdealswithlightreflectedfromsurfacesi.e.luminances.For office lighting there are recommended luminance ratios between the task and its immediate surroundings (EN12464-1 2002, CIBSE 1997, IESNA 2000). Room surface reflectances are an importantpartofalightingsystemandaffectboththeuniformityand energy usageoflighting. Compared to a conventional uniform office lighting installation with fluorescent lamps, LEDs provideopportunitiestoconcentratelightmoreonactualworkingareasandtohavelightwhereitis actually needed. This provides opportunities to increase the energy efficiency of lighting in the future. Glare Glareiscausedbyhighluminancesorexcessiveluminancedifferencesinthevisualfield.Disability glareanddiscomfortglarearetwotypesofglare,butinindoorlightingthemainconcernisabout discomfort glare. This is visual discomfort in the presence of bright light sources, luminaries, windowsorotherbrightsurfaces(CIE1987,Boyce2003).Thereareestablishedsystemsforthe evaluation of the magnitude of discomfort glare, e.g. Unified Glare Rating (UGR) (EN12464-1 2002), Visual Comfort Probability (VCP) (IESNA 2000), British Glare Rating system (CIBSE 1997),yetthephysiologicalorperceptualmechanismfordiscomfortglareisnotestablished.The presentglareindicesarebestsuitableforassessingdiscomfortglareinducedbyaregulararrayof fluorescentlampluminariesforarangeofstandardinteriors,andthereareanumberofquestions relatedtotheirapplicationinpractice.Thepossibleproblemsarerelatedtothedefinitionofthe glaresourcesizeandluminanceanditsimmediatebackgroundluminance(Boyce2003).

Figure3-4. Luminairesandwindowscaninducedirectglare,whilelightreflectionsfromglossysurfacesandcomputer screenscaninduceindirectglare. LEDsaresmallpointsourceswithhighintensitiesandarraysoftheseindividualsourcescanform luminaireswithverydifferentshapesandsizes.InilluminatingthespacewithLEDsspecialcare hastobetakentoavoidglare.

47 3LIGHTINGQUALITY

Veilingreflections Veilingreflectionsarespecularreflectionsthatappearontheobjectviewedandwhichreducethe visualtaskcontrast(CIE1987).Thedeterminingfactorsarethespecularityofthesurfaceandthe geometrybetweenthesurface,observerandsourcesofhighluminance(e.g.luminaires,windows, bright walls). Glossy papers, glass surfaces and computer screens are subject to cause veiling reflections.Inroomswithseveralcomputerscreensinsidethetaskareaspecialcarehastobetaken inthepositioningoftheluminariestoavoidluminousreflectionsfromthescreens.Inusingportable computers the viewing directions may change in relation to the fixed luminaires and this poses furtherrequirementsforlightingdesign.Also,whenrearrangingtheworkingplacesandgeometry oftheworkingconditions,thepossiblecausesofveilingreflectionsshouldbeavoidedinthetypical viewingdirections.Withproperlightingdesign,i.e.positioningofluminairesrelatedtoworking areas,itispossibletoachievethesamevisibilityconditionswithlessenergythanwithincorrect positioningofluminairescausingveilingreflectionstotheworkingarea. Shadows Shadowsinthespacemaybenegativeinobstructingthevisibilityofcertainelements,buttheycan alsobepositiveincreatinganattractiveandinterestingvisualenvironment.Whethershadowsare consideredasvisuallycomfortableordiscomfortabledependsmuchontheapplication. Agoodbalancebetweendirectlightanddiffuselightisimportantinordertoseethewaylightfalls on objects. In the quest for more parameters of lighting quality, it is worthwhile to study the shadowsofobjectsinadeeperway:thelightsideofanobject,theshadowside,thecastshadow andthepresenceofreflectedlight.Thiscangivemoreconnectionsbetweenscientificandartistic knowledgeoflightingqualities.Moreover,forthevisualcomfortinspacesitisnecessarytopay moreattentiontotheshadowing,especiallyforthecomfortofelderlypeopleandvisuallyimpaired. Flicker Flicker is produced by the fluctuation of light emitted by a light source. Light sources that are operated with ac supply, produce regular fluctuations in light output. The visibility of these fluctuationsdependsonthefrequencyandmodulationofthefluctuation.Flickeringlightismostly asasourceofdiscomfort,exceptinsomeentertainmentpurposes.Forsomepeopleflickercaneven beahazardtohealth.Flickerfromlightsourcescanbeminimizedbystablesupplyvoltageorby using high frequency electronic ballasts with fluorescent and high intensity discharge lamps (EN12464-12002,CIBSE1997,IESNA2000). 3.4 Psychologicalaspectsoflight Peopleperceivetheirluminousenvironmentthroughtheireyes,buttheyprocessthisinformation withtheirbrain.Lightscenesarethereforejudgedinconnectionwithreferencesandexpectations. Theluminousenvironmentcanbeappreciatedinmanywayse.g.,moreorlessagreeable,moreor lessattractive,moreorlessappropriatetothefunctionofthespace,moreorlesshighlightingthe company image. Variations of luminances and colors can strengthen attractiveness, trigger emotions,andaffectourmood,theimpactoflightingdependingmuchontheindividualsandtheir stateofmind.Alightinginstallationthatdoesnotmeettheuser’sexpectationscanbeconsidered unacceptable even if it provides the conditions for adequate visual performance. Unacceptable lighting conditions may impact on task performance and thus productivity through motivation (Boyce2003,Gligor2004).

48 3LIGHTINGQUALITY

3.5 Non–visualaspectsoflight Lighthasalsoeffectsthatarefullyorpartlyseparatedfromthevisualsystem.Thesearecalledthe non-visual,non-image forming(NIF)orbiologicaleffects of light and are related to the human circadianphotoreception(Brainard etal. 2001,Cajochen etal. 2005). The discovery of the novel third photoreceptor, intrinsically photoreceptive retinal ganglion cell (ipRGC), in 2002 has raised huge interest both in the circadian biology and lighting research communities (Berson et al. 2002). The ipRGC has been found to be the main photoreceptor responsibleforentraininghumanstotheenvironmentallight/dark-cyclealongwithotherbiological effects.Itrepresentsamissinglinkindescribingthemechanismofbiologicaleffectsascontrolled bylightanddarkness.Thus,lightcanbethoughtof as an external cue that entrains the internal clocktoworkproperly.Thehumanbiologicalclockdrivesmostdailyrhythmsinphysiologyand behavior. These include sleep/wake rhythm, core body temperature, and hormone secretion. It passesoninformationregulatingthesecretionofalmostallhormones,includingnocturnalpineal hormonemelatoninandserotonin,andcortisol.Besidestheshiftingofthephaseoftheendogenous clockbylight,thereisevidenceoftheinvolvementoftheipRGCsinpupillaryreflex,alertness, mood, and in human performance (Dacey et al. 2005, Duffy and Wright 2005, Whiteley et al. 1998). Thereisevidencethatshort-wavelengthlightisthemosteffectiveinregulatingthebiologicalclock (Brainard and Hanifin 2006, Wright et al. 2001, Thapan et al. 2001). Thus much research is currently investigating the possibility to use blue enriched light to affect human responses and behaviourlikealertnessandmood(Gooley etal. 2003,Lehr etal. 2007,Mills etal. 2007,Rautkylä et al. 2009). The effect of light on alertness has been much examined, but the mechanism explainingthedetectedreactionsstillremainsunclear.

Physiology

Figure3-5. Lighthasbothvisualandnon-visualresponsesactingthroughthedifferentretinalphotoreceptorsand tractsinthenervoussystem. Thebiologicaleffectsoflightandtheireffectsonhumanperformancearenotyetverywellknown. Aconsiderableamountofresearchworkisstillrequiredbeforewecanunderstandthenon-visual effects of light and consider them in lighting practice. Research work is needed to generate an improved understanding of the interaction of the effects of different aspects of lighting on behavioralvisualtasksandcorticalresponsesandonhowthebiologicaleffectsoflightingcouldbe relatedtotheseresponses.

49 3LIGHTINGQUALITY

3.6 Lightingandproductivity Lightingshouldbedesignedtoprovidepeoplewiththerightvisualconditionsthathelpthemto performvisualtasksefficiently,safelyandcomfortably.Theluminousenvironmentactsthrougha chainofmechanismsonhumanphysiologicalandpsychological factors, which further influence humanperformanceandproductivity(Gligor2004).

LUMINOUSENVIRONMENT

Illuminance Luminance Spectral Lighting & & Lighting

aaeesouiosEvrnetHumanFactors ParametersofLuminousEnvironment Glare Power Daylight System Illuminance Luminance Control Distribution Characteristics Uniformity Distribution

Amount Artificial Disability Discomfort Veiling Daylighting Flicker Spectrum of Lighting Glare Glare Reflections Control Light Control

Correlated Colour Direct/ Light Colour Rendering Indirect Sources Temperature Index Lighting

Acceptability Social Visual Visual Circadian & Interaction& Preferences Ageing Acuity Comfort Rhythms Satisfaction Communication

Visual& Seasonal Mood Aesthetic Visibility Task Arousal Eyestrain Affective Effects Judgment Performance Disorders

HUMANPERFORMANCE&PRODUCTIVITY Figure3-5. Luminousenvironmentandhumanperformance.(Gligor2004) There have been several field studies on the effects of lighting conditions on productivity. The earlieststudiesweremadeinthe1920’s(Weston1922,WestonandTaylor1926)andindicatedthat lighting conditions can improve performance by providing adequate illuminance for the visual tasks. Since then a number of studies have been carried out. Their results are sometimes contradictory.Forexample,astudyinclericalofficeworkindicatedthatanincreaseinilluminance from 500 lx to 1500 lx could increase the performance of office workers by 9% (Hughes and McNelis 1978), while another study showed that lower illuminance levels (150 lx) tended to improveperformanceofacomplexwordcategorisationtaskascomparedtoahigherlevel(1500lx) (Baron etal. 1992).Afieldstudyinindustrialenvironmentmeasureddirectproductivityincreases intherangefrom0to7.7%duetochangesinlighting(Juslén2007).Theliteratureincludesmore

50 3LIGHTINGQUALITY examples of null results than clear-cut effects of illuminance on task performance, over a wide rangeofilluminancelevelsandforavarietyofcomplexandsimpletasksinofficework(Gligor 2004). Theeffectoflightingonproductivityisambiguous.Thedifficultyinfindingtherelationsbetween lightingandproductivity isthatthereareseveral other factors that simultaneously affect human performance.Thesefactorsincludemotivation,relationshipsbetweenworkersandthemanagement andthedegreeofhavingpersonalcontroltotheworkingconditions(Boyce2003).Withappropriate lightingtheabilitytoperformvisualtaskscanbeimprovedandvisualdiscomfortcanbeavoided. Thiscanprovideconditionsforbettervisualandtask performance and, ultimately, productivity. The difficulty of field studies in working environments is the degree of experimental control required. Several studies have investigated the effect of increase in illuminance on task performance.However,illuminanceisonlyoneofthemanyaspectsinthelightingconditions.In making changestolighting,whichlightingaspects are changed (e.g. illuminance, spectrum, and luminancedistribution)andwhetherthereareotherfactorsthataresimultaneouslychangedinthe workingconditions(e.g.workingarrangements,people,supervisionofwork)needtobecontrolled and analyzed. Recently, several studies are investigating the effects of light spectrum on human performanceandthepossibilitiestouseblue-enrichedlighttoimprovehumanperformancethrough thenon-visualeffectsoflight(seeCh.3.5). 3.7 Effectsofelectromagneticfieldsonhealthandopticalradiationsafetyrequirements Lightingequipmentandsystemsproduceelectricandmagneticfields.Thepotentialeffectsofthese fieldsonhumanhealthdependwidelyonthefrequencyandtheirintensity,buttheeffectsofhuman exposuretoelectromagneticfieldsarestillnotfullyknown. Optical radiation may have hazardous effects on human health, eyes and skin. To assess these effectsthespectraldistribution,thesize(projectedsize)ofthesourceandthedistancefromthe sourceatthepointofnearesthumanaccessneedtobedefined.TheIEC/CIEStandard62471-1/CIE S009PhotobiologicalSafetyofLampsandLampSystemsassessestheopticalradiationhazards fromlamps,anarrayoflampsandlampsystems(IEC/CIE2006).Alltypesofelectricallypowered optical radiation sources including LEDs are covered in the standard. Reference measurement techniques and a risk group classification system for defining optical radiation hazards are also included.Thestandardprovidesabasisforevaluationofpotentialhazardsthatmaybeassociated with different lamps and lamp systems. The IEC Technical Report 62471-2 Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety provides basis for safetyrequirementsdependentonriskgroupclassificationandrelatedexamples(IEC/CIE2008). SimilarlytotheIEC/CIEstandard(IEC/CIE2006)theANSI/IESNARecommendedPracticeRP- 27.1-05 Photobiological Safety for Lamp and Lamp Systems covers the evaluation of optical radiationhazardsfromalllampsandlampsystems(ANSI/IESNA2007). The emerging LED technology brings powerful and high brightness lighting products on the market.Thewiderthefieldoflight(i.e.sizeoftheilluminationsource)andthebrighter(higher luminance)ofthatsource,themorepotentialriskitcarriesfortheretina.TheICNIRPStatement (ICNIRP2000)reviewsthepotentialopticalhazardsfromLEDsourcesandtherelatedstandards and regulations. It is recognized that the determination of appropriate viewing durations and distancesunderdifferentconditionsofusageisneededforanyopticalradiationhazardassessment. TheStatementrecommendsthatsafetyevaluationsandrelatedmeasurementproceduresforLEDs follow the guidelines for incoherent sources (other than laser). It concludes that the future developmentofapplication-specificsafetystandardsapplicabletorealisticviewingconditionswill reducetheunnecessaryconcernsregardingLEDsafety.

51 3LIGHTINGQUALITY

Thephotochemicalretinalinjuryisoftenreferredtoasthebluelighthazard(BLH).CIETC6-14 TheBlue-LightHazardhasstudiedthemeansandmethodstoevaluatepotentialBLH.Theoutcome oftheTC6-14workispublishedunderCIE138-2000(CIE2000).Thereportproposesatechnique employing the ACGIH (American Conference of Governmental Industrial Hygienists) threshold limitvalue(TLV)forgeneraluse.Currently,CIETC6-57ispreparingadraftCIEstandardonthe definitions and action spectra for two retinal hazard functions used in photobiological safety documents.CIETC6-55isstudyingthedifferentmethodsofassessingthephotobiologicalsafetyof LEDs.Thisworkreviewstheknowneffectsfromaphysiologicalstandpointandwilldeterminethe doserelationshipsthatposeapotentialriskforeyeinjuryfromexcessiveirradiation. The European Directive (2006/25/EC) includes minimum health and safety requirements for occupationalexposuretoartificialopticalradiation.Itintroducesmeasurestoprotectworkersfrom risksrelatedtoopticalradiationanditseffectsonhealthandsafety,particularlytotheeyesandthe skin.TheDirectiveprovidesmethodtodeterminebiophysicallyrelevantexposurelevelsforUV-, visibleandIR-radiationtobecomparedwithgivenexposurelimitvalues. 3.8 Conclusions:opportunitiesandbarriers Lightaffectshumanbehaviourthroughvariousprocessesandnewroutescanbefoundinthefuture throughthenon-visualeffectsoflight.Lightcanactasastimulator(perception,alertness,etc.)oras aninhibitor(glare,heartratevariability,etc.).Anychoiceinlightingdesignwillthereforehavea consequence,whichmaysometimesbeneglegible,sometimesessential. Increasingthequalityof lighting does not mean to use more energy. On the contrary, with careful consideration of the differentlightingfactorsandwithproperlightingequipment,theenergyconsumptionoflighting canstillbedecreasedwhileimprovingthequalityoflighting. Ininvestigatinglightingschemesforenergyconservation,itisclearthatattheexistinglevelof knowledge,bothopportunitiesandbarriersinenergyefficientlightingstrategiescanbeidentified.

3.8.1 Opportunities Indoorlightingdesignisbasedlargelyonprovidingmoreorlessuniformlevelsofilluminancesin theroom,whiletheperceptionoftheluminousenvironmentisrelatedmainlytolightreflectedfrom surfacesi.e.luminances. Thusinnovativelightingdesignmethodscouldbeintroducedwhichgivea high priority to the quality of the luminous environment as our eyes perceive it. The possible obstaclesandconstraintssetbythecurrentregulationsforhorizontalilluminationlevelsshouldbe identified,andwaysfordesigningandimplementingmoreinnovativelightingsolutionsshouldbe sought.Comparedtoconventionaluniformofficelightinginstallationwithfluorescentlamps,with LEDsitispossibletoconcentratelightmoreonactualworkingareasandtohavelightwhereitis actually needed. This will help to increase the lighting energy efficiency in the future. Simultaneously, LEDs can be used to create interesting visual environments with varying luminancedistributionsandshadowswhendesired. It is clear that the traditional assessment of light on the basis of visibility is not adequate for describing the complex, but undeniable, effects lighting can have on humans. This opens up windows for designing healthier living and working conditions for people in the future. The findingsontheinteractionsoflightandthehuman circadian system indicate that light can have non-visualeffectsonseveralhumansystemsincludingsleep/wakerhythm,corebodytemperature, hormone secretion, alertness and mood. This provides opportunities to design better lighting conditionsoptimisedforhumanperformanceandwellbeing,withemphasis,forexample,onlight distribution and patterns in space and possibly dynamic light intensity and color. However,

52 3LIGHTINGQUALITY considerableresearchworkisstillrequiredbeforewecanunderstandthenon-visualeffectsoflight and consider them in the lighting practice. The underlying mechanisms of action and the quantificationoflightcharacteristics,includingexactspectralcomposition,lightintensity,exposure durationandpriorlighthistoryremaintobeinvestigated. Better lighting quality does not necessarily mean higher consumption of energy. While it is important to provide adequate light levels for ensuring optimized visual performance, there are alwayslevelsabovewhichfurtherincreasesinilluminancedonotimproveperformance.Morelight doesnotnecessarilymeanbetterqualityoflighting.Throughtheuseof energy efficientlighting productsandlightroomsurfacesitispossibletodesignenergyefficientandgoodqualitylighting. NewtechnologiessuchasLEDsandOLEDsofferhighflexibilityinthecontroloflightspectraand intensities, which enhance their attractiveness beyond their growing luminous efficacy. The increasedpossibilitiestocontrolboththelightfluxesandspectraoflightsourcesshouldallowthe creationofmoreappropriateandcomfortableluminousenvironments.Visualcomfortrequirements shouldbenefitfromtheincreaseinthesupplyoflightsourcesandcomponents,leadingtobetter controloftheluminancedistribution.Also,thedevelopmentoflightingcontrolsystems,basedon presence detection and the blending of electrical light with daylight, can lead to substantial increasesinenergyefficiency. Daylight is a powerful light source, requiring no energy to produce. Daylight has a continuous spectralcompositionandprovides goodcolor rendering.Daylightisusuallypreferredbypeople working indoors and it can enhance motivation and can be linked to human circadian rhythms (Dehoff 2002). Daylighting techniques should offer new opportunities for lighting systems in buildings.Carehastobetakeninutilizingdaylightinindoorlightingtocontrolitproperlyinorder toavoiditsglareeffectsandanyveilingreflectionsresultingfromdirectorindirect. 3.8.2 Risks Reductionofthesizeoflightsources(compactHIDlamps,LEDs)mayleadtoincreasedriskof glare.Standardsandrecommendationsshouldbeadaptedaccordingly. Therecentfindingsonthebiologicaleffectsoflightmayinducetemptationstouseblueenriched lightinindoorlighting inordertoaffecthumanresponses. However, a considerable number of researchworkisstillrequiredbeforewecanunderstandthenon-visualeffectsoflightandconsider theminthelightingpractice. Thepossibleadverseeffectsoflightonhealthshouldbeunderstoodbeforeusinglighttoincrease alertnessandproductivityinshift-work.Forexamplethereishypothesisthatregularbrightlight exposureatnight-timeisassociatedwithincreasedlikelihoodofbreastcancer(Stevens etal. 1997). More research is required on the effects of night-time light exposure on human health and performance. Photonsinthebluerangeoflightaremorepowerfulthantheonesintheredrange,leadingto possiblehazardsassociatedwithbluelightwhennotcontrolledproperly.Theintensityoftheshort wavelengthlight,theviewingdistanceandtheviewingdurationarethedeterminingfactorshere. Energy conservation measures may lead to the risk of poor lighting environment to the office employees.Poorlightingconditionscaneasilyresultinlossesinproductivityofemployeesandthe resultingproductioncostsoftheemployercanbemuchhigherthantheannualownershipcostof lighting.

53 3LIGHTINGQUALITY

References ANSI/IESNA (American National Standard Institute/ Illuminating Engineering Society of North America), 2007. ANSI/IESNARP-27.1-05:RecommendedPracticeforPhotobiologicalSafetyforLampandLampSystems–General Requirements .IlluminatingEngineeringSocietyofNorthAmericaWebStore10June2007. AYAMA,M.,ELOHOLMA, M.,HYVÄRINEN, M.,EDA,T., KON,D.,MUKAI,K.,KANAYA,S.,HALONEN,L., 2002.WhitenessPerceptioninJapaneseandFinnishunderCoolandWarmFluorescentLamps. In: CHUNG,R.Y., RODRIGUES,A.B.J.ed. Proceedingsofthe9thCongressoftheInternationalColorAssociation,NewYork,24-29 June2001.Washington:SPIE(TheInternationalSocietyforOpticalEngineering)4421,279-282. BARON, R.A., REA, M.S., DANIELS, S.G. 1992. Effects of indoor lighting (Illuminance and spectral power distribution)ontheperformanceofcognitivetasksandinterpersonalbehaviour:thepotentialmediatingroleofpositive affect ,MotivationEmotion,16,1-33. BEAR,A.R.,BELL,R.I.,1992.TheCSPindex:apracticalmeasureofofficelightingquality. LightingResearchant Technology 24(4),215-225. BERSON, D.M., DUNN, F.A., MOTOHARU, T. 2002. Phototransduction by retinal ganglion cells that set the circadianclock. Science, 295(5557),1070-1073. BOYCE,P.R., 2003.HumanFactorsinLighting .2 nd ed.LondonandNewYork:Taylor&Francis. BOYCE,P.R.,CUTTLE,C.,1990.Effectofcorrelated color temperature on the perception of interiors and color discriminationperformance, LightingResearchandTechnology ,22(1),16-36. BOYCE,P.R.,CUTTLE,C., 1998 DiscussionofVeitchJ.A.andNewshamG.R.,DeterminantsoflightingqualityI: StateoftheScience. JournaloftheIlluminatingEngineeringSociety 27(1),92-106. BRAINARD,G.C.,HANIFIN,J.P.,GREESON,J.M.,BYRNE,B.,GLICKMAN,G.,GERNER,E.,ROLLAG,M.D., 2001.Actionspectrumformelatoninregulationinhumans:Evidenceforanovelcircadianphotoreceptor. TheJournal ofNeuroscience ,21(16),6405-6412. BRAINARD,G.C.,HANIFIN,J.P.,2006. Photons,clocks,andconsciousness. JournalofBiologicalRhythms ,20(4), 314-325 CAJOCHEN,C.,MÜNCH,M.,KOBIALKA,S.,KRÄUCHI,K.,STEINER,R.,OELHAFEN,P.,ORGÜL,S., WIRZ-JUSTICE, A., 2005. High Sensitivity of Human Melatonin, Alertness, Thermoregulation, and Heart Rate to ShortWavelengthLight. TheJournalofClinicalEndocrinologyetMetabolism90(3),1311–1316. CIBSE1997. CIBSECodeforinteriorlighting1994 :Additionsandcorrections1997.ISBN0900953640. CIE(CommissionInternationaledel’Éclairage),1978. Aunifiedframeworkofmethodsforevaluatingvisual performanceaspectsoflighting .CIE1978;19-2. CIE(CommissionInternationaledel’Éclairage), 1987.CIE/IEC. InternationalLightingVocabulary .CIE1987;17:4. CIE(CommissionInternationaledel’Éclairage), 2000. CIECollectioninPhotobiologyandPhotochemistry.CIE2000 ; 138. CIE(CommissionInternationaledel’Éclairage), 2002. Thecorrelationofmodelsforvisionandvisualperformance . CIE2002;145. DACEY, D.M., LIAO, H.W., PETERSON, B.B., ROBINSON, F.R., SMITH, V.C., POKORNY, J., YAU, K.W., GAMLIN,P.D.,2005.Melanopsin-expressingganglioncellsinprimateretinasignalcolorandirradianceandprojectto theLGN. Nature 433,749-754. DAVIS, R.G., GINTHNER, D.N., 1990. Correlated color temperature, illuminance level and the Kruithof curve. JournaloftheIlluminatingEngineeringSociety 19(1)27-38. DEHOFF.P.,2002.Theimpactofchanginglightonthewell-beingofpeopleatwork. ProceedingsofRightLight5 ,

54 3LIGHTINGQUALITY

347-351. DUFFY,J.F.,WRIGHT,K.P.,2005.Entrainmentofthehumancircadiansystembylight. JournalofBiological Rhythms ,20(4),326-338. EN12464-1,2002. Lightandlighting–Lightingatworkplaces–PartI:IndoorWorkPlaces ,EuropeanStandard. ISBNnumber:0580411281. EuropeanDirective2006/25/EC,2006.Ontheminimumhealthandsafetyrequirementsregardingtheexposureof workerstorisksarisingfromphysicalagents(artificialopticalradiation).OfficialJournaloftheEuropeanUnion,L 114,38-59. FONTOYNONT,M.,2008. Longtermassessmentofcostsassociatedwithlightinganddaylightingtechniques. Light andEngineering ,16(1),19-31. GOOLEY,J.J.,LU,J.,FISCHER,D.,SAPER,C.B.,2003.Abroadroleformelanopsininnonvisualphotoreception, TheJournalofNeuroscience, 23,7093–7106. GLIGOR,V.,2004. Luminousenvironmentandproductivityatworkplaces. Thesis(Licentiate),HelsinkiUniversityof Technology,Espoo. HALONEN,L.,1993.Effectsoflightingandtaskparametersonvisualacuityandperformance.Thesisforthedegreeof DoctorofTechnology,HelsinkiUniversityofTechnology,ISBN951-22-1845-3. HUGHES, P.C., MCNELIS, J.F., 1978. Lighting, productivity, and the work environment. Lighting Design + Application ,8(12),32-39. ICNIRP(InternationalCommissiononNon-IonizingRadiationProtection),2000. StatementonLight-EmittingDiodes (Leds)andLaserDiodes:ImplicationsforHazardAssessment .HealthPhysics78(6):744-752 IEC(International Electrotechnical Commission), 2006. Photobiological Safety of Lamps and Lamp Systems . Dual IEC/CIEStandardIEC62471-1/CIES009. IEC(International Electrotechnical Commission), 2008. Photobiological safety of lamps and lamp systems. Part 2. Guidanceonmanufacturingrequirementsrelatingtonon-laseropticalradiationsafety. IESNA(IlluminatingEngineeringSocietyofNorthAmerica)2000. TheIESNALightingHandbook ,9 th ed.NewYork: IESNA. JUSLÉN, H., 2007. Lighting, productivity and preferrd illuminances – field studies in the industrial environment. Thesis(PhD).HelsinkiUniversityofTechnology. KRUITHOF,A.A.,1941.TubularLuminescenceLampsforGeneralIllumination. PhilipsTechnicalReview ,6(3),65- 96. LEHR, S., GERSTMEYER, K., JACOB, J.H., FRIELING, H., HENKEL, A.W., MEYRER, R., WILTFANG, J., KORNHUBER,J.andBLEICH,S.,2007.Bluelightimprovescognitiveperformance. JournalofNeuralTransmission , 114(4),457-460. LOE,D.L.,ROWLANDS,E.,1996. Theartandscienceoflighting:astrategyforlightingdesign. LightingResearch andTechnology 28(4),153-164. MILLER,N.J.,1998. Arecipeforlightingquality,ProceedingsoftheFirstCIESymposiumonLightingQuality .CIE x015,40-47. MILLS, P.R., TOMKINS, S.C., SCHLANGEN, J.M., 2007. The effect of high correlated color temperature office lightingonemployeewellbeingandworkperformance. JournalofCircadianRhythms ,5,2. RAUTKYLÄ,E.,PUOLAKKA,M.,TETRI,E.,HALONEN,L.2009.Correlatedcolortemperatureandtimingoflight exposure; their effects on daytime alertness in lecture environments, to be published in Journal of Lightand Visual

55 3LIGHTINGQUALITY

Environment. REA,M.S.,OUELLETTE,M.J.,1991.Relative visualperformance: a basis for application. Lighting Research and Technology 23(3),135-144. STEVENS,R.G.,WILSON,B.W.,ANDERSON,L.W.,1997.Themelatoninhypothesis:breastcancerandtheuseof electricpower,Columbus,OHBattellePress. THAPAN,K.,ARENDT,J.SKENE,D.J.,2001.Anactionspectrumformelatoninsuppression:evidenceforanovel non-rod,non-conephotoreceptorsysteminhumans. TheJournalofPhysiology, 535(1),261-267. VEITCH, J.A., NEWSHAM,G.R., 1998. Determinants of lighting quality I: State of the Science. Journal of the IlluminatingEngineeringSociety 27(1),92-106. VEITCH, J.A., 2001. Psychological processes influencing lighting quality. Journal of the Illuminating Engineering Society 30(1),124-140. WESTON,H.C.,1922.AstudyoftheefficiencyIfinelinen-weaving, IndustrialFatigueResearchBoard ,ReportNo. 20,London. WESTON,H.C.,TAYLOR,S.K.,1926.Therelationbetweenilluminationandefficiencyinfinework(type-settingby hand),FinalReportofthe IndustrialFatigueResearchBoardandtheIlluminationResearchCommittee ,London. WHITELEY, S.J.O., SAUVE, Y., AVILES-TRIGOEROS, M., VIDAL-SANZ, M., LUND, R.D., 1998. Extent and durationofrecoveredpupillarylightreflexfollowingretinalganglioncellaxonregenerationthroughperipheralnerve graftsdirectedtothepretectuminadultrats.Exp.Neurol,154,560-572. WRIGHT, H.R., LACK, L.C., PARTRIDGE, K.J., 2001. Light emitting diodes can be used to phase delay the melatoninrhythm. JournalofPinealResearch ,31,350-355.

56 4LIGHTINGANDENERGYSTANDARDSANDCODES

Chapter4:Lightingandenergystandardsandcodes Topicscovered 4 Lightingandenergystandardsandcodes ...... 59 4.1 Reviewoflightingstandardsworldwide...... 59 4.1.1 Introduction...... 59 4.1.2 Datacollection ...... 60 4.1.3 Method...... 61 4.1.4 Displayusingworldmaps...... 61 4.1.5 Recommendedilluminancelevels ...... 70 4.2 Energycodesandpolicies...... 70 4.2.1 Europe–Energyperformanceofbuildingsdirective...... 70 4.2.2 EnergyefficientbuildingcodesandpoliciesintheUS...... 71 4.2.3 EnergyefficientbuildingcodesandpoliciesinChina ...... 71 4.2.4 EnergyefficientbuildingcodesandpoliciesinBrazil ...... 71 4.2.5 EnergyefficientbuildingcodesandpoliciesinSouthAfrica ...... 72 4.2.6 25EnergyEfficiencyPolicyRecommendationsbyIEAtoTHEG8...... 72 4.3 Energy-relatedlegislationintheEuropeanUnion...... 73 4.3.1 Introduction...... 73 4.3.2 EuPDirective...... 73 4.3.3 Energyperformanceofbuildings...... 76 EN15193-EnergyrequirementsforLightingLENI...... 76 4.3.4 EnergyEfficiencyLabel ...... 78 4.3.5 DisposalphaseofLightingEquipmentinEurope ...... 78 Legislation...... 78 RoHSDirective...... 78 WEEEDirective...... 79 4.3.6 Notes ...... 81 4.3.7 Reviewofstandardsonelectricandelectromagneticaspects ...... 81 IECstandard...... 81 CENELECstandard...... 82 EuropeanUnionEMCDirective...... 82 ANSI/IEEEstandards ...... 82 HarmonicCurrentsLimits ...... 83

57 4LIGHTINGANDENERGYSTANDARDSANDCODES

4.4 Examplesoflightingrelatedenergyprograms ...... 85 4.4.1 ENERGYSTAR...... 85 4.4.2 TopRunnerprogram...... 86 References...... 87

58 4LIGHTINGANDENERGYSTANDARDSANDCODES

4 Lightingandenergystandardsandcodes

4.1 Reviewoflightingstandardsworldwide 4.1.1 Introduction The major international organization in charge of coordinating the management of standards, recommendations,andtechnicalreportsinthefieldoflightingistheCommissionInternationalede l’Eclairage (CIE). The CIE has published several recommendations for indoor lighting and has contributed to a joint ISO-CIE standard ISO 8995-1 (CIE, 2001/ISO 2002) concerning indoor workingplaces. TheCIEpublicationsrelatedtoindoorlightingarelistedbelow: CIE49-1981: GuideontheEmergencyLightingofBuildingInteriors CIE52-1982: CalculationsforInteriorLighting:AppliedMethod CIE55-1983: DiscomfortGlareintheInteriorWorkingEnvironment CIE60-1984:VisionandtheVisualDisplayUnitWorkStation CIE117-1995:DiscomfortGlareinInteriorLighting CIE123-1997: Lowvision-LightingNeedsforthePartiallySighted CIES008/E:2001/ISO8995-1:2002(E): LightingofWorkPlaces-Part1:Indoor CIE146/147:2002: CIECollectiononGlare2002 CIE161:2004: LightingDesignMethodsforObstructedInteriors CIES010/E:2004/ISO23539:2005(E): Photometry-TheCIESystemofPhysicalPhotometry CIE097:2005: MaintenanceofIndoorElectricLightingSystems,2ndEdition CIES009/E:2002/IEC62471:2006: PhotobiologicalSafetyofLampsandLampSystems ISO11664-2:2008(E)/CIES014-2/E:2006: CIEStandardllluminantsforColorimetry CIE184:2009: IndoorDaylightIlluminants TherecommendationsoftheCIEhavebeeninterpretedindifferentmannersindifferentcountries. Hence some differences exist among lighting recommendations worldwide. Furthermore, in the North America, the Illuminating Engineering Society of North America (IESNA) is active in developingitsownrecommendations.ThebestknowndocumentsaretheIESLightingHandbooks whichareregularlyupdated.TheworkinggroupsoftheIESNAhavetheirownreferencesanditis quitetypicalthatsomeapproachesdifferfromthoseoftheCIE.Forexample,IESNAusestheterm VisualComfortProbability(VCP)forglareratingissues(Rea2000),whereastheCIEglarerating iscalledtheUnifiedGlareRatio(UGR)(CIE1995).

59 4LIGHTINGANDENERGYSTANDARDSANDCODES

IntheAnnex45workthelightingrecommendationsworldwidewerecompared.Thecomparisonis usefulinidentifyingthepotentialforamendingthesestandards,consideringthegrowingneedfor theincreasingenergyefficiencyoflighting.Thereviewfocusedonofficebuildings. 4.1.2 Datacollection The first task was to collect the documents presenting national lighting recommendations from differentcountriesthroughnetworkofexperts,andtotranslatethevariouspublishedcriteriaofnon- English documents into English. The lighting recommendation data was collected from eleven countries/regions,includingbothindustrialisedanddevelopingcountries.Thecollecteddocuments relatedtoindoorlightingrecommendationsfromdifferentcountriesarelistedbelow. Argentina: Tonello,G.ySandoval,J.,”Recomendacionesparailuminacióndeoficinas”AsociaciónArgentina deLuminotécnia(AADL),1997. Australia: AS/NZS1680.0-1998Interiorlighting-Safemovement AS1680.1-2006Interiorandworkplacelighting-Generalprinciplesandrecommendations. AS1680.2.0-1990Interiorlighting:Part2.0-Recommendationsforspecifictasksandinteriors. AS1680.2.1-1993Interiorlighting:Part2.1-Circulationspacesandothergeneralareas. AS1680.2.2-1994Interiorlighting-Officeandscreen-basedtasks AS1680.2.3-1994Interiorlighting:Part2.1-Educationalandtrainingfacilities Brazil: CIE29.2-1986:GuideonInteriorLighting China: GB50034-2004Standardforlightingdesignofbuildings. Europe: EN12464-1:2002:Lightandlighting-Lightingofworkplaces-Part1:IndoorWorkPlaces. India: IS3646(Part1):1992,Codeofpracticeforinteriorillumination:Part1Generalrequirementsand recommendationsforworkinginteriors. NationalBuildingCodeofIndia2005(NBC2005)Part8,Section1 Japan: JIES-008(1999)-IndoorLightingStandard. Nepal: J.B.Gupta,Electricalinstallationestimationandcosting,S.K.Kataria&Sons.NewDelhi1995,7th edition. Russia: SNiP 23-05-95 Daylight and Artificial Lighting: Construction Standards and Rules of Russian Federation. SouthAfrica:

60 4LIGHTINGANDENERGYSTANDARDSANDCODES

SANS10114-1:2005-CodeofPracticeforInteriorLighting. USA: ANSI/IESNARP-1-04,AmericanNationalStandardPracticeforOfficeLighting. 4.1.3 Method The Table 4.1 shows various lighting parameters which were selected in collecting the data. Specificationsforcollectingdataweredividedintothreecategories:individualneeds,socialneeds andenvironmentalneeds. 4.1.4 Displayusingworldmaps Detailsofthelightingrecommendationsforofficelightingarepresentedin AppendixA .Inorderto giveageneralviewoftheconsistencyofanddifferencesinspecificationsinlightingstandardsand codesacrosstheworld,themainrecommendedvaluesarepresentedonworldmaps,Figures4-1 − 4-7.ISO/CIEstandardrecommendationvaluesarealsopresentedinthemapforcomparisonwith thenational/regionalrecommendations.Mostlightingrecommendationsincludespecificationson: • Minimumilluminancelevelsonworkplanes(Figure4-1) • Minimumilluminancewhenworkingoncomputers(Figure4-2) • Minimumilluminanceinthesurroundings(Figure4-3) • Luminanceratiosneartaskareas(Figure4-4) • Glarerating(Figure4-5) • Luminancesontheceilingandshieldingangle(Figure4-6) • Indoorsurfacereflectance(Figure4-7) These specifications are essential, since they impose the measures to maintain the quality of lighting.Thesemeasuresaretheproductionofminimumquantitiesoflight(lumen)inroomandin task areas, recommendations in the distribution of the light in the task and surrounding areas, recommendationsontheglare,etc.

61 4LIGHTINGANDENERGYSTANDARDSANDCODES

Table4-1. Variouslightingparametersselectedincollectingthedatafromthenationallightingrecommendations. A.INDIVIDUALNEEDS Illuminance(horizontal)ontaskarea VISUALPERFORMANCE Illuminance(vertical)ontaskarea Illuminance(horizontal)oncomputer(keyboard,mouse) Illuminancefordrawing Illuminanceofimmediatesurroundings Illuminance(vertical)onscreens Luminanceratioonthetaskarea(luminancesonwalls,ceilings,taskplane, etc.) Ceilingluminance Maximumluminancefromoverheadluminaries Maximumwallluminance Maximumwindowluminance VISUALCOMFORT Recommendedsurfacereflectances Specificationofflicker-freelightsources Illuminanceuniformityonthetaskarea DiscomfortGlareRating DiscomfortglareinthecaseofuseofVisualDisplayTerminals(VDT) Controlofreflectedglareandveilingreflections Possiblespecificationsregardinglightingfixtures Colorrenderingindex(CRI) Correlatedcolortemperature(CCT) COLORAPPEARANCE Possibleuseofsaturatedcolors Possibleuseofcolorvariationsoflight Viewtotheoutside Lightqualitythroughlightingmodelling Directionallighting WELL-BEING Biophiliahypothesis(Expressionofrecommendationstomaximizedaylight) Lightingquality/Aestheticsofspace Aestheticsoflightingequipment Individualorprogrammedlightinganddaylightcontrol Roleofspectralpowerdistribution Daylightexposurethroughvalueofdaylightfactor Dailyexposuretodaylight NONVISUALEFFECTS Frequencyoflight(Hz) UV(UltraViolet)contentoflight Infraredexposureassociatedtolighting B.SOCIALNEEDS Cost,budget Usersatisfaction(expressedbyreductionofcomplaints) Impactoflightingqualityonproductivitythroughreductionoffailures,higher satisfactionandlessfatigue Reductionofmaintenancethroughimprovedqualityofequipment Impactoflightingonsecurityissues Impactoflightingonfeelingofsafety C.ENVIRONMENTALNEEDS Reduction of power consumption for lighting through efficient light sources andluminaries Ability of lighting system to minimize peak load demand (use of daylight, adjustedpowerconsumption) Lightingcontrols(useofdaylight,useofoccupancysensors) Reductionofharmonicsandpowerlossesinelectricitydistributionnetworks Reductionofresourcesformakinglamps(increasedlifeofsources) Reductionofenvironmentalimpact(lowproductionofpollutants)

62 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-1. Minimumilluminanceonworkplane(horizontal)fordrawingandminimumilluminanceonconferencerooms.

63 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-2. Minimumilluminanceonworkplaneforofficeswithcomputerscreens. 64 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-3. Illuminanceinthevicinityoftheworkplace.

65 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-4. Ratiosofluminanceinthefieldofvision. 66 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-5. Glarespecifications.

67 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-6. Ceilingluminancesandshieldingangle.

68 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-7. Surfacereflectances.

69

4LIGHTINGANDENERGYSTANDARDSANDCODES

The summary of the lighting recommendations presented in Figures 4-1 − 4-7 indicate the following. • Minimumvaluesofilluminanceonworkplanesforoffice work, drawing and conference roomsvaryfrom200to500lx,whichleadstoatotaldiscrepancyoflightingpowerof1:2.5 ifthelightinguniformitiesdeliveredintheroomsareidentical. • Recommendations concern minimum horizontal and vertical illuminance values. The recommendationsdonottakeintoaccounttheluminancesofcomputerscreens. • RatiosofluminanceinthefieldofvisionareratherconsistentandsimilartotheCIEwork recommendations. • GlareratingsuseeithertheUnifiedGlareRatio(UGR)oftheCIEortheVisualComfort Probability(VCP)oftheIESNA.Thesespecificationsareratherconsistent. • Ceiling luminance and shielding seem to be rather consistent. This is essential with the developmentofdirect/indirectluminaires.However,nospecificationtakesintoaccountthe riskofoverheadglare,whichisanissueunderdiscussionattheCIE. 4.1.5 Recommendedilluminancelevels Details of the recommended illuminance values for office lighting found in different national recommendations worldwide are tabulated in Appendix A . Basically, the differences in recommendedilluminancesarenothighsincetheytendtoberelatedtotheCIErecommendations. However,therearecountrieswhichrecommendlowervaluesofminimumilluminance. TheISOstandardISO8995-1:2002(CIE2001/ISO2002)statesthatintheareaswherecontinuous workiscarriedoutthemaintainedworkplaneilluminanceshouldnotbelessthan200lx.Inallthe reviewed recommendations, the minimum work plane illuminances in offices were higher. ISO 8995-1:2002standarddoesnotgiveanyrecommendationforuniformityofilluminanceonthework plane, but suggests that the illuminance in the vicinity of the task should not be too low in comparisontotheilluminanceontaskarea.Forexample,theilluminanceinthevicinityoftaskis 300lxforataskwithilluminanceof500lx,200lxforataskwithilluminanceof300lx.However, theilluminanceinthevicinityoftaskshouldbeequaltotheilluminanceinthetaskareaifthevalue for task illuminance is below 200 lx. In most countries which were reviewed, the minimum maintained illuminance on desks for regular office work is 500 lx, but lower values are recommendedinIndia(300lx),Denmark(300lx),USA(dependingontypeoftask)and Australia (320 lx). Minimum illuminance values for lounges, lobbies and corridors are specified within a rangefrom50to100lxdependingoncountry. 4.2 Energycodesandpolicies 4.2.1 Europe–Energyperformanceofbuildingsdirective The building sector in the EU area is using 40% of the total EU energy consumption and is responsiblefor36%oftheCO 2emissions.Thereare210millionhouseholdsandtheareaofthe householdsis15000km 2,whiletheareaofofficesis6000km 2.TheEUbuildingsectoroffers significantpotentialforcost-effectiveenergysavings.(Wouters2009) TheEuropeEnergyPerformanceofBuildingsDirective(EPBD)offersholisticapproachtowards moreenergyefficientbuildings.TheobjectiveofEPBDistopromotetheimprovementofenergy performanceofbuildingswithintheEUthroughcost-effectivemeasures.TheEPBDrequiresallEU countriesto enhancetheirbuilding regulationsandtointroduceenergy certificationschemesfor buildings.Thecountriesarealsorequiredtohaveinspectionsofboilersandair-conditioners.

70 4LIGHTINGANDENERGYSTANDARDSANDCODES

AllEUmembercountrieshaveproducedastatusreportin2008abouttheimplementationofthe EPBD in their country; the compiled country reports are available at the website of Concerted Action of EPBD. Many countries have set new requirements for instance for the U-values (coefficient of thermal transmission) or for the primary energy demand per square meter. (CA EPBD2008).AccordingtoMaldonadoetal.(2009),positiveaspectsoftheEPBDaree.g.:new, moredemandingbuildingregulationstobeinforcethroughouttheEU,andfurtherontheplanscall fortougherregulationseveryfiveyears.Therearealsonowcleartargetsforwhatcanbeconsidered high-performancebuildingsinmostmemberstates,andtheawarenessoftheimportanceofbuilding energyefficiencyisincreasedinEU.(Maldonado2009) 4.2.2 EnergyefficientbuildingcodesandpoliciesintheUS IntheUSbuildingsconsumemoreenergythananyothersectoroftheUSeconomy.Almostthree- quartersofthe81millionbuildingsintheUSwerebuiltbefore1979.Thebuildingsectoraccounts forabout40%oftheprimaryenergyuseandaboutfor40%ofenergy-relatedCO 2emissions.The US buildings contribute 9% of the world CO 2 emissions. Lighting consumes about 11% of the energyofresidentialsectorand26%oftheenergyofthecommercialsector.(Sunder2009) ThefollowingActionshavebuildingrelatedprograms: ― EnergyPolicyAct(EPAct2005) ― EnergyIndependenceandSecurityAct(EISA2007) ― AmericanRecoveryandReinvestmentAct(ARRA2009) For instance the EPAct directs R&D for new buildings and retrofits including onsite renewable energygenerationandextendstheENERGYSTARprogramme(Ch.4.4.1)byaddingnewenergy conservationstandardsandexpandsenergyefficientproductlabeling.TheEISAupgradesenergy standards for appliances, equipment and lighting and mandates the zero-net energy commercial buildinginitiative.TheARRAinveststoimproveenergyefficiencyofFederalbuildings,schools, hospitals, and low-income houses using existing cost-effective technologies. The application of existingtechnologiesyieldsefficiencyimprovementsof30-40%.(Sunder2009) 4.2.3 EnergyefficientbuildingcodesandpoliciesinChina UrbanizationisspeedingupinChina.TodaytheecologicalfootprintinChinais1.6globalhectares percapita,whereastheworldaverageis2.2globalhectarespercapita.In2006thebuildingareain Chinawasestimatedtobe175000km 2(175Mm 2),andtheforecastforyear2020is30000000 km 2(30Gm 2).(Wang2009) Wanggivesannualenergyconsumptionin2004forcommercialbuildings(kWh/m 2,a)(government office, hotel, shopping mall, office, comprehensive business building). The majority of the buildingsuselessthan150kWh/m 2,aandalmostallbuildingslessthan300kWh/m 2,a.The11 th Five-YearPlanofChinahassetatargetofimprovingenergyefficiency.Thekeygoalisthatenergy intensityrelativetothecountry’sgrossdomesticproductshouldbereducedby20%from2005to 2020.Thetargetsforbuildingsaretobuildnewenergyefficientbuildingsof1.6Gm 2buildingarea with 50% increase in efficiency and to retrofit about 554 Mm 2ofexistingresidentialandpublic buildings. Inaddition,15Mm 2 ofrenewableenergydemonstrationprojectsistobebuilt.(Wang 2009) 4.2.4 EnergyefficientbuildingcodesandpoliciesinBrazil InBrazil47.5%ofthetotalenergyconsumptionisproducedbyrenewableenergy,includinghydro power and power from sugar cane products. However, the share of non-renewable energy is

71 4LIGHTINGANDENERGYSTANDARDSANDCODES increasing.Lightinguses17%oftheenergyconsumptionintheresidentialsector.Incommercial buildingstheshareoflightingenergyofthetotalbuildingenergyconsumptionisfrom12%to57%, being 22% on average. In the public sector lighting uses 23% of the total energy consumption, whileHVACuses48%,otherequipment15%andotherloads14%.InBraziltherearefewlaws andstandardsthatincludedemandsforenergyefficiencyandbuildingperformance,thesearethe Law9991-2000InvestmentsinR&DandenergyefficiencybyutilitiesandtheLaw10295–2001 Energyefficiencylaw.ThestandardABNT15220concernsthermalperformanceandtheABNT 15575givesminimumperformances. 4.2.5 EnergyefficientbuildingcodesandpoliciesinSouthAfrica

TheCO 2emissionsofthetotalenergyinSouthAfricaaredividedpersectorasfollows:residential 13%, commercial 10%, transport 16%, manufacturing 40%, mining 11% and other 10%. The energy efficiency strategy was created in 2004 and building regulations have been renewed recently.TheSANS0204willsetoutthegeneralrequirementsforimprovingenergyefficiencyin alltypesofnewbuildings.SANS0204willbeincorporated into National Building regulations. (Milford2009) Theenergyefficiencystrategysetsnationaltargetsforfinalenergydemandreductionby2015.The targetsare10%reductionintheresidentialsectorand15%inthecommercialsector.Targetsare expressedinrelationtotheforecastnationalenergydemandin2015.Themeanstoreachthetargets are legislation, efficiency labels and performance standards, energy management activities and energyauditsandpromotionofefficientpractices.Inadditiontherearesomelocalinitiatives.The draftforGautengenergystrategyaimstoreplaceincandescentlampsingovernmentbuildingsby energyefficientlightingby2012,andtoreduceenergydemandby25%ingovernmentbuildingsby 2014.(Milford2009) 4.2.6 25EnergyEfficiencyPolicyRecommendationsbyIEAtoTHEG8 The IEA recommendations document reports the outcome of the IEA three-year programme in supportofthesecondfocusareaoftheIEAG8Gleneaglesprogramme:energyefficiencypolicies. (IEA 2008). The recommendations cover 25 fields of action across seven priority areas: cross- sectoralactivity,buildings,appliances,lighting,transport,industryandpowerutilities.Itisnoted thatthesavingbyadoptingefficientlightingtechnologyisverycost-effectiveandbuildingsaccount forabout40%ofthetotalenergyusedinmostcountries.Thefieldsofactionofbuildings and lightingareoutlinedbelow: Buildings ― Buildingcodesfornewbuildings ― PassiveEnergyHousesandZeroEnergyBuildings ― Policypackagestopromoteenergyefficiencyinexistingbuildings ― Buildingcertificationschemes ― Energyefficiencyimprovementsinglazedareas Lighting ― Bestpracticelightingandthephase-outofincandescentlamps ― Ensuringleast-costlightinginnon-residentialbuildingsandthephase-out ofinefficientfuel-basedlighting

72 4LIGHTINGANDENERGYSTANDARDSANDCODES

4.3 Energy-relatedlegislationintheEuropeanUnion

4.3.1 Introduction Several directives, regulations and other legislations are in force or under development in the EuropeanUnion.ThemostimportantdirectivesandotherlegislationsatEuropeanlevelregarding thelightingsectorarelistedbelow: ― EuP,Energy-usingProductsDirective(EC2005)whichwasrecastin2009bydirectiveof ecodesignrequirementsforenergyrelatedproducts ― BallastDirective(EC2000) ― EPBD,EnergyPerformanceofBuildingsDirective(EC2002) ― ESD,EnergyServicesDirective(EC2006) ― EEL,EnergyEfficiencyLabel(EC1998) 4.3.2 EuPDirective Directive2005/32/ECoftheEuropeanParliamentandoftheCouncilofJuly6 th 2005establishesa framework for the setting of ecodesign requirements for energy-using products and amending Council Directive 92/42/EEC and Directives 96/57/EC, and 2000/55/EC of the European ParliamentandoftheCouncil.ThissocalledEuPDirectiveortheEcodesignDirectivedefinesfor whichtypesofproductsshallbeimplementingmeasuresshallbedoneandhow(EC2005). Thedirectivepromotes environmentally consciousproduct design ( ecodesign ) and contributes to sustainabledevelopmentbyincreasingenergyefficiencyandthelevelofenvironmentalprotection . Ecodesign means the integration of environmental aspects in product design with the aim of improving the environmental performance of the product throughout its life cycle. The EuP directivealsoincreasesthesecurityoftheenergysupplyatthesametime. The procedure for creating implementing measures under the EuP directive is defined in the directive. In practice, product groups are identified by the European Commission. Preparatory studies on these products aim to identify and recommend ways to improve the environmental performanceofproducts.Theperformanceoftheproductsisconsideredthroughouttheirlifetimeat theirdesignphasebasedonamethodologycalledMEEUP(methodologystudyforecodesignofthe energy-usingproducts).MEEUPdefineseightareastobeincludedineachpreparatorystudy: 1. ProductDefinition,StandardsandLegislation 2. EconomicsandMarketAnalysis 3. ConsumerAnalysisandLocalInfrastructure 4. TechnicalAnalysisofExistingProducts 5. DefinitionofBaseCase(s) 6. TechnicalAnalysisofBestAvailableTechnology(BAT) 7. ImprovementPotential 8. Policy,ImpactandSensitivityAnalysis TheuseofMEEUPensuresthatallthenecessaryareasaretakenintoaccountinthepreparatory studies. The European Commission writes draft implementing measures, starting from these preparatory studiesandconsultingthestakeholdersinconsultationforums.Thesemeasuresarevotedbythe MemberStatesandarethengiventotheEuropeanParliamentforthefinalvote.

73 4LIGHTINGANDENERGYSTANDARDSANDCODES

AccordingtotheEuPdirective,therequirementscanbegenericorspecificecodesignrequirements. AgenericecodesignrequirementisbasedontheecologicalprofileofanEuP,anditdoesnotset limitvaluesforparticularenvironmentalaspects.Aspecificecodesignrequirementisaquantified andmeasurableecodesignrequirementrelatedtoaparticularenvironmentalaspectofanEuP,such asenergyconsumptioncalculatedforagivenunitofoutputperformanceduringusage. TheEuPdirectiveisaproductdirectiveandhasadirectconsequenceonthe CEmarking ofthenew products. Before an EuP covered by implementing measures is placed on the market, a CE conformitymarkingshallbeaffixed.Adeclarationoftheconformityshallbeissuedwherebythe manufactureroritsauthorisedrepresentativeensuresanddeclaresthattheEuPcomplieswithall relevantprovisionsoftheapplicableimplementingmeasure.(EC2005) Lightingproductshavebeenselectedasoneofthe priorityproductgroupsintheEuPdirective. Preparatory studies have been prepared for street, office and residential lighting products. The outcome of these studies is two regulations in force and one under construction. The two implementingmeasureshavebeenpublishedintheformofCommissionRegulationsandentered intoforceonthe13 th ofApril2009inallMemberStates: ― Commission Regulation (EC) No 245/2009 of March 18 th , 2009 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirementsforfluorescentlampswithoutintegratedballast,forhighintensitydischarge lamps,andforballastsandluminairesabletooperatesuchlamps,andrepealingDirective 2000/55/ECoftheEuropeanParliamentandoftheCouncil. ― Commission Regulation (EC) No 244/2009 of March 18 th , 2009 implementing Directive 2005/32/EC of the European Parliament and the Council with regard to ecodesign requirementsfornon-directionalhouseholdlamps. These regulations give generic and specific requirementsforlamps,luminairesandballasts.The directive2000/55/EC–thesocalledballastdirective–isrepealedbytheregulation245/2009one yearaftertheregulationentersintoforce. The Preparatory Study for Eco-design Requirements of EuPs on "Domestic lighting – Part 2: Directionallampsandhouseholdluminaires"isalmostreadyanddiscussionwithstakeholdershas started. Inthelightingsector,therearethreeimplementingmeasuresoftheEuPdirective: • Regulation244/2009fornon-directionalhouseholdlamps • Regulation 245/2009 for fluorescent lamps without integrated ballast, for high intensity dischargelamps,andfortheirballastsandluminaires • Regulationunderconstructionfordirectionallampsandhouseholdluminaries Regulation244/2009setsrequirementsforlampstypicallyusedinhouseholds:incandescentlamps, halogen lamps and compact fluorescent lamps with integrated ballast. The following lamps are exemptedfromtheRegulation:(a)non-whitelamps(chromaticitycoordinateslimitsdefined);(b) directionallamps;(c)lampshavingaluminousfluxbelow60lumensorabove12000lumens;(d) UV-lamps(limitsaredefined);(e)fluorescentlampswithoutintegratedballast;(f)high-intensity dischargelamps;(g)incandescentlampswithE14/E27/B22/B15caps,withavoltageequaltoor below60voltsandwithoutintegratedtransformerinStages1-5.Table4-2andTable4-3showhow theregulationwillaffectthelampmarket.

74 4LIGHTINGANDENERGYSTANDARDSANDCODES

Table4-2.Regulation244/2009onNon-directionalhouseholdlamps. Stage Date Lampstobebanned(i.e.cannotbe"placedonthemarket"anymore)

1 1Sept2009 Allnon-clearlampsnotequivalent-classA(anypower) Clearlampsequivalent-classD,E,F,Gwithluminousflux ≥950lm(e.g.power ≥ 100Wincandescentlamps,230V>60Whalogenlamps) Clearlampswithluminousflux<950lmequivalent-classF,G 2 1Sept2010 Clearlampsequivalent-classD,E,F,Gwithluminousflux ≥725lm(e.g.power ≥ 75Wincandescentlamps,230V=60Whalogenlamps) Clearlampswithluminousflux<725lmequivalent-classF,G 3 1Sept2011 Clearlampsequivalent-classD,E,F,Gwithluminousflux ≥450lm(e.g.power ≥ 60Wincandescentlamps,230V ≥40Whalogenlamps) Clearlampswithluminousflux<450lmclassF,Gorequivalent 4 1Sept2012 Clearlampsequivalent-classD,E,F,Ganypower 5 1Sept2013 Enhancedfunctionalityrequirements 6 1Sept2016 Poorefficiencyhalogens(C) The regulation defines maximum allowed power for given luminous fluxes. For lamps with energy label, it is easy to link the regulationrequirementswithclasslimits.Inthetable,theword"equivalent-class"isthenused. Table4-3.Regulation244/2009onNon-directionalhouseholdlamps:RequirementforClearLamps.

Requirement Date Scope (allowedenergy

Stage classes) 100W, 75W, 60W, ≥ ≥ ≥ GLS orconventionalhalogen GLS orconventionalhalogen GLS orconventionalhalogen GLS<60W, orconventionalhalogen HalogenB HalogenC CFLi LED for>950lm( ≥80W) A B C D E F G 1 1Sep2009 fortherest A B C D E F G for>725lm( ≥65W) A B C D E F G 2 1Sep2010 fortherest A B C D E F G for>450lm( ≥45W) A B C D E F G 3 1Sep2011 fortherest A B C D E F G

4 1Sep2012 for>60lm( ≥7W) A B C D E F G raisingquality 5 1Sep2013 A B C D E F G requirements specialcaphalogen A B C D E F G 6 1Sep2016 fortherest A B C D E F G Regulation245/2009appliestolamps,ballastsandluminairesgenerallyusedintertiarysectori.e. fluorescentlampswithoutintegratedballastandhighintensitydischargelamps.Theregulationsets requirements for lamps, ballasts and luminaires separately. The most important effects of the regulation245/2009are: • T8halophosphatefluorescentlampsphasedoutfrom13April2010 • Standbypowerconsumption1Wperballastfrom13April2010and0,5Wperballastfrom 13April2012 • T10andT12halophosphatefluorescentlampsphasedoutfrom13April2012 • Highpressuremercurylampsphasedoutfrom13April2015,retrofithighpressuresodium lampsbannedthenalso

75 4LIGHTINGANDENERGYSTANDARDSANDCODES

• AllowedballastenergyefficiencyindexesA1BAT,A2BATandA2from13April2017 • Efficacy and performance requirements for high pressuresodiumlamps andmetalhalide lamps The tertiary sector lighting regulation repeals the so called ballast directive (2000/55/EC). The ballastdirectiveclassifiedtheballastsforfluorescentlampsaccordingtotheirenergyefficiencyand bannedtwoofthemostinefficientclasses:ballastswithenergyefficiencyindexes(EEI)CandD. Theregulation245/2009introducestwonewEEIs,A1BATandA2BAT,andphasesoutallother classesbutA2andthesetwonewEEIsfrom13April2017.Thismeansphasingoutallmagnetic ballastsastheyarenotabletoreachtheenergyefficiencyrequirements. Bothoftheregulationsonlightingsectorusethephrase“placingonthemarket”.Therequirements aresetontheplacingonthemarketoftheproductsinthescope.Theplacingonthemarketmeans thefirsttimetheproductismadeavailableontheEUmarket.Productsnotcomplyingwiththe requirementscannotbeplacedonthemarketfromthegivendateon.Examplesofplacingonthe market: • Whenonecompanymanufactures,storesandsellstheproduct,theplacingonthemarket takesplacewhenthecompanysellstheproduct, • In a corporation when the product is transferred from the possession of manufacturing departmenttothedistributionchain,and • Manufacturing outside the EU, placing on the market takes place when the product is transportedtotheEU. After being placed on the market, the product is allowed to be further sold regardless of the requirements. 4.3.3 Energyperformanceofbuildings ThefourkeypointsoftheDirective2002/91/EContheenergyperformanceofbuildingsare(EC 2002): • acommonmethodologyforcalculatingtheintegratedenergyperformanceofbuildings; • minimumstandardsontheenergyperformanceofnewbuildingsandexistingbuildingsthat aresubjecttomajorrenovation; • systemsfortheenergycertificationofnewandexistingbuildingsand,forpublicbuildings, prominentdisplayofthiscertificationandotherrelevantinformation.Certificatesmustbe lessthanfiveyearsold; • regular inspection of boilers and central air-conditioning systems in buildings and in additionanassessmentofheatinginstallationsinwhichtheboilersaremorethan15years old. DeadlinefortranspositionintheMemberStateswas4.1.2006. EN15193-EnergyrequirementsforLightingLENI TheLightingEnergyNumericIndicator (LENI)hasbeenestablishedtoshowtheannuallighting energyperm²requiredtofulfillightingrequirementsinthebuildingspecifications. Wlight LENI = kWh/m 2/year (4-1) A where Wlight totalannualenergyusedforlighting[kWh/year] A totalusefulfloorareaofthebuilding[m 2]

76 4LIGHTINGANDENERGYSTANDARDSANDCODES

TheLENIcanbeusedtomakedirectcomparisonsofthelightingenergyusedinbuildingswhich havesimilarcategorieswithdifferentsizeandconfiguration. In CEN/TC 169 Light and Lighting , substructure WG 9 (Energy performance of buildings) has developedthestandardEN15193 Lightingenergyestimation(EN2007).Thestandardconsiders differentaspectsofenergyconsumption,namely; ― Installedload.Thisincludesallinstalledluminaires ― Usageduringtheday. Thiscanbecontrolledbyusingdaylight-dependentlightingcontrol andoccupancycontrolsystems. ― Usageatnight.Thiscanbecontrolledbyusingoccupancycontrol ― Useofconstantilluminance.Thismeanscontrolofinitialilluminance(maintenancecontrol) ― Standby.Thisrepresentsparasiticpowerincontrolledlightingcomponents ― Algorithmic lighting and scene setting. This includes reduced energy consumption of installedpower. The standard uses the basic formula to measure and calculate the annual lighting energy for a building(W L,t ): WL,t = ∑[P n xF cx{(t DxF oxF D)+(t NxF o)}]/1000kWh (4-2) Additionally, the annual parasitic power (W P,t ) for the evaluation of stand-by power losses and powerforemergencylightingcompletestheenergycalculation. WP,t = ∑{[P pc x{t y-(t D+t N)}]+(P em xt e)}/1000kWh (4-3) where Pn totalluminairepowerinazone[W] FC constantilluminancefactor tp timewhenparasiticpowerisused[h] tD timefordaylightusage[h] tN timefornon-daylightusage[h] FD daylightdependencyfactor Fo occupancyfactor Ppc parasiticpowerinazone(whichgenerallymeansstandbylosses)[W] ty timeinastandardyear(8760h) Pem totalinstalledchargingpowerforemergencylightingluminairesina zone[W] te emergencylightingchargingtime[h] Thetotalannualenergyusedforlightingis Wlight =W L+W PkWh/year Thestandardprovidesbothaquickmethodandacomprehensivemethod.Anexampleoftheuseof thequickmethodisgivenbelow

tu∑ P n W=6 A + kWh/year (4-4) light 1000 where tu=( tDx FDx FO)+( tnx FO)istheeffectiveusagehour Aisthetotalareaofthebuilding.

77 4LIGHTINGANDENERGYSTANDARDSANDCODES

Thevaluest D, tN, FD, FoaretabulatedinEN15193. 6Aindicatestheenergyconsumptionforemergencylightingandparasiticpower. Exampleforoffices: tu=( tDx FDx FO)+( tNx FO) tD=2250h,t N=250h,F D=0.8,F O=0.9 tu=1845h 4.3.4 EnergyEfficiencyLabel Directive 98/11/EC setsthe requirements for energylabelforhouseholdlamps.Inpractice,only incandescentandcompactfluorescentlampsareincluded.Allotherlightsourcesareexcluded.It implementsthedirective92/75/EEC,whichisan“umbrella”labellingdirective.Itestablishesthat householdappliancesshallbelabelledaccordingtotheirenergyconsumption,andthattheproduct informationshallbeharmonised. 4.3.5 DisposalphaseofLightingEquipmentinEurope Legislation Thematerialcontentsandthedisposaloflightingequipmentarechieflyregulatedbytwodirectives thatapplytoelectricalandelectronicequipment: ― TheRoHSDirective:Directive2002/95/ECoftheEuropeanParliamentandoftheCouncil of 27 th of January 2003 on the restriction of the use of certain hazardous substances in electricalandelectronicequipment ― TheWEEEDirective:Directive2002/96/ECoftheEuropeanParliamentandoftheCouncil of27 th ofJanuary2003onwasteelectricalandelectronicequipment These directives complement European Union measures on landfill and incineration of waste. Increasedrecyclingofelectricalandelectronicdeviceswilllimitthetotalquantityofwastegoingto final disposal. Producers, including manufacturers and importers, will be responsible for taking backandrecyclingelectricalandelectronicdevices.Thiswillprovideincentivestodesignelectrical andelectronicequipmentsinmoreenvironmentallyfriendlyandamoreefficientwayconsidering wastemanagementaspectsfully.Consumerswillbeabletoreturntheirwasteequipmentsfreeof charge. RoHSDirective Thefirstdirective,RoHS,ismainlyrelatedtotheproductionphaseoftheproducts,asitdealswith the material composition oftheproducts. Itis notallowedtoputonthemarket products with hazardous substances (heavy metals: lead, mercury, cadmium and hexavalent chromium) and brominatedflameretardants[polybrominatedbiphenyls(PBB)orpolybrominateddiphenylethers (PBDE)]exceedingfixedlimits(EC2003a).TheRoHSdirectiveisstronglyrelatedtothedisposal phase. The absence or limited amount of hazardous substances will limit the generation of hazardouswaste. AstheRoHSdirectiveisaharmonizingdirective,itapproximatesthelegislationinMemberStates. The aim of the directive is to protect human health and the environment, and to encourage environmentallysoundrecoveryanddisposalofwasteelectricalandelectronicequipment.

78 4LIGHTINGANDENERGYSTANDARDSANDCODES

Thedirectiveincludesalistofexemptions.Somehazardoussubstancesmaybepresentindifferent componentsofequipmentsusedforlighting.Forexample: ― Leadinsolderingalloys,electroniccomponents,andinglass, ― Cadmiuminglass,and ― Mercury in discharge lamps (fluorescent lamps, high pressure sodium lamp etc.) (EC 2003a). WEEEDirective Theseconddirective,WEEE,aimstopreventthegenerationofwastefromelectricalandelectronic equipment.Itpromotesthereuse,recyclingandotherwaysofrecoveryofsuchwastetoreducethe disposal.Thedirectiveobligesproducerstoberesponsibleforthecollection,treatment,recovery andenvironmentallysounddisposalofWEEE.Itappliesalsotolightingequipmentinwhichthe followingproductsareincluded: ― Luminairesforfluorescentlampsexceptluminairesinhouseholds, ― Straight(linear)fluorescentlamps, ― Compactfluorescentlamps, ― High intensity discharge lamps, including high pressure sodium lamps and metal halide lamps, ― Lowpressuresodiumlamps,and ― Otherlightingorequipmentforthepurposeofspreadingorcontrollinglightexceptfilament bulbs(EC2003b). Ballasts are not explicitly mentioned. In the common case where luminaires are equipped with ballasts,theballastsareconsideredaspartoftheluminaire.Thereisatrendtoconsiderseparate ballastsalsoasproductsunderWEEEdirective. BareLEDsarenotincludedinthedirectivesas lamps.However,whenLEDsareequippedwithreflectors,lenses,theyareconsideredasluminaires andthenasproductsunderthescopeofWEEEdirective. Example:thelampscase Inthefollowing,materialcomposition,anddisposalphaseandrecyclingtechniquesoflampswill bediscussed. Materialcompositionoflamps Lampsaremadeofcomponentswhichcanbegroupedas: ― lampstructure(lampenvelope,metalsupportparts,cap) ― electricalparts(electrodes,filaments,wiring,ballast) ― lamp envelope additives (inert gas, getter, emitter, mercury, sodium, metal-halides, fluorescentpowder) The component materials are selected for their chemical or physical properties for optimal light emission properties. The average material compositionoflampsisdescribedinTable4-4. HID lampgroupincludesmanydifferentlamptypes.Metal-halidelamps(MH)areselectedtorepresent indoor applications and high-pressure sodium (HPS) lamps are selected to represent outdoor applications.

79 4LIGHTINGANDENERGYSTANDARDSANDCODES

Table4-4.Materialcompositionoftypicallamprepresentatives(ELC2009a). LampGroup Example Weight[g] Total Glass Metals Electronics Plastics rest GLS 60W 33 30 3 -- -- 0.01 Halogen 35W 2.5 2 0.5 -- -- 0.01 Fluorescent 36W 120 115 3 -- -- 2 CFL- 11W 120 65 4 25 25 1 integrated CFL-non- 13W 55 40 3 -- 10 2 integrated HID MHL400W 240 195 42 -- -- 3 HPS150W 150 105 44.5 -- -- 0.05 The rest are the lamp envelope additives including electrodes, capping paste and ceramic parts (ELC2009a). DisposalPhaseoflamps Themaingoalsoflamprecyclingaretherecoveryofthemercury and theneutralisationofthe sodium metal. Gas discharge lamps contain mercury, whereas incandescent lamps are free from mercury and other environmental sensitive substances. Recycling of glass and metal from incandescentlampsisnotacommonpractiseasitisnoteconomicallyfeasible. Recyclingtechniquesforfluorescentlamps Basically,twotypesoftechniquesareutilizedforrecyclingoffluorescentlamps.Onetechniqueis knownasendcut,aprocessbywhichbothendsofthe fluorescent tube are removed before the materials are separated and processed to a high purityproduct.Theothertechniqueisknownas shredder(crushandsieve).Itcrushesthecompleteproductandthevariousingredientsareseparated and processed after crushing. All the recovered materials can be re-used in different types of applications.Table4-5showsanoverviewofthematerialcomponentsandtheiroutletchannels. The lamp manufacturers buy many fractions of the recovered materials. They use these material fractionstosubstituteforthevirginmaterialandthislastprocessclosesthelifecycleloop(ELC, 2009b). Table4-5.Overviewofrecoveredmaterialsandtheircustomers (ELC2009b) . Materials Customer Glass Lampindustry Glassindustry Glassbricks/concretebricks Metal Lampindustry Alu-cap Controlledlandfill Brass Fluorescentpowder,glasspowder (mercurycontainingormercury-free) Mercuryafterdistillation Mercuryindustry Lampindustry Generalconsiderationsondisposalphaseforthefinaluser TheRoHSandWEEEdirectivesareimportantnotonlyintermsofenvironmentalissues,butalso in the life cycle analysis (LCA) framework. Although studies have shown that the main

80 4LIGHTINGANDENERGYSTANDARDSANDCODES environmental impact of lighting equipment occurs during their useful life time (energy consumptionduringoperation),thedisposalphaseisstilltobecorrectlytakenintoaccount.With theprogressiveshiftfromincandescentlampstoenergyefficientlamps,itisimportanttoconsider proper disposal of these energy efficient light sources containing environmentally sensitive substanceslikeheavymetals. Themanufacturersareresponsiblefortheprocessduringproduction.Theconsumeroftheproducts should also be involved actively in the disposal process to reduce the harmful effects of the environmentallysensitivesubstances.Thiswillhelptheendusersgetthemaximumbenefitofthe products.Inpractice,thereareatleasttwoimportantaspects: ― Procedures,infrastructures,availabilityofphysicaltools(containersforcollectionofburned outlamps) ― Knowledgeandconsciousnessofthevarioustypesofconsumers(buildingenergymanagers, technicalofficers). ThepracticaladoptionoftheWEEEdirectiveisin progress,butthesituationisdifferentinthe differentMemberStates. 4.3.6 Notes Dedicatedlegislationonlightingdesignisunavailable.Requestsinthiscontextaremadebyvarious stakeholderstodealproperlywithenergysavingsinlightinginstallations.Alsoacomplementary legislationoninstallationphaseisadvisable. A very important consequence of the legislation is the driving effect on the market trends. For example, the Energy Label helps consumers to choose the right product by showing the energy efficiency of different products on a common scale. The Ecodesign regulations, establishing minimum requirement for products and putting those products on the market, will in practice progressivelybananumberoflessefficientproducts.Theseregulations,inturn,willprovidethe buyers with comprehensive product information, helping them to select the most appropriate products. It is important to highlight that the full process of developing a regulation involves intensive discussionwithstakeholdersandinterestedpartiestoguaranteethattheregulationwillbeeffective and the objectives are really achievable. For example, a sufficient timeframe is given to manufacturers to redesign their products, cost impacts for consumers and manufacturers (particularlysmallandmediumenterprises)aretakenintoaccount,andparticularemphasisisgiven formarketsurveillanceandconformityassessment. 4.3.7 Reviewofstandardsonelectricandelectromagneticaspects IECstandard Theharmonic emissionlimitsforlightingequipment were at first specified in the standard IEC 1000-3-2,entitled"Harmoniclimitsforlowvoltageapparatus<16A"inwhichlightingequipment isdefinedas classC equipment(IEC,2005).TheInternationalElectrotechnicalCommission(IEC) setsforththelimitsforharmonicsinthecurrent of small single-phase or three-phase loads (less than16Acurrentperphase)inElectromagneticcompatibility(EMC)-Part3-2:Limitsforharmonic currentemissions (fromIEC61000-3-2).ThelasteditionofthisstandardisIEC61000-3-2Ed.3.0 b:2005.

81 4LIGHTINGANDENERGYSTANDARDSANDCODES

CENELECstandard The text of the IEC standard was approved by CENELEC as European Standard EN 61000-3-2 “Limits for harmonic current emissions (equipment input current up to and including 16A per phase)”.IECstandarddescribesatotalharmonicdistortion(THD i)forcurrentoflessthan33%and a power factor (PF) of more than 0.95 for lighting equipment. No limits apply for lamps with integratedballasts,dimmers,andso-calledsemi-luminarieswithanactivepoweroflessthan25W. Inpractice,thismeansthattherearestillnoemissionlimitsforintegralcompactfluorescentlamps. Equipmentthatdrawscurrentbetween16Aand75AperphaseiscoveredbyIEC/TS61000-3-12. HarmonicsmeasurementandevaluationmethodsforbothstandardsaregovernedbyIEC61000-4- 7. EuropeanUnionEMCDirective TheEUElectromagneticCompatibility(EMC)Directivealsodealswithharmonicemissionlevels. TheEuropeanEMCDirectivedoesnotspecifyemissionlevels,asitisrathergeneral.Forlighting equipment,manufacturersmustshowthattheycomplywiththeEMCDirectivebygivingreference tootherstandardswhicharelistedintheEU'sofficialjournals. ANSI/IEEEstandards The US standards do not specify any emission limits for equipment. IEEE Standard 519-1992 "Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems" only provides the guidelines for permissible injections of harmonic currents from individual customers(includingonlyforlighting)intothepowersystem(IEEE,1992).TheIEEESinglePhase HarmonicsTaskForce(P1495)isdevelopingastandardforsinglephaseloadsoflessthan40A. Thereis,however,stillnoagreementonwhatsuch limitsshouldbe,orwhetherlimitsareeven needed.MostoftheongoingworksbytheIEEEregardingharmonicstandardsdevelopmenthas shiftedtomodifyingtheStandard519-1992(McGranaghan2001). IEEEStandard519-1992providesrecommendedlimitsforharmoniclevelsatthepointofcommon coupling (PCC) between the customer and the power system (the location from where other customerscouldbesupplied).TherecommendedvoltagedistortionlimitforthePCCis5%forthe totalharmonicdistortion(THD i)and3%forindividualharmonics.Thetaskforceworkingonthe revisiontoStandard519isconsideringhigherlimitsfortheinteriorsofthefacilityandmaking theselimitsfrequency-dependent.ThelimitsspecifiedinIECforlow-voltagesystemsallowTHD i of8%andincludelimitsforindividualharmoniccomponents,whichdecreasewithfrequency. Theharmonicfilterworkinggroup,whichispartofthecapacitorsubcommittee,hascompleteda harmonicfilterdesignguideknownasIEEEStandard1531(IEEE,2003).Anumberofdifferences betweenEuropeanandUSpowersystems(IEEE2002)suggestthatanyharmoniclimitsfortheUS should be different from the IEC standard. The European system uses no neutral on overhead mediumvoltagedistributionandacablesheathfortheundergroundportion,andtheyusedeltawye transformerstostepdownthevoltageto400/230V.Asaresult,itislesssusceptibletotripled(3,6, 9etc.)harmonicdistortionthantheUSsystem.TheEuropeansystemincludesextensive400/230V secondarydistribution,creatinghigher-impedanceutilitydistributionthantheUSsystem.TheUS systemhashighersecondaryimpedancebeyondthepointofcommoncoupling,however,because ofsmallerdistributiontransformersused.

82 4LIGHTINGANDENERGYSTANDARDSANDCODES

HarmonicCurrentsLimits EuropeanStandards The International Electrotechnical Commission (IEC) adopted a philosophy of obliging manufacturers to limit their products consumption of current harmonics in their standard IEC 61000-3-2(IEC2005).Thisstandardappliestoallsingle-phaseandthree-phaseloadsratedatless than 16 A current per phase. The standard classifieselectricalloadsasshowninTable4-6.The standardasoriginallypublishedusedtheclassificationsontheleftsideofthetable,withthespecial waveform defined in Figure 4-8. The special waveform is the limiting envelope for the current waveform.Thecurrenthastofallwithinthiswaveformforeachhalfcycle95%ofthetime.After negotiations with manufacturers who opposed to the limits, Amendment A14, with its classificationsontherightsideoftheTable4-6,waspublished.Themanufacturershadthreeyears timebywhichtheycoulduseeitherofthesetsofclassifications(IAEEL1995,Fenical2000).The amendment A14 has been in force since January 1 st 2004. The harmonic current limits are for individualharmonics,anddonotspecifytotalharmonicdistortion(THD i).Theselimitsaregivenin Table4-7andTable4-8. Table4-6.EN61000-3-2equipment(lighting)classification. Classifications(original) AmendmentA14Classifications

ClassA: Balanced3phaseequipments,single ClassA: Balanced3phaseequipments, phaseequipmentnotinotherclasses. householdappliancesexcludingequipment identifiedasclassD,tools(exceptportable), dimmersforincandescentlamps(butnotother lightingequipment),andaudioequipment, anythingnototherwiseclassified. ClassC: Lightingequipmentover25W. ClassC: Alllightingequipmentexcept incandescentlampdimmers. Another important clarification in the version of November 2005 is that the current harmonics measurementmustbedoneonthelineconductorand notontheneutralconductor(IEC,2005). However,forsinglephaseapplicationsthiscanbedoneontheneutralconductorbutnotinthree- phaseapplicationswherethevaluescandiffersignificantlyiftheEUTisnotbalanced. i/i p π/3 π/3 π/3 1 0.35 0 π/2 π ω t

83 4LIGHTINGANDENERGYSTANDARDSANDCODES

Figure4-8.Limitingenvelopeforthecurrentwaveform. Table4-7. HarmonicslimitforClassAequipment(IEC2005,Abidin2006). Harmonicorder Maximumpermissible n harmoniccurrent(A) Oddharmonics 3 2.30 5 1.14 7 0.77 9 0.40 11 0.33 13 0.21 15 ≤n ≤39 2.25/n Evenharmonics 2 1.08 4 0.43 6 0.3 8≤n ≤40 1.84/n Table4-8.HarmonicslimitforClassCequipment (IEC2005, Abidin2006). Harmonicorder Maximumpermissible n harmoniccurrent (%offundamental) 2 2 3 30xcircuitpowerfactor 5 10 7 7 9 5 11 ≤n ≤39 3

AmericanRecommendations IEEEhasdrafteda guidetolimitharmoniccurrentconsumptionbysingle-phaseloadsratedless than600Vand40A(Pacificorp1998,IEEE1992).Thisdraftguidedividestheloadsintotwo classes.Theyarelistedbelow: 1. “ Higher wattage nonlinear loads like heat pumps and EV battery chargers as well as large concentrationsoflowerwattagedeviceslikecomputerworkstationsandelectronicballastsfound intypicalcommercialofficesandbusinesses (Pacificorp 1998) ”. The recommended maximum levels of current distortion allowed for these loads are shown in Table 4-9. The guide also suggestsaminimumpowerfactorof0.95forthehighwattageloads.MaximumTHDiis15%and Maximum3 rd harmoniccurrentis10%.

84 4LIGHTINGANDENERGYSTANDARDSANDCODES

2.“ Lowerwattagenonlinearloadsnotconcentratedinasmallarea(Pacificorp1998) ”.Table4-9 rd shows the recommended limits. For these loads maximum THDi is 30% and maximum 3 harmoniccurrentis20%. Table4-9.RecommendedFull-LoadHarmonicCurrentLimitsforEquipment.

Equipment Limit(%THD i forcurrent) Alllighting,motordrives,andotherequipment sharingacommonelectricalbusorpanelwith 15 sensitiveelectronicloads Allfluorescentlighting,includingcompact 30 fluorescent Electrical devices, such as computers and fluorescentlightingsystems,cansendharmonicwave formsatmanyfrequenciesbackontothepowersupplyline,therebydistortingthewaveformofthe supply current. For 4 feet long lamps, the American National Standards Institute (ANSI) recommendsaTHD ilimitof32%butsomeelectricutilitiesonlyprovidefinancialincentivesfor ballasts that produce THD i of less than 20%. Ballasts that produce THD i of less than 10% are availableforinstallationswithcriticalpowerrequirements(Lightcorp2009). Fluorescent–electronicballastsshallcomplywiththefollowingratings(Indiana2006). ― minimumpowerfactor 98% ― maximumTHD i 20% ― maximum3 rd harmonicdistortion 10% TheelectronicballastsalsoaretocomplywiththeFCC (FederalCommunicationsCommission) Regulations,Part15,andSubpartJforelectromagneticinterference. 4.4 Examplesoflightingrelatedenergyprograms

4.4.1 ENERGYSTAR The ENERGY STAR program was initiated in the US buthasnowspreadglobally,workswith manufacturers,nationalandregionalretailers,stateandlocalgovernments,andutilitiestoestablish energyefficiencycriteria,labelproducts,andpromotethemanufactureanduseofENERGYSTAR products. ENERGY STAR products include clothes washers, refrigerators/freezers, dishwashers, roomair-conditioners,windows,doorsand,residentialwaterheaters,compactfluorescent lamps,andsolidstatelightingluminaires.In2006theENERGYSTARprogramloweredthetotal energy consumption of t he year by almost 5%. On the ENERGY STAR webpage (www.enenrgystar.gov)thereisinformationabouttheproductsthathavequalifiedtoachievethe ENERGYSTAR.ForinstanceforCFLsthereislistofproductswithwattage,lightoutput,lamp life,colortemperature,andmodeltype.ToqualifyabareCFLlampefficacyshouldbeatleast50 lm/W,ifthelamppowerislessthan10W,55lm/W10W ≤lamppower<15Wand65lm/W whenlamppowerismorethanorequalto15W.Detailedspecificationsaregivenfore.g.color quality(CRI ≥80),startingandrun-uptime,andpowerfactor.Thelamplifeisconsideredwith rapidcyclestresstestandlumenmaintenanceduringburninghours(ENERGYSTAR2008).For CFLs,theENERGYSTARwebpagesprovideabuyersguideandinformationonhowtheywork, theirrecycling,andtheamountofmercury.

85 4LIGHTINGANDENERGYSTANDARDSANDCODES

4.4.2 TopRunnerprogram The Top Runner program was created in Japan as a countermeasure for the increase of energy consumptiononresidential,commercialandtransportationsectors.Theprogramisincorporatedin theJapaneselegislationforenergyconservation,andrequiresmanufacturerstoimprovetheenergy performance of their machinery and equipment. Few examples of the products involved are fluorescentlamps,computers,freezers,refrigerators,TVs,VCRs. Expectationsregardingtheroleofenergyconservationareincreasingduetoglobalenvironmental problems. Therefore, the requirements for improving the energy efficiency of machinery and equipmentasmuchaspossiblearenowareality.TheTopRunnerprogramhascomeintoexistence inlightofthissituation.TheTopRunnerprogramuses,asabasevalue,thevalueoftheproduct withthehighestenergyefficiencyonthemarketatthetimeofthestandardestablishmentprocess andsetsstandardvaluesbyconsideringpotentialtechnologicalimprovementsaddedasefficiency improvements.Naturally,targetstandardvaluesareextremelyhigh. For target achievement evaluation, manufacturers have to make sure that the weighted average valuemeetsorexceedsthetargetstandardvalue.Whilethissystemgivesmanufacturerssubstantial technologicalandeconomicburdens,theindustryshouldconductsubstantialpriornegotiationson possibilityofachievingstandardvaluesandadoptsalespromotionmeasuresforproductsthathave achievedtargetvalues. With fluorescent lamps, target fiscal year was fulfilled in FY 2005, the total luminous efficacy (lm/W) was improved by approximately 35.7% from FY 1997. It was initially assumed that the improvementratewasapproximately16.6%(TopRunner2008).

86 4LIGHTINGANDENERGYSTANDARDSANDCODES

References ABIDIN,M.N.Z.,2006. IEC61000-3-2HarmonicsStandardsOverview .NewJersey:SchaffnerEMCInc.Available from:http://www.teseq.com/com/en/service_support/technical_information/05_AN_IEC61000-3-25.pdf . ANSI/IESNA, 2004. American Standard ANSI/IESNA RP-1-04: American National Standard Practice for Office Lighting. ARRA,2009.AmericanRecoveryandReinvestmentActof2009,UnitedStatesPublicLaw111-5. AS,1990.AustralianStandardAS1680.2.0-1990Interiorlighting:Part2.0-Recommendationsforspecifictasksand interiors. AS,1993.AustralianStandardAS1680.2.1-1993Interiorlighting:Part2.1-Circulationspacesandothergeneralareas. AS,1994.AustralianStandardAS1680.2.2-1994Interiorlighting-Officeandscreen-basedtasks AS,1994a.AustralianStandardAS1680.2.3-1994Interiorlighting:Part2.1-Educationalandtrainingfacilities AS, 1990. Australian Standard AS 1680.1-2006 Interior and workplace lighting - General principles and recommendations. AS/NZS1998.Australian/NewZealandStandardAS/NZS1680.0-1998Interiorlighting-Safemovement CA EPBD, 2008. Concerted Action, Energy Performance of Buildings Directive. http://www.epbd-ca.org, accessed 27.10.2009. CIE, 1981. Publication CIE 49-1981: Guide on the Emergency Lighting of Building Interiors, Commission Internationaledel'Eclairage,ISBN:9789290340492. CIE,1982.PublicationCIE52-1982:CalculationsforInteriorLighting-AppliedMethod,CommissionInternationale del'Eclairage,ISBN:9789290340522. CIE, 1983. Publication CIE 55-1983: Discomfort Glare in the Interior Working Environment, Commission Internationaledel'Eclairage,ISBN:9789290340553. CIE,1984.PublicationCIE60-1984:VisionandtheVisualDisplayUnitWorkStation,CommissionInternationalede l'Eclairage,ISBN:9789637251078. CIE,1986.PublicationCIE29.2-1986:GuideonInteriorLighting,CommissionInternationaledel'Eclairage. CIE,1995.PublicationCIE117-1995:DiscomfortGlareinInteriorLighting,CommissionInternationaledel'Eclairage, ISBN:9783900734701. CIE,1997.PublicationCIE23-1997:Lowvision-LightingNeedsforthePartiallySighted,CommissionInternationale del'Eclairage,ISBN:9783900734787. CIE, 2001/ISO 2002. Joint CIE/ISO standard S008/E:2001/ISO 8995-1:2002(E): Lighting of Work Places - Part 1: Indoor. CIE,2002.StandardCIES009/E:2002:PhotobiologicalSafetyofLampsandLampSystems. CIE,2002a.PublicationCIE146/147:2002:CIEcollectiononGlare2000,CommissionInternationaledel'Eclairage, ISBN:9783901906152. CIE,2004.PublicationCIE161:2004:LightingDesignMethodsforObstructedInteriors,CommissionInternationalede l'Eclairage,ISBN:9783901906329. CIE,2004/ISO2005.JointCIE/ISOstandardCIES010/E:2004/ISO23539:2005(E):Photometry-TheCIESystemof PhysicalPhotometry.

87 4LIGHTINGANDENERGYSTANDARDSANDCODES

CIE, 2005. Publication CIE 97:2005: Maintenance of Indoor Electric Lighting Systems, 2nd Edition, Commission Internationaledel'Eclairage,ISBN:9783901906459. CIE,2009.PublicationCIE184:2009:IndoorDaylightIlluminants,CommissionInternationaledel'Eclairage,ISBN: 9783901906749. ELC,2009a.MaterialComposition.EuropeanLampCompaniesFederation. Availablefrom:http://www.elcfed.org/2_lighting_composition.html . ELC,2009b.Environment.RecyclingTechniquesforFluorescentLamps. Availablefrom:http://www.elcfed.org/2_health_environment.html . EN12464-1,2002.EuropeanStandardEN12464-1:2002Lightandlighting-lightingofworkplaces-Part1:Indoor WorkPlaces. EN 15193, 2007. European Standard EN 15193:2007 Energy performance of buildings - Energy requirements for lighting. EC,1998.CommissionDirective98/11/ECimplementingCouncilDirective92/75/EECwithregardtoenergylabeling ofhouseholdlamps. EC, 2000. Directive 2000/55/EC of the European Parliament and of the Council of 18 September 2000 on energy efficiencyrequirementsforballastsforfluorescentlighting. EC,2002.Directive2002/95/ECoftheEuropeanParliamentandoftheCouncilof16December2002ontheenergy performanceofbuildings.OfficialJournaloftheEuropeanUnion. Availablefrom:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:001:0065:0071:EN:PDF EC,2003a.Directive2002/95/ECoftheEuropeanParliamentandoftheCouncilof27January2003ontheRestriction ofCertainHazardousSubstancesinElectricalandElectronicEquipment.OfficialJournaloftheEuropeanUnion. Availablefrom:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0095:20090611:EN:PDF . EC, 2003b. Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on Waste ElectricalandElectronicEquipment(WEEE).OfficialJournaloftheEuropeanUnion. Availablefrom:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2002L0096:20090112:EN:PDF . EC, 2005. Directive 2005/32/EC of the European Parliament and of the Council of 6 July 2005 Establishing a Framework for the Setting of Ecodesign Requirements for Energy-using Products and Amending Council directive 92/42/EECandDirectives96/57/ECand2000/55/ECoftheEuropeanParliamentandoftheCouncil. EC,2006.Directive2006/32/ECoftheEuropeanParliamentandoftheCouncilofof5April2006onenergyend-use efficiencyandenergyservicesandrepealingCouncilDirective93/76/EEC. EISA,2007.UnitedStatesEnergyIndependentandSecurityActof2007,UnitedStatesPublicLaw110-140. EPAct,2005.Energypolicyactof2005,UnitedStatesPublicLaw109-58. ENERGYSTAR,2008.EnergyStarCompactfluorescentlightbulbqualificationform.2p. FENICAL,G.,2000.EN61000-3-2andEN61000-3-3:HarmonyatLast?EvaluationEngineering, 2000. Availablefrom:http://www.evaluationengineering.com/archive/articles/0900deal.htm . GB,2004.ChineseStandardGB50034-2004:Standardforlightingdesignofbuildings. IAEEL(InternationalAssociationforEnergyefficientLighting),1995.PowerQualityandLighting[online].IAEEL (InternationalAssociationforEnergyefficientLighting)Newsletter3-4/95. Availablefrom:www.iaeel.org/iaeel/newsl/1995/trefyra1995/LiTech_a_3_4_95.html . IEA,2008.InsupportoftheG8PlanofAction.Energyefficiencypolicyrecommendations.64p. http://www.iea.org/G8/2008/G8_EE_recommendations.pdf

88 4LIGHTINGANDENERGYSTANDARDSANDCODES

IEC,2005. Electromagneticcompatibility(EMC)–Part3-2:Limits-Limitsforharmoniccurrentemissions(equipment inputcurrent<=16Aperphase) .Thirdedition2005-11. IEEE,1992. IEEERecommendedPracticesandRequirementsforHarmonicControlinElectricalPowerSystems .IEEE 519-1992.InstituteofElectricalandElectronicsEngineers(IEEE). IEEE (IEEE Power Engineering Society), 2002. Draft Guide for Harmonic Limits for Single-Phase Equipment, P1495/D3. Sponsored by the Transmission and Distribution Committee of the IEEE Power Engineering Society, January26,2002. IEEE,2003.GuideforApplicationandSpecificationofHarmonicFilters.IEEE1531-2003.InstituteofElectricaland ElectronicsEngineers(IEEE). INDIANA, 2006. Electrical Standards – 16500: Lighting Systems . Available from: www.indiana.edu/~uao/16500e- s.pdf . IS1992.IndianStandardIS3646(Part1):1992,Codeofpracticeforinteriorillumination:Part1Generalrequirements andrecommendationsforworkinginteriors. ISO,2008/CIE,2006.JointISO/CIEstandard ISO11664-2:2008(E)/CIES014-2/E:2006:Colorimetry--Part2:CIE StandardIlluminantsforColorimetry. J.B.Gupta,1995.Electricalinstallationestimationandcosting,S.K.Kataria&Sons,NewDelhi1995,7thedition. JIES,1999.JapaneseStandardJIES-008(1999)-IndoorLightingStandard. Karney, 2009. The U.S. Building Technologies Program: Moving to marketable zero energy Buildings. Energy ConservationinBuildingsandCommunitySystemsProgramme.News49,June2009.p.1-6. LIGHTCORP, 2009. Glossaryofterms .Enlighteningtheworkspace. Availablefrom:http://www.lightcorp.com/glossary.cfm . Maldonando,Wouters,Panek2008.Executivesummary reportontheconcertedactionsupportingtransposition and implementation of the directive 2002/91/EC CA – EPBD (2005-2007). 20 p. http://www.epbd- ca.org/index.cfm?cat=news#downloads Milford, 2009. Implementation of energy efficient building policy in South Africa. The implementation of energy efficientbuildingspoliciesin5continents.Brussels,Belgium,14October2009. Mcgranaghan,M.,2001.Power:QualityStandards:AnIndustryUpdate,2001. Availablefrom:http://www.powerquality.com/mag/power_power_quality_standards/index.html . NBC2005.NationalBuildingCode(NBC)ofIndia2005,Part8,Section1 PACIFICORP,1998. 1C.4.1–HarmonicDistortion .PacifiCorpEngineeringHandbook. Availablefrom:www.pacificpower.net/File/File22467.pdf . Sunder,2009.U.S:Policiesandconceptssupportingimprovedenergyefficiencyinbuildings.Theimplementationof energyefficientbuildingspoliciesin5continents.Brussels,Belgium,14October2009. Top runner program, 2008. Ministry of Economy, Trade and Industry (METI), Agency for Natural Resources and Energy, Energy Efficiency and Conservation Division. The Energy Conservation Center, Energy Conservation EquipmentPromotionDepartment.68p. ReaM.S.(ed.),2000.IESNA Lighting Handbook(9 th edition), Illuminating Engineering Society of North America, ISBN978-0-87995-150-4. SANS,2005.SouthAfricanStandardSANS10114-1:2005-CodeofPracticeforInteriorLighting.

89 4LIGHTINGANDENERGYSTANDARDSANDCODES

SNiP,1995.SNiP23-05-95:ConstructionStandardsandRulesofRussianFederation-DaylightandArtificialLighting. Tonello, G. y Sandoval, J., 1997. Recomendaciones para iluminación de oficinas” Asociación Argentina de Luminotécnia(AADL),1997. Wang,2009.TheimplementationofenergyefficientbuildingspoliciesinChina.Theimplementationofenergyefficient buildingspoliciesin5continents.Brussels,Belgium,14October2009. Wouters,2009.OpportunitiesofferedbytheBUILD UP interactive web portal. The implementation of energy efficient buildingspoliciesin5continents.Brussels,Belgium,14October2009.

90 5LIGHTINGTECHNOLOGIES

Chapter5:Lightingtechnologies Topicscovered 5 Lightingtechnologies...... 93 5.1 Introduction...... 93 5.2 Lightsources...... 94 5.2.1 Overview...... 94 5.2.2 Lampsinuse ...... 96 5.2.3 Lamps...... 98 Incandescentlamp...... 98 Tungstenhalogenlamp...... 99 Fluorescentlamps ...... 100 Compactfluorescentlamps(CFL)...... 101 HighIntensityDischargelamps(HighPressure)...... 103 MercuryLamps...... 103 Metalhalidelamps...... 103 Highpressuresodiumlamps...... 104 Electrodelesslamps...... 105 Inductionlamp ...... 105 Compactfluorescentlamps(electrodeless) ...... 105 5.2.4 Auxiliaries...... 106 Ballasts...... 106 Comparisonoftheelectro-magnetic-ballastsandelectronicballasts...... 108 Transformers...... 108 Starters ...... 110 Dimming ...... 110 5.3 Solid-statelighting ...... 111 5.3.1 Light-emittingdiodes(LEDs)...... 111 Operationprincipleandlightgeneration ...... 111 LEDcharacterization ...... 113 5.3.2 OLEDs-Organiclight-emittingdiodes...... 117 5.3.3 LEDdrivers...... 118 5.3.4 LEDdimmingandcontrol ...... 120 5.3.5 LEDroadmaps ...... 122

91 5LIGHTINGTECHNOLOGIES

5.4 Trendsinthefutureinlightsources...... 123 Electroluminescentlightsources ...... 123 Dischargelamps...... 124 5.5 Luminaires...... 124 5.5.1 Introduction...... 124 5.5.2 Definitionofaluminaire...... 125 5.5.3 Energyaspects ...... 126 5.5.4 LEDLuminaires...... 127 5.6 Networkaspects ...... 128 Descriptionofphenomena ...... 128 Risksandopportunities...... 131 5.7 Hybridlighting...... 132 5.7.1 Introduction...... 132 5.7.2 Energysavings,lightingqualityandcosts...... 132 5.7.3 Examples...... 133 HybridSolarLighting(HSL)...... 133 Lightshelfsystems ...... 133 Lightpipes ...... 133 5.7.4 Summary...... 134 References...... 134

92 5LIGHTINGTECHNOLOGIES

5 Lightingtechnologies

5.1 Introduction Artificiallightingisbeingusedmoreandmoreintheworld.Theusageisquitenon-homogeneous. Indevelopingcountries,wecanstillfindawidespreaduseoffuelbasedlightingbutnowadaysthe situation is changing and the demand for electric based lighting is growing. Electric lighting consumesabout19%oftheworldtotalelectricityuse.So,weshouldrememberandconsiderthat the improvement in energy efficient lighting will also be helpful for the progress in developing countries.Everychangeintechnologies,incustomers’consumptionbehaviour,eveninlifestyle, has influences on global energy consumption and indirectly, on environment. Therefore, energy savinginlighting,andthemethodsofachievingthisgoalshouldbeconsideredatdifferentlevels (state,region,town,enterprise)andbysupranationalorganisations,too. People stay in indoor environment for most of the day. Characteristics of light in indoor environmentaremuchdifferentthanthatofnaturaloutdoorenvironment.Ontheotherhandpeople donotstopactivitiesaftersunset.Theartificiallightinghasthereforeimpactontheirwell-being (seealsothevisualandnon-visualaspectsoflightinChapter3).Theneededartificiallighthasto beprovidedinenergyefficientandenvironmentallyconsciousway.Itisimportanttosearchforthe technologicalsolutionswhichmeethumanneedswiththelowestimpactontheenvironmentduring operation,whenmostoftheimpactstakeplace.Theenvironmentalimpactsalsoincludeproduction anddisposaloflamps,andrelatedmaterials. Artificiallightingisbasedonsystems:lamps,ballasts,starters,luminairesandcontrols.Ballasts areneededfordischargelampstoconnectthelamptothemains.Lamps,ballastsandstartersare mountedintheluminairewiththewiringandlampbases,reflectorsdistributeandredirectthelight emittedfromthelampandlouversshieldtheuserfrom glare.Controlsystemsinteractwiththe building where they are installed. This means that the spider net of interactions and impacts is related with the architecture of the building (shape, space orientation etc. have influence for daylightcontribution),withthesupplynetworkandwiththedifferentequipmentinstalled,e.g.the heating,ventilation,coolingorelectronicdevices.Last,butnotleast,lightingsystemsaremadefor human beings who have individual needs and behaviours. User habits can be supported by automaticcontrols(forexample,occupancysensors),buttheuserhabitscannotbeoverridden,and hereeducationplaysamajorrole.Firstofall,theperfectlightingsystemofferingthebestsolution foreveryapplicationdoesnotexist.Everytechnology,includingthemoreinnovativeandtrendy ones,hasitsownlimitationsanditsfullpotentialismainlyrelatedtospecificapplicationfield. Furthermore,thebestlamp,ifusedwithpoororincompatibleluminaireorballast,losesmostofits advantages.Combininggoodlamp,ballastandluminaireinawronginstallationmaynotmeetthe userneedsorprovidelightingserviceinaninefficientway.Combinationofagoodlightingsystem inawelldesignedinstallationtakesstrongadvantagefromcontroldevices,todrivethelighting system according to, for instance, on daylight availability and occupancy. In the case of new buildingstheintegrationofdaylightisimportantinordertoreducetheenergyconsumption.

93 5LIGHTINGTECHNOLOGIES

Tosummarize,energysavings/efficiencyandeconomicsaredependenton: ― Improvementoflightingtechnologies ― Makingbetteruseofavailablecost-effectiveandenergyefficientlighting technologies ― Lighting design (identify needs, avoid misuses, proper interaction of technologies,automaticcontrols,daylightintegration) ― Buildingdesign(daylightintegrationandarchitecture) ― Knowledgedisseminationtofinalusers ― Knowledge dissemination to operators (designers, sellers, decision makers) ― Reductionofresourcesbyrecyclingandproperdisposal,sizereduction, usinglessaluminium,mercury,etc. ― LifeCycleCostAssessmentLCCA Inthischapteranoverviewisgivenforthecurrenttechnologiesoflightsources,luminaries,and ballasts. Their potential is illustrated and the trends of the most promising ones are described. Integrallightingsystemsutilizingdaylighttogetherwithelectricallightingsystemsanditscontrol arealsopresented. 5.2 Lightsources 5.2.1 Overview Followingcharacteristicsaretobeconsideredwhenchoosingalampforanapplication. a. Luminousefficacy ― Luminousflux ― Lamppowerandballastlosses b. Lamplife ― Lumendepreciationduringburninghours ― Mortality c. Qualityoflight ― Spectrum ― Correlatedcolortemperature(CCT) ― Colorrenderingindex(CRI) d. Effectofambientcircumstances ― Voltagevariations ― Ambienttemperature ― Switchingfrequency ― Burningposition ― Switch-onandrestriketime ― Vibration e. Luminaire ― Lampsize,weightandshape ― Luminance ― Auxiliariesneeded(ballast,starter,etc.) ― Totalluminousflux ― Directionalityofthelight,sizeoftheluminouselement f. Purchaseandoperationcosts ― Lampprice ― Lamplife ― Luminousefficacy

94 5LIGHTINGTECHNOLOGIES

― Lampreplacement(relamping)costs ― Electricitypriceandburninghoursarenotlampcharacteristics,buthave aneffectonoperationcosts. Thediagrambelowshowsthemainlamptypesforgenerallighting:

250

200

150

100

50 LuminousEfficacy(LumensperWatt) 0 1920 1940 1960 1980 2000 2020 Year

HighPressureSodium Incandescent Mercury Tungsten-Halogen MetalHalides LinearFluorescent CompactFluorescent WhiteLED WhiteOLED Figure5-1.Thedevelopmentofluminousefficaciesoflightsources .(Krames2007,DOE2010)

95 5LIGHTINGTECHNOLOGIES

Table 5-1. compares the main lamp types and gives the first indication of possible application fields. Table5-1. Lamptypesandtheirtypicalcharacteristics. Characteristics Luminous Lamp Dimming Re- CRI Costof Costof Applications Lamptype efficacy life control strike installation operation (lm/W) h time GLS 5-15 1000 prompt very low veryhigh general excellent good lighting Tungsten 12-35 2000- prompt very low high general halogen 4000 excellent good lighting Mercury 40-60 12000 not 2-5min poor moderate moderate outdoor vapour possible to lighting good

CFL 40-65 6000- with prompt good low low general 12000 special lighting lamps Fluorescent 50-100 10000- good prompt good low low general lamp 16000 lighting Induction 60-80 60000- not prompt good high low placeswhere lamp 100000 possible accessfor maintenance isdifficult Metalhalide 50-100 6000- possible 5-10 good high low shopping 12000 butnot min malls, practical commercial buildings High 80-100 12000- possible 2-5min fair high low Outdoor, pressure 16000 butnot streets sodium practical lighting, (standard) warehouse High 40-60 6000- possible 2-6min good high low outdoor, pressure 10000 butnot commercial sodium practical interior (colour lighting improved) LEDs 20-120 20000- excellent prompt good high low allinnear 100000 future 5.2.2 Lampsinuse Van Tichelen et al. (2004) have given estimation of the total lamp sales in 2004 in European membercountries(EU-25).However,annualsalesdonotgivethetotalamountoflightspotsinuse. Forexample,thelamplifeofT8lampsis12000hoursontheaverageandyearlyburninghoursin officeusecanbe2500hours.Thus,theamountoflampsinuse(lightspotsinTable5-2)isalmost fivefold (12000/2500 = 4.8). Energy used by the lamps can be calculated using the calculated amountoflightspots,theannualburninghours,andaveragepowerofthelamp.InTable5-2,the averagelamppowerincludingballastlosseshasbeenestimated.Theamountoflightthatlamps produceannuallycanbecalculatedusingtheaverageluminousefficacy.This,again,isnotaknown figuresinceitalsodependsonthepowerofthelamp,theballast(magneticorelectronic)andthe spectrumofthelamp.

96 5LIGHTINGTECHNOLOGIES

Table5-2. EstimatedtotallampsalesinEU-25on2004andcalculatedamountoflightspots,energyconsumptionand amountoflight.NOTE:Figuresarebasedonassumptionsonlamppower,efficacy,lamplifeandburninghours. Lamp Sales Lightspots Energy Quantity Lamp Burning Luminous Lamp type S*(T/t) LS*P*t LS*P* η*t power hours efficacy life Mpcs % Mpcs % TWh % Glmh % W t lm/w h S LS W Q P h η T GLS 1225 68 1225 37 74 25 735 4 60 1000 10 1000 Halogen 143 8 143 4 9 3 103 1 40 1500 12 1500 T12 14 1 68 2 8 3 510 3 50 2500 60 12000 T8 238 13 1144 34 126 42 9436 58 44 2500 75 12000 T5 12 1 78 2 6 2 528 3 32 2500 85 16000 CFL 108 6 433 13 10 3 572 3 11 2000 60 8000 OtherFL 33 2 159 5 17 6 1047 6 44 2500 60 12000 Mercury 8 0 24 1 13 4 667 4 140 4000 50 12000 HPS 11 1 33 1 23 8 1845 11 175 4000 80 12000 MH 11 1 27 1 13 4 900 6 120 4000 70 10000 All 1804 100 3333 100 299 100 16343 100 GLS=Generallightingservicelamp Sales,S[Mpcs,millionpieces] Halogen=Tungstenhalogenlamp Lamppower,P[W] T12,T8,T5=Longfluorescentlamps Burninghours,t[h] OtherFL=otherfluorescentlamps Luminousefficacy, η[lm/W] Mercury=mercurylamps Lamplife,T[h] HPS=Highpressuresodiumlamps Lightspots,LS=S x(T/t)[Mpcs] MH=Metalhalidelamps Energy,W=LS xP xtu[TWh] Quantityoflight,Q=W xη=LS xP xtu xη[Glmh] ThedataofTable5-2isdepictedinFigure5-2.Twothirdsofthelampssoldareincandescent lamps.Incandescentlampscoverabout37%ofthelightspotsandtheyuseabout25%ofallthe electricityusedforlightinginEU-25area.However,theyproduceonly4%ofthelight.WithT8 lampsthetrendisopposite,theirshare13%ofthesales,34%ofthelightspots,42%oftheenergy consumption,andtheyproduce58%ofthelight.AccordingtoTable5-2,electricitycanbesaved byreplacingincandescentlampswithmoreenergyefficientlamps.Otherinefficientlightsources areT12-lamps(3%ofenergy)andmercurylamps(4%ofenergy).

97 5LIGHTINGTECHNOLOGIES

Sales1.8billionpieces Lightspots3.3billionpieces

GLS Halogen T12 T8 T5 CFL Energy299TWh Quantityoflight16.3Plmh OtherFL Mercury HPS MH

Figure5-2.EU-25lampsaleson2004.Fromtheestimatedlampsalestheamountoflightspotsinuse,theenergy lampsareusingandtheamountoflighttheyareproducinghasbeencalculated.Assumptionsoftheaveragelamp powerwithballastlosses,annualburninghours,luminousefficacyandlamplifehasbeenmade. T12-lampsandmercurylampscanbereplaced withT8-lamps and high pressure sodium lamps, respectively. In lighting renovation T12 luminaires should be replaced with T5-luminaires. Also newalternativesforthemostenergyconsuminglightsource,T8-lamp,hastobefound.According toTable5-2,theaverageluminousefficacyof T8-lampswithballastlossesis75lm/W.Atthe moment T5-lamp with electronic ballast is more efficient. In the future LEDs will be the most efficientlightsourcewiththepotentialluminousefficacyreaching200lm/W. 5.2.3 Lamps Incandescentlamp Inincandescentlamp,whichisalsocalledGeneralLightingServiceLamp(GLS),lightisproduced by leading current through a tungsten wire. The working temperature of tungsten filaments in incandescentlampsisabout2700K.Thereforethemainemissionoccursintheinfraredregion.The typicalluminousefficacyofdifferenttypesofincandescentlampsisintherangebetween5and15 lm/W. Advantagesofincandescentlamps: ― inexpensive ― easytouse,smallanddoesnotneedauxiliaryequipment ― easytodimbychangingthevoltage ― excellentcolorrenderingproperties ― directlyworkatpowersupplieswithfixedvoltage ― freeoftoxiccomponents ― instantswitching Disadvantagesofincandescentlamps:

98 5LIGHTINGTECHNOLOGIES

― shortlamplife(1000h) ― lowluminousefficacy ― heatgenerationishigh ― lamplifeandothercharacteristicsarestronglydependentonthesupply voltage ― thetotalcostsarehighduetohighoperationcosts. Thetraditionalincandescentlampswillbeprogressivelyreplacedwithmoreefficientlightsources. Forexample,inEuropetheRegulation244/2009isdrivingthisprocess(EC244/2009)(seealso Chapter4). Tungstenhalogenlamp Tungstenhalogenlampsarederivedfromincandescentlamps.Insidethebulb,halogengaslimits theevaporationofthefilament,andredepositstheevaporatedtungstenbacktothefilamentthrough thesocalledhalogencycle .Comparedtoincandescentlamptheoperatingtemperatureishigher, andconsequentlythecolortemperatureisalsohigher,whichmeansthatthelightiswhiter.Color renderingindexiscloseto100aswithincandescentlamps.Also,lumendepreciationisnegligible. Theirlifetimespansfrom2000to4000hours,andluminousefficacyis12-35lm/W. Halogen lamps are available in a wide range of models, shapes (from small capsules to linear doubleendedlamps),withorwithoutreflectors.Therearereflectorsdesignedtoredirectforward onlythevisiblelight,allowinginfraredradiationtoescapefromthebackofthelamp.Thereare halogenlampsavailableformainsvoltagesorlowvoltages(6-24V),thelatterneedingastep-down transformer.Lowvoltagelampshavebetterluminousefficacyandlongerlamplifethanthehigh voltagelamps,butthetransformerimplicatesenergylossesinitself. Thelatestprogressinhalogenlampshasbeenreachedbyintroducingselective-IR-mirror-coatings inthebulb.Theinfraredcoatingredirectsinfraredradiationsbacktothefilament.Thisincreasesthe luminousefficacyby40–60%comparedtootherdesignsandlamplifeisupto4000hours. Advantagesoftungstenhalogenlamps: ― smallsize ― directionallightwithsomemodels(narrowbeams) ― low-voltagealternatives ― easytodim ― instantswitchingandfulllightoutput ― excellentcolorrenderingproperties Disadvantagesoftungstenhalogenlamps ― lowluminousefficacy ― surfacetemperatureishigh ― lamplifeandothercharacteristicsarestronglydependentonthesupply voltage Tips Considerthechoiceofahalogenlampifyouneed: ― instantswitchonandinstantfulllight ― excellentcolorrendering ― easydimming ― frequentswitchingand,orshorton-period

99 5LIGHTINGTECHNOLOGIES

― directionallight ― compactsizeofthelightsource. Fluorescentlamps A fluorescent lamp is a low-pressure gas discharge light source, in which light is produced predominantlybyfluorescentpowdersactivatedbyultravioletradiationgeneratedbydischargein mercury. The lamp, usually in the form of a long tubular bulb with an electrode at each end, containsmercuryvapouratlowpressurewithasmallamountofinertgasforstarting.Themajority oftheemission(95%)takesplaceintheultraviolet(UV)regionandthewavelengthsofthemain emission peaks are 254 nm and 185 nm. Hence, the UV radiation is converted into light by a phosphorlayerontheinsideofthetube.SinceoneUV-photongeneratesonlyonevisiblephoton, 65%oftheinitialphotonenergyislostasdissipationheat.Ontheotherhand,thefinalspectral distributionofemittedlightcanbevariedbydifferentcombinationsofphosphors.Correlatedcolor temperatures(CCT)vary from2700K(warm white)and6500K(daylight)upto17000Kand colorrenderingindices(CRI)from50to95areavailable.TheluminousefficacyofthelatestT5 fluorescentlampisupto100lm/W(withoutballastlosses).Dimmingispossibledownto1%ofthe normalluminousflux,andwithspecialhighvoltagepulsecircuitsdownto0.01%.

UV light radiation phosphor coating - - - - Hg Electron electrode Figure5-3.Operationprincipleofafluorescentlamp. Fluorescentlampsdisplaynegativevoltage-current characteristics, requiring a device to limit the lamp current. Otherwise the ever-increasing current would destroy the lamp. Pure magnetic (inductive)ballastneedsanadditionalstartingelementsuchas a glowswitch.Electroniccontrol gear incorporates all the equipment necessary for starting and operating a fluorescent lamp. Comparedtoconventionalmagneticballastswhichoperatelampsatalinefrequencyof50Hz(or 60Hz),electronicballastsgeneratehighfrequencycurrents,mostcommonlyintherangeof25-50 kHz.Highfrequencyoperationreducestheballastlossesandalsomakesthedischargeitselfmore effective.Otheradvantagesoftheelectronicballastsarethatthelightisflicker-freeandthereisthe opportunityofusingdimmingdevices. Advantagesoffluorescentlamps ― inexpensive ― goodluminousefficacy ― longlamplife,10000–16000h ― largevarietyofCCTandCRI Disadvantagesoffluorescentlamps ― ambienttemperatureaffectstheswitch-onandlightoutput ― needofauxiliaryballastandstarterorelectronicballast ― lightoutputdepreciateswithage ― containmercury ― shortburningcyclesshortenlamplife

100 5LIGHTINGTECHNOLOGIES

The linear fluorescent lamps have enhanced their performanceand efficacy withtime.Fromtheold,bulky T12,passingthroughT8,tothepresentT5lampsnotonly thediameterisreduced.TheT5hasaverygoodluminous T12~38mm efficacy(100lm/W),thesamelampsurfaceluminancefor different lamp powers (some lamps), and optimal T8~26mm operatingpointathigherambienttemperature. T5lamps T5~16mm areshorterthanthecorrespondentT8lamps,andtheyneed electronicballasts.DedicatedluminariesforT5lampsmay reach a better light output ratio (LOR), as the lamp diameterissmallerthusallowingthelighttoberedirected Figure 5-4. Comparison of tube diameter ofdifferentfluorescentlamps. inamoreeffectiveway. Theperformanceofafluorescentlampissensitivetotheambienttemperature.T5lampsperform bestattheambienttemperatureof35°C,andT8lampsat25°C.Atemperatureof35°Cinsidethe luminaire is more realistic for indoor installations. There are also amalgam lamps whose performancevarieslesswiththetemperature. Tips ― Ideal for general lighting in most working places (including shops, hospitals,openspaces,etc.),butalsoinsomeresidentialapplications ― The choice of the lamp is always related to the application. Always considerthecorrelatedcolortemperatureandthecolorrenderingindex. ― Halophosphate lamps have very poor light quality and will become obsolete.(Fluorescentlampswithoutintegratedballastshallhaveacolor renderingindexofatleast80(EC245/2009) ― The five-phosphor lamps, with their excellent color rendering, are particularlysuitableinartgalleries,shops,andmuseumsbuthavelower luminousefficacythanthecorrespondingtriphosphorlamps. ― By using lamps of different CCT in the same luminaire and proper dimming,itispossibletohavedynamiclight,wherethecolorisselected bytheuserbyreproducingpresetcycles(e.g.duringday) ― Correctdisposaloftheselightsources,whichcontain mercury, is very important ― AssomeT5lamptypeshavethesameluminancefordifferentpowers,it isveryeasytobuild"continuouslines". ― Compactfluorescentlamps(CFL) The CFL is a compact variant of the fluorescent lamp. The overall length is shortened and the tubulardischargetubeisoftenfoldedintotwotosixfingers oraspiral.Foradirectreplacementof tungsten filament lamps, such compact lamps are equipped with internal ballasts and screw or bayonetcaps.TherearealsopinbaseCFLs,whichneedanexternalballastandstarterforoperation. The luminous efficacy of CFL is about four times higher than that of incandescent lamps. Therefore,itispossibletosaveenergyandcostsinlightingbyreplacingincandescentlampswith CFLs. Today,CFLsareavailablewith: ― differentshapes,withbaretubesorwithanexternalenvelope(lookalike forincandescentlamp)

101 5LIGHTINGTECHNOLOGIES

― differentCCT(warmwhite,coolwhite) ― instantignition(some) ― diminishedsensitivitytorapidcycles ― dimmable(some) Advantagesofcompactfluorescentlamps ― goodluminousefficacy ― longlamplife(6000-12000h) ― thereducedcoolingloadswhenreplacingincandescentlamps Disadvantagesofcompactfluorescentlamps ― expensive ― E-27basedarenotdimmable(apartfromspecialmodels) ― lightoutputdepreciateswithage ― shortburningcyclesshortenlamplife ― thecurrentwaveformofCFLswithinternalelectronicballastisdistorted ― containmercury Figure5-5.DifferenttypesofCompactfluorescentlamps. Tips ― Theadvantageofpinbaselampsisthatitispossibletoreplacetheburnt lampwhilekeepingtheballastinplace ― A physical limit of the CFLs is that a really instant ignition is incompatiblewithlonglife ― CFLsareidealforsituationsinwhichlongburningtimesareexpected ― Careshouldbetakeninthechoiceoftheproperluminaire.Itisveryeasy tounscrewatraditionalincandescentlampand replace it with a screw basedCFL,buttheresultmaybeunsatisfying.Thisisbecausehowthe light is distributed around the CFL is very different compared to traditionalincandescentlamps.

102 5LIGHTINGTECHNOLOGIES

HighIntensityDischargelamps(HighPressure) Without any temperature limitations (e.g. melting point of tungsten) it is possible to use gas discharges (plasmas) to generate optical radiation. Unlike thermal solid sources with continuous spectralemission,radiationfromthegasdischargeoccurspredominantlyinformofsinglespectral lines.Theselinesmaybeuseddirectlyorafterspectralconversionbyphosphorsforemissionof light.Dischargelampsgeneratelightofdifferentcolorquality,accordingtohowthespectrallines aredistributedinthevisiblerange.Topreventrunawaycurrentandensurestableoperationfroma constantvoltagesupply,thenegativecurrent-voltagecharacteristicsofgasdischargelampsmustbe counterbalanced by a circuit element such as conventional magnetic or electronic ballasts. In all cases,highervoltagesareneededforignitingthedischarge. Thepowerconversionperunitvolumeinhighpressurearcdischargelampsis100to1000times higher than that of low pressure lamps, which leads to considerable thermal loadings on the dischargetubewalls.Thewalltemperaturesmaybeintheregionof1000°C.Thedischargetubes aretypicallymadeofquartzorPCA(polycrystallinesinteredalumina:Al 2O3).Thearcdischargeis providedwithelectricalpowerviatungstenpinelectrodes.Inmostcasesthemainconstituentofthe plasmaismercury.Toreachoperatingpressuresof1-10bars,thevaporizationoffillingmaterials requiresawarm-uptimeofupto5minutesafterignition.Forstartinghighpressurelamps(except mercury lamps) superimposed pulses of some kVs from external ignition circuits or internal ferroelectriccapacitorsareused.Animmediatere-startaftershortpowerbreakdemandsvoltagesof morethan20kV.Manytypesofhighpressuredischargelampscannotbedimmed,othersonlyina powerrangeof50%to100%. MercuryLamps Inmercurylamplightisproducedwithelectriccurrent passing through mercury vapour. An arc dischargeinmercuryvapouratapressureofabout 2barsemitsfivestrongspectrallinesinthe visiblewavelengthsat404.7nm,435.8nm,546.1nm,577nmand579nm.Thered-gapisfilledup byaphosphor-layerattheouterbulb.Typicalvaluesoftheselampsareluminousefficacy40-60 lm/W,CRIbetween40and60andCCT4000K.Thelamplifeis12000h. MercurylampswillbebannedfromEuropeanmarketafter2015.(EC245/2009) Metalhalidelamps To increase the luminous efficacy and CRI of mercury high pressure lamps, it is useful to add mixturesofmetalcomponentstothefillingofthedischargetube.Theseadditivesemittheirown line spectra in the arc discharge, leading to an enormous diversity of light color. For sufficient vapourpressure,itisbettertousemetalhalides (compoundswithiodineorbromine)insteadof elementalmetals.Whenthevapourentersthehightemperatureregionofthedischarge,molecules dissociate,metalatomsareexcitedandradiationisemitted. Theapplicationsofmetalhalidelampsreachfromelectric torches (10 W miniature variants) to diversepurposesinindoorandoutdoorlighting(wattagesupto20kW).Thelampsareavailable withluminousefficacytypicallyfrom50to100lm/W,CCTvaluefrom3000to6000KandCRI from70toover90.Thelamplifeistypicallyfrom6000hto12000h. Advantagesofmetalhalidelamps ― Goodluminousefficacy

103 5LIGHTINGTECHNOLOGIES

― Alternativeswithgoodcolorrenderingavailable ― Differentcolortemperaturesavailable. Disadvantagesofmetalhalidelamps ― Expensive ― Startingandre-startingtime2-5min ― Differences in CCT between individual lamps and changes of CCT duringburninghours.Thesedifferencesaremuchreducedwithceramic metalhalidelamps.

Figure5-6.Metalhalidelamps,nominalpowerfromleft150W,400W,75Wand70W. Highpressuresodiumlamps Inahighpressuresodiumlamplightisproducedbysodiumvapour,thegaspressurebeingabout15 kPa.Thegolden-yellowishemissionspectrumappliestowidepartsofthevisiblearea.TheCRIis low( ≈20),buttheluminousefficacyishigh.Themostcommonapplicationtodayisinstreetand roadlighting.Luminousefficacyofthelampsis80-100lm/W,andlamplifeis12000h(16000h). TheCCTis2000K. AnimprovementoftheCRIispossiblebypulseoperationorelevatedpressurebutthisreducesthe luminousefficacy.ColorimprovedhighpressuresodiumlampshaveCRIofabout65andwhite highpressuresodiumlampsofmorethan80.TheirCCTis2200and2700,respectively. Advantagesofhighpressuresodiumlamp ― verygoodluminousefficacy ― longlamplife(12000hor16000h) ― highluminousfluxfromoneunitforstreetandarealighting

104 5LIGHTINGTECHNOLOGIES

Disadvantagesofhighpressuresodiumlamp ― lowCCT,about2200K ― lowCRI,about20(colorimproved65,white80) ― startingandre-startingtime2-5min Figure5-7.Highpressuresodiumlamps,ellipticalbulb100Wand250W,tubularbulb250Wandwhitehighpressure sodium100W. Electrodelesslamps Theburningtimeofdischargelampsisnormallylimitedbyabrasionofelectrodes.Itispossibleto avoidthisbyfeedingelectricalpowerintothedischargeinductivelyorcapacitively.Althoughthe principlesofelectrodelesslamphavebeenunderstoodforoverahundredyears,electrodelesslamps werenotintroducedintothecommercialmarketuntilthepastdecades.Themainreasonswerethe lackofreliableandlowcostelectronics,andavoidanceofelectromagneticinterferences.Withthe greatdevelopmentinelectronicsandconsequentlyintroductionofelectronicballasts,theelectrode- lesslamphasbecomereadytobeintroducedtocommercialmarketforthegeneralpurposelighting. Inductionlamp The induction electrode-less fluorescent lamp is fundamentally different from the traditional dischargelamps,whichemployelectrodesaselectronsource.Theoperatingfrequencyofinduction lampisusuallyintherangeofhundredsofkHztotensofMHz.Aspecialgeneratororballastis neededtoprovidehighfrequencypower.Withoutelectrodes,energycouplingcoilsareneededfor theenergycouplingintotheplasma.Alonglamplifeandgoodlumenmaintenancecanbeachieved withtheselampsbecauseoftheabsenceofelectrodes.Thefillingofthedischargevesselconsistsof mercury(amalgam)andlowpressurekrypton.Likeinfluorescentlamps,theprimaryemission(in UV-region)istransformedwithaphosphorcoatingintovisibleradiation.Typicalparametersare: lampwattages55-165W,luminousefficacyofsystems60-80lm/W,CCT2700-4000K,CRI80. The long lamp life of even 100 000 h is useful for applications in inaccessible locations (road tunnels,factoryhalls). Compactfluorescentlamps(electrodeless) SomemodelsofCFLsareelectrodelesslamps.Their advantagesovercommonCFLsareinstant switchingandgoodperformancewithswitchingcycles.

105 5LIGHTINGTECHNOLOGIES

5.2.4 Auxiliaries Energyefficiencyofthelightingsystemdependsnotonlytotheluminousefficacyoflampsbut alsoontheefficiencyoftheauxiliaryequipment.Thisequipmentincludeballasts,starters,dimmers andtransformers. Ballasts Ballast providing a controlled current to the lamps is an essential component of any discharge lightingsystem.Theamountofenergylostintheballasts can be reduced considerably by using efficientballasts.EuropeanDirective2000/55/ECdividesballastsintosixcategoriesshowninthe Table5-3.Severaltypesofballastsareexcludedfromthedirective: ― ballastsintegratedinlamps, ― ballastsdesignedspecifically forluminariestobe mounted in furniture and which form a non-replaceable part of the luminaries and which cannotbetestedseparatelyfromtheluminaries, ― ballaststobeexportedfromtheCommunity,eitherasasinglecomponent orincorporatedinluminaries. Table5-3.BallastCategories. (EC55/2000) Category Description 1 Ballastforlinearlamptype 2 Ballastforcompact2tubeslamptype 3 Ballastforcompact4tubesflatlamptype 4 Ballastforcompact4tubeslamptype 5 Ballastforcompact6tubeslamptype 6 Ballastforcompact2Dlamptype The purpose of the directive is to achieve cost-effective energy savings in fluorescent lighting, whichwouldnototherwisebeachievedwithothermeasures.Therefore,themaximuminputpowers ofballast-lampcircuitsaregiveninAnnexIIIoftheballastDirective(EC55/2000).Manufacturers ofballastsareresponsibleforestablishingthepowerconsumptionofeachballastsaccordingtothe proceduresspecifiedintheEuropeanStandardEN50294(EN1998).

106 5LIGHTINGTECHNOLOGIES

Table5-4. Examplesofthemaximuminputpowerofballast-lampcircuits(phasetwo).(EC55/2000) Ballast Lamppower Maximuminputpower category 50Hz HF ofballast-lamp 1 15W 13,5W 23W 70W 60W 80W 2 18W 16W 26W 36W 32W 43W 5 18W 16W 26W 26W 24W 34W 6 10W 9W 16W 38W 34W 45W The Directive 2000/55/EC aims at reducing the energy consumption of ballasts for fluorescent lampsbymovinggraduallyawayfromthelessefficientballaststowardsmoreefficientones.The ballast,however,isonlyonepartoftheenergyconsumptionequation.Theenergyefficiencyof fluorescentlampslightingsystemsdependsonthecombinationoftheballastandthelamp.Asa consequence, the Federation of National Manufacturers Associations for Luminaries and Electrotechnical Components for Luminaries in the European Union (CELMA) has found it necessarytodevelopaballastclassificationsystembasedonthiscombination(CELMA2007) The European Ballasts manufacturers, represented in CELMA, have adopted the scheme of classification of ballasts defined by CELMA since 1999. As a consequence, all ballasts falling underthescopeofthe2000/55/ECDirectivearemarkedwiththepertinentEnergyEfficiencyIndex EEI(voluntary)printedinthelabelorstatedinthedatasheets. Therearesevenclassesofefficiency.Everyclassisdefinedbyalimitingvalueofthetotalinput power related to the corresponding ballast lumen factor BLF (1.00 for high frequency operated ballastsand0.95formagneticballasts).Theclassesarelistedbellow: ― ClassD:magneticballastswithveryhighlosses(discontinuedsince 2002) ― ClassC:magneticballastswithmoderatelosses(discontinuedsince 2005) ― ClassB2:magneticballastswithlowlosses ― ClassB1:magneticballastswithverylowlosses ― ClassA3:electronicballasts ― ClassA2:electronicballastswithreducedlosses ― ClassA1:dimmableelectronicballasts DimmableballastsareclassifiedasA1iftheyfulfilthefollowingrequirements: ― At 100% light output setting the ballast fulfils at least the demands belongingtoA3 ― At25%lightoutputthetotalinputpowerisequaltoorlessthan50%of thepoweratthe100%lightoutput ― Theballastmustbeabletoreducethelightoutputto10%orlessofthe maximumlightoutput ElectronicballastscomplyingwithCELMAenergyefficiencyschemeclassesA1andA2arethe majorpowersavers.Theycanevenreducethepowerconsumptionofballast-lampcircuitstoless thantheratedpowerofthelampat50Hz.Thisiscausedbytheincreasedlampefficiencyathigh frequencies(>20kHz),leadingtoabout10%reductionoflamppowerandadecreaseoftheballast losses.

107 5LIGHTINGTECHNOLOGIES

TheEuropeanStandardEN50294(EN1998)definesthemeasuringmethodsforthetotalinput poweroftheballast-lampsystem.OnthebasisofthisstandardCELMAhasdefinedenergyclasses andlimitvaluesfortheballast-lampcombinationofthemostcommonfluorescentlamps(details are given in annexes tothe CELMA guide (CELMA 2007)–anexampleofclassdescriptionin Table5-5.TheEEIsystemcomprisesthefollowinglamptypes: ― TubularfluorescentlampsT8 ― CompactfluorescentlampsTC-L ― CompactfluorescentlampsTC-D ― CompactfluorescentlampsTC-T ― CompactfluorescentlampsTC-DD Table5-5. AnexampleoftheEEIclassdescriptionsystempower. (CELMA2007) Lamp Lamppower Class type 50Hz HF A1 x A2 A3 B1 B2 C D T8 15W 13,5W 9W 16W 18W 21W 23W 25W >25W 70W 60W 36W 68W 72W 77W 80W 83W >83W x at25%lightoutput Comparisonoftheelectro-magnetic-ballastsandelectronicballasts Electro-magneticballastproducesanumberofnegativeside-effects,suchas: ― Theyoperateatthe50or60HzfrequencyoftheACvoltage.Thismeans thateachlampswitchesonandoff100or120timespersecond,resulting inapossiblyperceptibleflickerandanoticeablehum, ― Operatingat50or60Hzmaycauseastroboscopiceffectwithrotating machineryatspeedsthatareamultiplesofthosefrequencies, ― TheycangiveoffexcessiveEMF(Electro-MagneticFields). Advantagesoftheelectronicballasts: ― They operate at about 25 kHz. High frequency operation eliminates flickerandhum,removinganyassociatedhealthconcerns. ― Theyarelightweight ― Theygenerateverylittleheat ― Theyhavebetterenergyefficiencyusing25-30%lessenergy. ― They can be built dimmable, enabling users to adjust light levels to personalneedsresultinginenergysavings. The positive features of electromagnetic ballasts are that they are very robust and have long lifetime.Thematerialrecoveryfromthemintheend-of-lifeisrelativelyeasyandvaluablemetals canberecycled,whileelectronicballastsaremoredifficulttorecycle. Transformers Halogenlampsareavailablewithlowvoltageratings.Atransformerisneededtoprovidevoltage supplyfromeither110VACor230VACmainstothelamps.Transformersaregenerallyavailable withpowerratingsfrom50to300W.Thetransformerusedinalowvoltagelightingsystemmay beeitherelectronicormagnetic.The electronic transformerETrepresentsanalternativemeansof powerconversiontothemorestandardironcore,bulkyandheavytransformeroperatingat50/60 Hz. The advantages of the electronic transformer compared with the classical solution are

108 5LIGHTINGTECHNOLOGIES

(Radiolocman2007): ― The output power from the electronic transformer to the lamp can be varied,thusdimmingcontrolcanbeadded. ― It is possible to include protection against short circuit of the lamp filament. ― Weightcanbereducedandtheconstructionmademorecompact. ― Acousticnoise(mainshum)iseliminated. The topology of the transformer circuit is the classic half-bridge. The control circuit could be realised using an IC (fixing the operating frequency), but there is a more economical solution (Radiolocman2007,FicheraandScollo1999)whichconsistsofaself-oscillatingcircuitwherethe twotransistorsaredriveninopposingphasebyfeedbackfromtheoutputcircuit.Asthecapacitorat theinputofthecircuitisrelativelysmall,thereislittledeformationoftheinputcurrentwaveform. However,thistypeofcircuitgeneratesacertainamountofelectro-magneticinterference,duetothe highfrequencysourcethatfeedstheresonantnetwork.Thus,asuitablefiltermustbeinsertedinthe circuitbeforetherectifierbridgetopreventthisinterferencebeingfedbacktothemains.Another solution (Liang et al. 2006) might be piezoelectric ceramic transformer. This is a new kind of electronic transformer which has low electromagnetic interference, high power density, high transferefficiency.Itissmallinsizeandlightinweightandmakesnonoise. Thedisadvantageofthesetransformersisthattheirlampcurrentsarerectangularinshape,leading to generation of high electromagnetic noise and increased transformer core losses. The new constructionssolvetheseproblems.Anexampleofsuchsolutionisanelectronictransformerusing class-D zero-voltage-switching (ZVS) inverter (Jirasereeamornkul et al. 2003) giving near sinusoidallampcurrent.Theexperimentalresultsfroma50W/12Vprototypeshowthatefficiency is greater than 92% with unity power factor. Moreover, the dimming possibility and controlled startingcurrentcanbeachievedbysimplyincreasingtheswitchingfrequencywithoutincreasing theswitchinglosses.Thewattagerating(Farin2008)oftheelectronictransformerorofthetoroidal magnetictransformershouldalwaysbeequaltoorgreaterthanthetotalwattageofthelighting system,butifaconventionalEImagnetictransformer (transformer with a magnetic core shaped likethelettersEandI)isused,thenthemaximumwattageofthelightingsystemmaybeequalto butnotgreaterthan80%ofthewattageratingoftheconventionalEImagnetictransformer. Transformers usually have a minimum wattage (Farin 2008)whichtheymustpowerbeforethey work.Forexample,itisnotuncommonfora60Welectronictransformertorequiretheretobeat least10Woflightingloadandifthereisonly5 watts of lighting load connected, the lighting systemwillnotwork.Lowvoltagelightingsystemsrequirethickerwiresduetohighercurrents.For example,a300Wlightingsystemoperatingat12Vusesa25Acurrentonthelow-voltagesideof thetransformer,whereasthissametransformermaybepoweredby230Vand1.3Acurrentonthe linevoltagesideofthetransformer. AnAC(alternatingcurrent)electronictransformershouldnotbeplacedfurtherthan3m(10feet) fromthelightingsysteminordertoavoidlowervoltages(voltagedrop)andconsequentlylower luminous flux. Also, the longer the distance from the AC electronic transformer to the lighting system,thegreaterthechancethatitmightcreate radio frequency interference (RFI) with other electroniccomponentsinthearea.ADC(directcurrent)electronictransformermaybeplacedupto about16m(50feet)fromthelightingsystem.TheDCoutputsignificantlyreducesradiofrequency interference(RFI)andvirtuallyeliminatesthepossibilityofvoltagedrop(thedropinvoltageovera longcircuit).

109 5LIGHTINGTECHNOLOGIES

Starters Startersareusedinseveraltypesoffluorescentlamps.Whenvoltageisappliedtothefluorescent lamp,thestarter(whichisatimedswitch)allowscurrenttoflowthroughthefilamentsattheends ofthetube.Thecurrentcausesthestarter'scontactstoheatupandopen,thusinterruptingtheflow of current. The lamp is then switched on. Since the arc discharge has low resistance (in fact negativevoltage-currentcharacteristics),theballastservesasacurrentlimiter.Preheatfluorescent lamps use a combination of filament/cathode at each end of the lamp in conjunction with a mechanicalorautomaticswitchthatinitiallyconnectsthefilamentsinserieswiththeballastand therebypreheatthe filamentspriortostrikingthearc.Thesesystems arestandardequipmentin countrieswithvoltagelevelof230V(andincountrieswithvoltagelevel110Vwithlampsupto about30watts),andgenerallyuseaglowstarter.Electronicstartersarealsosometimesusedwith theseelectromagneticballasts. Theautomaticglowstarterconsistsofasmallgas-dischargetube,containingneonand/orargonand fittedwithabi-metallicelectrode.Whenstartingthelamp,aglowdischargewillappearoverthe electrodes of the starter. This glow discharge will heat the gas in the starter and cause the bi- metallicelectrodetobendtowardstheotherelectrode.Whentheelectrodestouch,thetwofilaments ofthefluorescentlampandtheballastwilleffectivelybeswitchedinseriestothesupplyvoltage. Thiscausesthefilamentstoglowandemitelectronsintothegascolumn.Inthestarter'stube,the touching electrodes have stopped the glow discharge, causing the gas to cool down again. The starteradditionallyhasacapacitorwiredinparalleltoitsgas-dischargetube,inordertoprolongthe electrode life. While all starters are physically interchangeable, the wattage rating of the starter shouldbematchedtothewattageratingofthefluorescenttubesforreliableoperationandlonglife. Thetubestrikeisreliableinthesesystems,butglowstarterswilloftencycleafewtimesbefore lettingthetubestaylit,whichcausesundesirableflashingduringstarting. Ifthetubefailstostrikeorstrikesbutthenextinguishes,thestartingsequenceisrepeated.With automatedstarterssuch as glowstarters, a failingtubewillcycleendlessly,flashingasthelamp quicklygoesoutbecauseemissionisinsufficienttokeepthelampcurrenthighenoughtokeepthe glowstarteropen.Thiscausesflickering,andrunstheballastatabovedesigntemperature.Some moreadvancedstarterstimeoutinthissituationanddonotattemptrepeatedstartsuntilpoweris reset.Insomecases,ahighvoltageisapplieddirectly.Instantstartfluorescenttubessimplyusea highenoughvoltagetobreakdownthegasandmercurycolumnandtherebystartarcconduction. These tubes can be identified by a single pin at each end of the tube. Low-cost lamps with integrated electronic ballast use this mode even if it reduces lamps life. The rapid start ballast designsprovidefilamentpowerwindingswithintheballast.Theyrapidlyandcontinuouslywarm thefilaments/cathodesusinglow-voltageAC.Noinductivevoltagespikeisproducedforstarting, sothelampsmustbemountednearagrounded(earthed)reflectortoallowtheglowdischargeto propagate through the tube and initiate the arcdischarge. In some lamps a starting aid strip of groundedmetalisattachedtotheoutsideofthelampglass. Dimming Dimmersaredevicesusedtovarytheluminousfluxofincandescentlamps.Byadjustingtheroot mean square (RMS) voltage and hence the mean power to the lamp it is possible to vary the intensityofthelightoutput.Smalldomesticdimmersaregenerallymanuallycontrolled,although remotecontrolsystemsareavailable. Modern dimmers are built from silicon-controlled rectifiers (SCR) instead of potentiometers or variableresistorsbecausetheyhavehigherefficiency.Avariableresistorwoulddissipatepowerby

110 5LIGHTINGTECHNOLOGIES heat(efficiencyaslowas0.5).Theoreticallyasilicon-controlledrectifierdimmerdoesnotheatup, butbyswitchingonandoff100/120timesasecond,itisnot100%efficient.Dimminglightoutput to 25%, reduces electricity consumption only 20%, because of the losses in the rectifier. Using CFLsindimmercircuitcancauseproblemsforCFLs,whicharenotdesignedforthisadditional turningonandoffofaswitch100/120timespersecond. Fluorescentlampluminairescannotbeconnectedtothesamedimmerswitchusedforincandescent lamps.Therearetworeasonsforthis,thefirstisthatthewaveformofthevoltageof astandard phase-controldimmerinteractsbadlywithmanytypesofballast,andthesecondisthatitbecomes difficulttosustainanarcinthefluorescenttubeatlowpowerlevels.Dimminginstallationsrequire 4-pinfluorescentlampsandcompatibledimmingballasts.Thesesystemskeepthecathodesofthe fluorescenttubefullyheatedeventhoughthearccurrentisreduced.ThereareCFLsavailablethat workalsoinadimmercircuit.TheseCFLshave4pinsinthelampbase. 5.3 Solid-statelighting 5.3.1 Light-emittingdiodes(LEDs) Solid-state lighting (SSL) is commonly referring to lighting with light-emitting diodes (LED), organiclight-emittingdiodes(OLED)andlight-emittingpolymers(LEP).Atthemomentthereis still no official definition for solid-state lighting, the expression “solid-state” refers to the semiconductorcrystalwherechargecarriers(electronsandholes)areflowingandoriginatephotons (i.e.,light)afterradiativerecombinations. Operationprincipleandlightgeneration AnLEDisa p-njunctionsemiconductorwhichemitslightspontaneouslydirectlyfromanexternal electricfield(electroluminescenceeffect).LEDsworksimilarlytoasemiconductordiode,allowing current flow in one direction only. The diode structure is formed by bringing p- and n-type semiconductormaterialstogetherinordertoforma p-njunction.P-typematerialisobtainedby doping an intrinsic semiconductor material with acceptor impurities resulting in an excess of positivecharges(holes).ToproduceanN-typesemiconductor,donorimpuritiesareusedtocreate an excess of negative charges (electrons). The p and nmaterialswillnaturally formadepletion regionatthejunction,whichiscomposedofionizedacceptorsinthe p-sideandionizeddonorsin the n-sideformingapotentialbarrieratthejunction.Theappliedexternalelectricfieldacrossthe junctionwillallowelectronsintheconductionband,whicharemoremobilecarriersthanholes,to gainenoughenergytocrossthegapandrecombinewithholesontheothersideofthejunction emittingaphotonasaresultofthedecreaseinenergyfromtheconductiontothevalenceband (radiativerecombination). Althoughradiativetransitionscanalsooccurinindirectbandgapsemiconductors,theirprobability is significantly lower than in direct bandgap semiconductors. Radiative recombinations are characteristicfordirect bandgapsemiconductors.Therefore,directbandgapsemiconductor alloys are commonly used in optoelectronic devices such as LEDs, where the highest radiative recombinationratesareadesirablefeature.Examplesofdirectbandgapsemiconductorsthathave bandgapenergieswithinthevisiblespectrumarebinaryalloyscomposedofelementsinthegroups IIIandVoftheperiodictable(e.g.,InP,GaAs,InN,GaN,andAlN).Thepresenthigh-brightness LED-industryisbasedonternary andquaternary alloys containing a mixture of aluminum (Al), gallium(Ga),and/orindium(In)cationsandeitheroneofarsenic(As),phosphorus(P),ornitrogen (N) anions. The three main relevant material systems for LEDs are AlGaAs, AlGaInP, and AlInGaN.Foreachofthesesystemsbandgapengineeringisusedduringtheepitaxialgrowthofthe

111 5LIGHTINGTECHNOLOGIES semiconductorwaferstocreateheterostructuresthatarerequiredforhighlevelsofcarrierinjection andefficientradiativerecombination.(Žukauskas,Shuretal.2002) Theoretically, it is possible that all free electronsinjectedintotheactiveregionofrecombineto createaphoton.ThissuggeststhehighenergyefficiencypotentialofLEDs.Thisenergyefficiency potentialisreferredtoasradiantorwall-plugefficiency ηe,anddefinedastheratiobetweenthe totalemittedradiatedpowerandthetotalpowerdrawnfromthepowersource.Theradiantorwall- plugefficiencyofanLEDdependsonseveralinternalmechanismsregulatinglightgenerationand emission processes in the semiconductor and LED package. These mechanisms are commonly characterisedbytheirefficiencies,commonlyreferredtoasfeedingefficiency ηf,externalquantum efficiency ηext ,injectionefficiency ηinj ,radiativeefficiencyorinternalquantumefficiency ηrad and opticalefficiencyorlight-extractionefficiency ηopt .(Žukauskas,Shuretal.2002). η η × η e = ext f (5-1) η υ f =h /qV (5-2) η η × η × η ext = inj rad opt (5-3) Luminous efficacy ηυ is obtained by multiplying the radiant efficiency with the luminous coefficient Km. η η υ= e×Km (5-4) ThebestredAlInGaPLEDandblueInGaNLEDscanhaveinternalquantumefficienciesreaching almost100%and50%,respectively(Steigerwald,Bhatetal.2002).Toachieveexternalquantum efficienciesofsuchmagnitudes,thelightextractionhastobeimproved.Oneofthemainchallenges faced by the industry to allow the more photons to escape from the LED chip without getting absorbed by the surrounding structure (i.e., extraction efficiency) (Navigant Consulting Inc., RadcliffeAdvisorsetal.2009). ThehistoryofcommerciallyavailableLEDsstartedintheearly1960`swiththefirstredLEDwith peak emission at 650 nm (Holonyak, Bevacqua 1962). The semiconductor material utilised was GaAsP(GalliumArsenidePhosphide).ThetypicalpowerconsumptionoftheseredLEDswouldbe typically around 0.1 W, emitting 0.01 lm resulting in 0.1 lm/W luminous efficacy (Humphreys 2008). The price was 260 $ and price per lumen around 26000 $. Since then, the LEDs have developedfastoverthepastfourdecades.ModernLEDcomponentscoverpeakwavelengthregions fromtheultraviolettotheinfraredregion.AlInGaParetodaythechosensemiconductormaterial systemtorealiseLEDswithspectralemissionfromredtoyellowregionofthevisiblespectrum. AlInGaN materials usually cover the wavelength region between green and ultraviolet. Colored LEDsarecharacterisedbynarrowspectralemissionprofiles.Thischaracteristicisdefinedbythe fullspectralbandwidthathalfmagnitude(FWHM)usuallyaround15nmto60nm(Žukauskas, Shuretal.2002). WhiteLEDscanberealisedbymixingtheemissionofdifferentcoloredLEDsorbytheutilisation ofphosphors.Phosphor-convertedwhiteLEDsareusuallybasedonblueorultravioletLEDs.The whitelightresultsfromthecombinationoftheprimaryblueorultravioletemissionandthepartially downward-converted emission created by specific phosphor layer or layers located over the semiconductorchip.(Kim,Jeonetal.2004,Nakamura,Fasol1997) Depending on the properties of the phosphor layer or layers utilised, white light of different

112 5LIGHTINGTECHNOLOGIES qualitiescanberealised.Thetypicalspectrumforphosphor-convertedwarm-andcool-whiteLEDs atCCTsof3000Kand7000K,respectivelyareshownintheFigure5-8.

1.0 Warm-whiteWarm-white CCT3000K CRI89Cool-white 0.8 Cool-white CCT7000K CRI70 0.6

0.4 Normalizedvalues

0.2

0.0 350 400 450 500 550 600 650 700 750 800 Wavelength[nm] Figure5-8.Typicalspectralpowerdistributioncurvesforphosphor-convertedwarm-andcool-whiteLEDsat3000K and7000KCCT,respectively. Color-mixingbycombiningtheemissionofdifferentcoloredLEDsisanotherapproachtoprovide whitelight.UsuallyonlytwocoloredLEDsareneededtoproducewhitelight.However,toachieve high color rendering properties, at least three colored LEDs are usually required. Figure 5-9 representsthemainapproachestocreatewhitelight.

White White White light light light

Yellow phosphor RGBphosphor

Red Green Blue BlueLED UVLED LED LED LED

Phosphorconversion Color-mixing Figure5-9.SchematicrepresentationofthetwomainapproachestocreatewhitelightusingLEDs. LEDcharacterization OptoelectronicdevicessuchasLEDsarecommonlycharacterisedbyoptical,electricalandthermal parametersasschematicallyshowninFigure5-10.

113 5LIGHTINGTECHNOLOGIES

E er lec w tr po ica al lp tic ow p er O

φφφ V F SPD

IF CRI CCT

RthJ-C T j(max) Lifetime

Ambient temperature Figure5-10.Schematicrepresentationofthemainparametersandinteractions,whichcharacterisetheoperationofa LED. Electrically,anLEDischaracterisedbyitsforwardcurrent(I F)andforwardvoltage(V F).Dueto theirtypicalI-Vcurve,representingtheforwardcurrentasafunctionoftheforwardvoltage,LEDs are called current-controlled devices. Along with the I-V curve, LED manufacturers provide the nominalandmaximumforwardcurrentsandvoltagesofthedevicesintheirdatasheets. SeveralparametersareusedtocharacteriseLEDsoptically.Themainparametersdependingonthe LED type (i.e., colored or white LED) are the spectral power distribution (SPD), spatial light distribution,viewingangle,colorrenderingindex(CRI),correlatedcolortemperature(CCT),peak wavelength,dominantwavelength,luminousflux,luminousintensityandluminousefficacy.The electricalandopticalperformanceofanLEDisinterrelatedwithitsthermalcharacteristics.Dueto theinefficiencies resulting fromtheimperfectionsinthesemiconductorandintheLEDpackage structureheatlossesaregenerated.Theselosseshavetoberemovedfromthedeviceinorderto keep the p-n junction operation temperature below the maximum allowed value and avoid prematureorcatastrophicfailureofthedevice.Theheatlossesarefirstlyconductedtotheexterior ofthe LEDpackagethroughoutanincludedheatslug. Next,theheatisrealisedtotheambient throughout convention and radiation. In some applications the utilisation of an exterior cooling systemsuchasaheatsinkisrequiredtofacilitatethereleasedoftheheattotheambient.Thus,the mainparametercharacterisingthethermalperformanceofanLEDisthethermalresistancebetween the p-n junction and the soldering-point. The variation of p-n junction temperature of the LED influencestheopticalandelectricalproperties. Other important parameters characterising LED operation are the temperature coefficient of the forwardvoltageandthedominantwavelengthtemperaturecoefficient,givenrespectivelybymV/ °C and nm/ °C.Thesecoefficientsshowtheinterdependencebetween optical, thermal and electrical parameters. These parameters are responsible for optical and spectral dissimilarities between different LEDtypes.AlInGaP LEDs(e.g.,red,amberandyellow)aremoresensitivetojunction temperature variations than InGaN-based LEDs (e.g., blue, cyan, green and phosphor-converted white).ThesethermalbehaviourdissimilaritiesarerepresentedinFigure5-11.

114 5LIGHTINGTECHNOLOGIES

1.0 160 • ThermalManagement– Blue RoyalBlue Controlandreliability140 Cyan White Low TJ temperature 0.8 Green Red – DissimilarCharacteristicsof120 High TJ temperature AlInGaP andInGaN LEDs Amber 100 0.6 80 60 0.4 40 0.2

RelativeLightOutput[%] 20 Relativespectralpowerdistribution 0 0.0 -40 -20 0 20 40 60 80 100 120 400 450 500 550 600 650 700 Junctiontemperature[ °°°C] JunctionTemperature[oC] Wavelength[nm] Figure5-11.Influenceofthejunctiontemperature(T J)onthelightoutputandspectralpowerdistributionofAlInGaP andInGaN-basedLEDs. Theoperationtemperatureofthe p-njunctioninfluencestheopticalandelectricalcharacteristicsof anLED.Thereforethermalmanagementisanimportantaspecttobetakenintoaccountatanearly designstageofLEDengines.AnLEDisoftenmountedoncircuitboardwhichisattachedtoa heatsink.ThesimplifiedthermalmodelcircuitandthemainequationsareshowninFigure5-12., where Rth JA , Rth JS , Rth SP , Rth PA represent the thermal resistances between p-n junction and the ambient, p-njunctionandsolderingpoint,solderingpointandplate,plateandambient,respectively, AnLEDluminairewillneed,also,externalopticsandadriver.

TJ (p-n junction) LED Rth JS TS (Solderingpoint) PCBsubstrate Rth SP TP (Plate) Rth Coolingsystem TJ =T A +(Rth JA × PD) PA Rth JA =Rth JS +Rth SP +Rth PA TA (Ambient) Figure5-12.SimplifiedthermalmodelcircuitofaLEDplacedonaPCB. Theconversionefficienciesofincandescentandfluorescentlampsarelimitedbyfundamentallaws ofphysics.Ablackbodyradiatorwithatemperatureof2800Kradiatesmostofitsenergyinthe infraredpartofthespectrum.Therefore,onlyabout5%oftheradiationofanincandescentlampis emittedinthevisiblespectrum.MercurydischargeofafluorescentlampoccursmainlyataUV- wavelengthof254nm.WhenUV-radiationisconvertedintolightwithfluorescentpowder,more thanahalfoftheenergyislost.Afluorescentlampcanconvertapproximately25%oftheelectrical energyintoradiantenergyinthevisiblespectrum. LEDtechnologyontheotherhanddoesnothavetofightthefundamentallawsofphysicsina similar fashion as the phosphor conversion in fluorescent lamps. Theoretically, it can achieve a conversionefficiencyof100%.TheluminousefficacyofawhitelightLEDdependsonthedesired wavelengthsandcolorrenderingindex(CRI).Zukauskas etal. (2002)havecalculatedtheoptimal boundariesforwhitelightusingtwo,three,fourandfiveLEDs: ― ηυ430lm/WandCRI3usingtwoLEDs ― ηυ366lm/WandCRI85usingthreeLEDs ― ηυ332lm/WandCRI98usingfourLEDs

115 5LIGHTINGTECHNOLOGIES

― ηυ324lm/WandCRI99usingfiveLEDs Luminousefficacyof400lm/WisreachablewiththreeLEDs,butinthatcasetheCRIwillremain under50.Zukauskas etal. (2008)havealsoshownthatusingphosphor-convertedwhiteLEDsgood color rendering can be attained at different color temperatures, while maintaining luminous efficacies relatively high (i.e., 250 to 280 lm/W). Future lighting systems will require more intelligentfeatures.InthisregardLED-basedlightingsystemshaveanimportantadvantagedueto their easy controllability. Intelligent features combined with the inherent high energy-saving potentialofLEDswillbeanunbeatablecombinationinawiderangeofapplications. AdvantagesofLEDs: ― Smallsize(heatsinkcanbelarge) ― Physicallyrobust ― Longlifetimeexpectancy(withproperthermalmanagement) ― Switchinghasnoeffectonlife,veryshortrisetime ― Containsnomercury ― Excellentlowambienttemperatureoperation ― High luminous efficacy (LEDs are developing fast and their range of luminousefficaciesiswide) ― Newluminairedesignpossibilities ― Possibilitytochangecolors ― Noopticalheatonradiation DisadvantagesofLEDs: ― Highprice ― Lowluminousflux/package ― CRIcanbelow ― Riskofglareduetohighoutputwithsmalllampsize ― Needforthermalmanagement ― Lackofstandardisation

116 5LIGHTINGTECHNOLOGIES

Figure5-13.ExamplesofLEDsandLEDmodules. 5.3.2 OLEDs-Organiclight-emittingdiodes Similarly to inorganic light-emitting diode, the organic light-emitting diode (OLED) promises highlyefficientlargearealightsources. Recentdevelopmentshavereportedluminousefficaciesof90lm/Watluminancesof1000cd/m 2 withimprovedOLEDstructurecombiningacarefully chosen emitter layer with high-refractive- index substrates and outcoupling structure (Reineke, Lindner et al. 2009). This efficacy level is alreadyveryclosetothatoffluorescentlampswhicharethecurrentbenchmarkforefficientand highqualitywhitelightsourcesusedingenerallighting. Hermeticencapsulation Reflectingcathode Organicemissivelayer Transparentanode Transparentsubstrate

Light emission

Figure5-14.GenericstructurerepresentationofanOLED.

117 5LIGHTINGTECHNOLOGIES

ThebasicmaterialsofOLEDsareproductsofcarbonchemistry.TypicallyanOLEDiscomposed byoneorseveralorganicemissivematerialssandwichedbetweentwometalcontacts(cathodeand anode)asshowninFigure5-14.Oneofthesecontactshastobetransparentwhiletheotherhas reflective properties. Multi-layer-structures are depositedontotransparentsubstrateslikeglassor polycarbonate.Anotheressentialdifferenceisthattheconductionpropertiesofthematerialsdonot depend on doping as inorganic LEDs, but are instead inherent characteristics of the organic molecule.WhiteOLEDshavebeenmadebypilingthreethinlayers,emittingthered,greenand bluelightrespectively.ThespecialcharacteristicsofOLEDsare: ― Lightemissionfromlargeareas ― Simplicityofprocessingtechniques ― Limitedluminances(e.g.1000cd/m 2) Applicationsrangefromlightingtoflat-paneldisplayswithhighresolution.Transparentvariants (TOLEDs) may be integrated into car windshields or similarequipmenttocombinewindowand displayfunctions. OLEDsareextremelythinwithnorestrictionsonthesizeorshape.ThemainadvantagesofOLED technologyarethesimplicityofprocessingtechniques,theavailabilityofawiderangeoforganic luminescent materials and emitted colors, and the possibility of producing large and flexible surfaces. OLED technology has three specific characteristics:transparency,flexibilityandwhite- lightemission. TheenergyefficiencypotentialofOLEDsisequallyhighaswithinorganicLEDtechnology.Both technologies share similar problems such as the relatively low external quantum efficiency. Theoretically, internal quantum efficiencies close to 100% are achievable by using phosphors. However,toproducehighlyefficientdevices,theexternalquantumefficiencyhastobeincreased by helping a larger fraction of the internally produced photons to escape to the exterior of the device. 5.3.3 LEDdrivers LEDsaremakingtheirentranceintothelightingfieldusingmodernhigh-efficiencysemiconductor material compounds and structures. Solid-state lighting (SSL), offers new possibilities and advantagesfortheend-user.Byusingappropriatedrivers,controlstrategyandLEDs,thequalitative andquantitativeaspectsofthelightcanbefully controlled. Electronic drivers are indispensable componentsformostLEDsystemsandinstallations.AsLEDtechnologyevolves,thepossibilities fornewandmoreintelligentproductsincreasethedemandformorespecificfeaturesfromtheLED drivers. The LED chip has a maximum current density that should not be exceeded to avoid premature failure.ThecheapestandmostbasicwaytodriveLEDsistouseaconstantvoltagepowersupply andaresistorinserieswiththeLEDtolimitthecurrentflowingthroughit.Theselectedresistance dependsonthemagnitudeofthevoltagesource(V IN ),onthevalueoftheLED’sforwardvoltage and the forward current of the LED. However, the use of limiting resistors is not desirable in applications where reliability, accurate control and electrical efficiency are desired features. In applications presenting small variations in the DC supply voltage, the LED current will vary considerablyresultinginsomecasesinprematurefailureofthedevice. Linearpowersupply(LPS)isaneconomical,simpleandreliablewayofdrivingLEDs.LPSsare based on either integrated circuit (IC) linear regulator or on bipolar junction or field effect

118 5LIGHTINGTECHNOLOGIES transistorsoperatinginthelinearregion.Theoperationinthelinearregioniscomparabletothe voltage-currentcharacteristicofaresistor.Thesimplestlinearvoltageregulatorcanbemadefroma Zenerdiodeoperatinginitsbreakdownregion.TypicalDC/DCcircuitstagesoflinearvoltageand currentregulatorsarebasedonacommerciallyavailable3-terminaladjustableICs.LPSsareknown for their very low electromagnetic interference (EMI). Therefore, they do not require additional filters.Thelowoutputripple,excellentlineand load regulation and fast response times are also importantfeatures.Themaindrawbackistheheatlossmainlyduetotheoperationofthelinear regulator and the resistors used in the voltage divider network. Off-line AC/DC linear power supplies generally use transformers at the input stage followed by the rectification and filtering stages.Thefinalstageincludesalinearregulatorwhichisthekeycomponentinthistypeofpower supplies.Typicalefficiencyvaluesrangefrom40% to55%,resultinginlowpowerdensityand bulkystructureinmostofthecases. Switched-modepowersupplies(SMPS)lackthemaindrawbacksoflinearpowersuppliesandare thereforethemainsolutiontodriveLEDs.Because LEDsareDCcomponents,justDC/DCand AC/DC SMPS types are considered here. Efficiency (typically between 60 and 95%), controllability,smallsizeandlowweightaretheirmainadvantagesoverthelinearpowersupplies. AnSMPScanprovide,ifnecessary,highcurrents(e.g.,morethan30A)atverylowvoltages(e.g., 3V).EquivalentLPSswouldbebulkierandheavier.ThemaincomponentofanSMPSisthepower switch. The power switch is basically a transistor that is used as an on/off switch. Typically, a powerswitchshouldhavelowinternalresistanceduring the conduction time (i.e., on-time) and highswitchingspeedcapability.Themainlossesareduetoswitchingandinternalswitchresistance duringtheon-time. Inapplicationswheretheloadvoltageishigherthanthesupplyvoltage,BoostDC/DCconverters offerasimpleandeffectivesolution.BoostLEDdriversareoftenrequiredwhenastringofseveral series-connected LEDsaredriven. In general,theboostconfigurationprovides greaterefficiency becauseofsmallerdutycycleforagivenoutputvoltage.Also,theconductionlossesintheinductor and other components are smaller. Buck, Buck-Boost, Cuk and Boost, are probably the most commontopologiesfoundinSMTPLEDdrivers.Other topologies that allow isolated operation suchasFlybackandSEPIC(Single-EndedPrimaryInductanceConverter)arealsoused. DC/DCBuckconverterscanprovidesimplicity,lowcostandeasycontrol.However,Buck-Boost canbeamoreversatilesolutionwhentheinputvoltagerangeoverlapstherequiredoutputvoltage. SEPICandFlybacktopologiesareusefulinapplicationswheretheoutputvoltagefallsbetweenthe minimumandmaximuminputvoltage.Additionally,theyprovidefullisolationbetweentheinput andoutputstages.ThoughSEPICtopologyoutperformsanequivalentFlybacktopologyintermsof efficiencyandEMI,Flybacktopologycontinuestobethemostcommonlyused.Oneofthereasons for this is the larger coupled-inductor size required by the SEPIC topology for operation in continuous-currentmode(CCM)atlightloads. The selection of the most appropriate topology to drive LEDs depends on the application requirements(e.g.,operationenvironmentconditions,systeminputvoltage,LEDs’forwardvoltage, numberofLEDsandcircuitarray),standardsandspecifications.LEDdriversintendedforusein commercial aircrafts or cars will have to be designed according to specific standards and requirements. To respond to the demanding application features and requirements, practical implementations make use of ICs or Application-Specific Integrated Circuits (ASIC) as switch regulatorsorcontrollers.

119 5LIGHTINGTECHNOLOGIES

5.3.4 LEDdimmingandcontrol LEDsallowspectral,spatialandtemporalcontrolof the light emitted. These features have been unobtainablewithconventionallightsources.Consequently,theemergingapplicationsarebringing important benefits to the lighting field. A majority of these applications require special control featuresjustachievablewithintelligentbatteriesordrivers.Intelligentdriversareusuallybasedon ASICsswitchingmicrocontrollerswhichincludeprogrammableflashmemory(EEPROMs),several on-chip Pulse-Width Modulation (PWM) controllers, ADCs (analogue-to-digital converter) and DACs(digital-to-analogueconverter)channels. Microcontroller-based LED drivers bring additional benefits such as operational flexibility, efficiency,reliability,controllabilityandintelligencetothesystem.MicrocontrollerICsprovidea longlistofusefulfeaturessuchasbuilt-insoft-start,multi-channelfrom8-to64-bitDAC/ADC, programmable input startup voltage, programmable outputcurrentrange,shutdownmode,wide- input-voltagerangeandshort-circuitprotection.Thefeaturesalsoincludethermalshutdown,multi- PWMchannels,possibilityofsynchronizationwithexternalclock,built-inswitches,RAM,ROM, and programmable flash memory (EEPROM) throughout serial USART (Universal Serial Asynchronous Receiver-Transmitter). In programmable microcontroller-based LED drivers the processing speed is probably one of the most important aspects to be considered. The microcontrollerspeedcanlimitthemaximumswitchingspeedanddataacquisitioninapplications processinginformationinreal-time.Thereasonisrelatedtothefull-cycleanalysesofinstructions and the reading of variables. The reading speed is given by Million of Instructions per Second (MIPS)isavalueprovidedinthedatasheet. In many LED applications, accurate and versatile dimming of the light output is required. In applications such as LCD backlighting, dimming provides brightness and contrast adjustment. Dimmingratioorresolutionisofparamountimportance,especiallyatlowbrightnesslevelswhere thehumaneyeperceivesverysmallvariationsinthe light output. The LED is a current-driven devicewhoselightoutputandbrightnessareproportionaltoitsforwardcurrent.Therefore,thetwo most common ways of dimming LEDs utilize DC-current control. One of the easiest implementations makes use of a variable resistor to control the LED’s forward current. This techniqueiscommonlyknownasanaloguedimming.However,voltagevariations,powerwasteon the variable resistor and color shift, make the analogue dimming method not suitable for more demandingapplications. AnalternativesolutiontoanaloguedimmingisdigitaldimmingwhichusesPWMoftheforward current. Dimming a LED digitally reduces significantly the color shift associated with analogue dimming.Moreover,aLEDachievesitsbestefficiencywhendrivenattypicalforwardcurrentlevel specifiedbythemanufacturer.AnotheradvantageofPWMdimmingoveranaloguedimmingisthat awiderdimmingrangeispossible.Ideally,withPWMdimmingtheLEDcurrentalwaysstaysat nominalvalueduringtheon-timedefinedbytheduty cycle. By changing the duty cycle of the PWMsignal,theaverageLEDcurrentchangesproportionally.TheselectedPWMfrequencyshould behighenoughtoreduceorcompletelyremoveflickering.Switching frequenciesbelow20kHz might result in acoustic noise, and below 100 Hz are likely to cause visible flicker. Therefore, specialcarehastobetakenduringtheselectionoftheoperationalswitchingfrequency.However,a trade-off has to be established between the output ripple, the PWM resolution, the switching frequencyandthesizeoftheinductorinordertooptimizetheoveralloperationalperformanceofa LEDdriver.HighswitchingfrequencywillrequireasmallinductorsizebutthePWMresolution willstaylow.LowPWMresolutionresultsinlowcontrolaccuracyandhighoutputripple. Ingeneral,SMPSforLEDsoperateincontinuousconductionmode(CCM)avoidingdiscontinuous

120 5LIGHTINGTECHNOLOGIES conductionmode(DCM).Thetransitionbetweenthetwomodesdefinestheminimumdutycycle value.Theminimumdutycycleisacriticalaspectintermsofdimmingresolution.Lightingcontrol protocols such as Digital Addressable Lighting Interface (DALI) and DMX512 use 256-step dimming resolution. Such dimming resolution can be achieved with an 8-bit microcontroller. In applicationsrequiringhigh-dimmingresolutionsuchasinDigitalLightingProcessing(DLP)and Liquid Crystal Display (LCD) -based televisions, 4000 dimming steps or more are required. In RGBLEDdisplayssophisticatedLEDdriversarerequiredtoprovideahighnumberofbrightness levels.Thenumberofreproduciblecolorsinthedisplayisproportionaltothenumberofbrightness levelsavailableforeachoftheRGBLEDsthatmakeupasinglepixelintheoveralldisplay. Forinstance,ina12-bitmicrocontroller-drivenRGBLED,onepixeliscapableofreproducing68.7 billioncolors.High-dimmingresolutionisrequired especially at low brightness levels where the driver’soutputcurrentislow.InordertoavoidDCMalowerswitchingfrequencyhastobeused. Thatwaytheoutputripple,theelectricalstressontheswitchandthelowefficiencyassociatedwith DCMcanbeavoided.IdeallythePWMfrequencyshouldbechosenlowenoughtoensurethatthe current regulation circuit has enough time to stabilize during the PWM on-time. The maximum PWMfrequencydependsonthepower-supplystartupandresponsetimes.Lastbutnotleast,the currentlinearitywithdutycyclevariationshouldbetakenintoaccountwhenselectingtheswitching frequency. ThemanufacturersofLEDsystemswanttomakefulluseofthegreatpotentialandcharacteristics offeredbyLEDs.Thus,theoptimizationoftheoverallsystemperformanceisalwaysanaspectto beconsidered.ElectronicdriversareimportantcomponentsinamajorityofLED-basedsystems. Relatively small improvements on the driver efficiency often result in big improvements in the systemlevelefficiency. Inordernottomisuse one of the great advantages of LEDs, their high potentialefficiency,thedriversshouldperformaccordingly.InapplicationsinvolvingpowerLEDs, thebestefficiencyperformanceisnormallyachievedwithSMPS.SMPSareanidealsolutionwhen small size, light weight and efficient drivers are required. The most appropriate topologies are selectedbasedonthetypeofLEDclusterstobedrivenandontheiroperationalrequirements.IC switching regulators, microcontrollers or programmable microcontrollers are often being used in LEDdrivers.Microcontroller-basedLEDdriversarecommonlyusedinapplicationswhereoptical or thermal control feedback loops are needed. In most cases, this also requires a high level of integrationbycombiningoptoelectronicswithcontrolleranddrivercircuitry.Thiscanresultincost savingsandreductionofthesizeoftheproduct.Insomecasesthismightalsoresultinamore complex design affecting other properties such as the product lifetime. With adequate thermal managementofLEDs,itispossibletoreachlifetimeexpectanciescloseto100000hoursequivalent to11yearsofcontinuousoperation.Ideally,on-boardorintegrateddriversshouldbeabletomatch the lifetime performance of LEDs. Digitally controlled SMPS are and will be indispensable componentsofintelligentLEDsystems.However,theutilisationofdigitallymanagedSMPSfor LED driving have some limitations that need to be dealt with. Among them are the processing speed, inductor size, dimming resolution, communication capability with other lighting industry standardsanddrivingcapabilityformultipleoutputsand/orLEDstrings.Thepowerratingisalsoa limitingfactorwhenICswithinternalswitchareused. Inconclusion,theinconveniencesassociatedwiththe utilization of electronic drivers are mainly relatedtothereduction ofsystemreliability,increase in EMI, introduction of inefficiencies and increaseofsize.TheutilizationofACLEDsmayaddressthepreviouslimitationsatsystemlevel andeasetheadoptionofSSL.Besidesreducingthesystemdrivingcomplexity,ACLEDsmayalso minimizethecomplexitiesassociatedwithDCcurrentcontrol.Additionally,systemcostreductions arealsolikely.Thecurrentandfuturedemandforhigh-endLEDdrivershasbeenfuelledbythe

121 5LIGHTINGTECHNOLOGIES competition between LED OEM and systems manufacturers. The current and future trend is to includepowerconversion,controlandintelligencepropertieswithinasmallnumberofchipsusing the lowest number of external components. Consequently, the required PCB size is reduced, resultinginbetter reliability and allowingmore compact, efficient and low-cost power supplies. Compactdesignsareusuallypossiblewithhighswitchingfrequenciesduetosmallerphysicalsize ofinductorsandcapacitorsrequired.BecausethemainadvantagesofLEDsoverconventionallight sourcesshouldnotbemisused,digitallymanagedpowersuppliesmaybethebestsolutiontodrivea broadrangeofLEDsystemsbothnowandinthefuture. 5.3.5 LEDroadmaps The high energy-efficiency potential has been one of the main drivers for the fast technological developmentofLEDsduringthelastthreedecades.Currently,themainR&DtrendsintheLED technology have been the improvement of the efficiency and increase of light output. The acceptance of solid-state lighting in niche applications such as horticultural lighting depends on futureimprovementsinconversionefficiencyandlightoutputperpackage.ThetrendinLEDlight outputandlightcostiscontinuingtofollowtheHaitz’slaw,accordingtowhichtheevolutionofred LEDsintermsoflightoutputincreasebyafactorof20perdecade,whilethecostsdecreasebya factorof10(Haitz,Kishetal.1999).

1.E+04

1.E+03 Cost/Lumen Flux/Package 1.E+02

1.E+01

1.E+00

lm&$/lm 1.E-01

1.E-02 +20x/Decade -10x/Decade 1.E-03

1.E-04 1965 1975 1985 1995 2005 2015 Year Figure5-15.EvolutionofthelightoutputperLEDpackage,costperlumen(left);andwhitelightLEDpackage efficacytargets(right).(DOE2010,Haitz,Kishetal.1999) TheluminousefficacyprojectionsshownaboveforcoolwhiteLEDsassumeCRIbetween70and 80 at CCT located between 4746K and 7040K. The maximum expected efficacy for phosphor convertedcool-whiteLEDswiththesecharacteristicsisexpectedtoclearsurpass200lm/Wbythe year 2015. The luminous efficacy projections for warm white LEDs white expect values above 180lm/W.(DOE2010)

122 5LIGHTINGTECHNOLOGIES

Figure5-16.Targetedluminaireefficienciesatsteady-stateoperationofLEDluminairescomposedofphosphor- convertedwhiteLED(left)andcolorLEDs(right).(NavigantConsultingInc.,RadcliffeAdvisorsetal.2009) The main future developments at LED luminaire level are expected to be on external quantum efficiency of the LED device followed by improvements of luminaire and optics efficiency. Producingwhitelightusingcolor-mixinggivesthehighestenergy-efficiencypotentialatasystem levelincomparisontoluminairesusingphosphor-convertedwhiteLEDs.AnRGBLEDluminaire willbeabletoconvert55%ofitsinputpowerintoradiantpowerwhilealuminaireusingwhite LEDswillonlyconvert41%(NavigantConsultingInc.,RadcliffeAdvisorsetal.2009). 5.4 Trendsinthefutureinlightsources Currently there is a global trend to phase out inefficient light sources from the market through legislationandvoluntarymeasures.CommissionRegulations(EC)No244/2009andNo245/2009 of18March2009implementingDirective2005/32/EC(EcodesignofEnergy-usingProducts)ofthe EuropeanParliamentandoftheCouncilhavesetrequirementsfornon-directionalhouseholdlamps and for fluorescent lamps without integrated ballast, for high intensity discharge lamps, and for ballasts and luminaires able to operate such lamps. These regulations will effectively remove incandescent lamps, mercury lamps and certain inefficient fluorescent and HID lamps from the European market (Commission Regulation (EC) n. 244/2009, Commission Regulation (EC) n. 245/2009, Council Directive 2005/32/EC). Similar legislative actions are carried out around the world:AustraliahasbannedtheimportofincandescentlampsfromFebruary2009,andUSAhas enactedtheEnergyIndependenceandSecurityActof2007thatphasesoutincandescentlampsin 2012-2014. Also other countries and regions have banned, are on their way to ban, or are consideringbanninginefficientlightsources. Electroluminescentlightsources Further technological developments on electroluminescent light sources are forecasted. These developmentsinvolveimprovementsinthedeviceefficiency,lightoutputandcostoflumensper package. The referred developments will enlarge the possibilities of electroluminescent light sourcesbeingutilizedinapplicationsdominateduntilnowbyconventionallightingtechnologies suchashigh-intensitydischargelamps.ImprovementonexternalquantumofinorganicLEDsisone ofthemaintechnologicaldevelopmentgoalsofoptoelectronicandlightingindustry.Additionally, semiconductormaterial structureshavetobeimprovedinordertoaddresstheeffectsknownas “droop ”and“ greenhole ”.Theselimitationsarerelatedwiththedecreaseoflightoutputathigh currentsandthelowefficiencyofLEDsemittinginthegreenregion.Nowadaystheapplications involvingLEDsareinnumerableandtheapplicationvarietiesimposeacleardemandondesignof controllable LEDdrivers.Atluminairelevel,controllersanddrivers arebecomingindispensable components. As the LED technology continues to evolve, the possibilities for new and more

123 5LIGHTINGTECHNOLOGIES intelligent products or systems based on intelligent controllers and drivers is expected to grow. OLEDsbringnewanddifferentilluminationpossibilitiesthaninorganicLEDstothelightingfield duetothelargeemittingsurfaceandslimprofile.DuetothefactthatOLEDsarerelativelymore recenttechnologythaninorganicLEDs,theirefficiencyperformancestilllagsbehind.Similarlyto inorganicLEDs,improvementsoninternalquantumefficiencyandlightextractionarerequiredin thefuture.EspeciallyeffortshavetobeplacedontheimprovementoftheefficiencyofblueOLED emitter.Beforeasignificantmarketpenetrationcantakeplace,thelifetimeofOLEDsisanother importantaspecttobeimproved. Futuredevelopmentsinthesolid-statelightingfieldaredifficulttopredict.However,thetrendis towards the increasing and gradual adoption of this technology to replace conventional light sources,likethetransistorreplacedthevalveinthepast. Dischargelamps A special concern of all discharge lamps working with phosphors (fluorescent lamps, barrier dischargelampsetc.)istheconversionfromshort-wavelengthtolong-wavelengthradiation.One UV-photongeneratesatmostonevisiblephoton,untiltoday.Forexample,thephotonenergyinthe middlerangeofthevisiblespectrumaccountsforlessthan50%ofthephotonenergyofthemain Hg-resonant-line(254nm)andonly30%oftheXe2-eximerradiation.Itisexpectableinthefuture that luminescent materials will be able to convert one short-wavelength photon into two long- wavelengthphotonsinsidethevisiblespectrumregion. Anotherproblemofmostdischargelamps,withtheexceptionoflowpressuresodiumandbarrier lamps,istheuseofmercury.Fromthepointofviewofplasmaphysics,Hgistheidealbuffergas, but on the other hand, a perfidious environmental toxin. Practicable countermeasures are the systematicdisposalofdiscardedlampsorasubstitutionofHg.Thereexistfewpotentialmercury freealternativestocurrentHIDincludingmetalhalidelampsusingzinciodideasasubstitutefor mercury, and mercury-free high-pressure sodium lamps (UNEP 2008). OSRAM has recently introduced mercury free HID-headlamp system with performance comparable to xenon lamps containingmercury(OSRAM2009). A disadvantage of high pressure discharge lamps, especially for indoor applications, is the long warming-upperiod.Byspecialelectronicballastswithaboostedpowerstartingphaseandmodified lamp fillings, it is possible to considerably shorten this time. Such systems have already been realizedfor35Wgas-dischargecarheadlamps.TheUN-ECEregulationNo.99(UN-ECE2009) demandstheselampstoreach80%ofthefinalluminousfluxin4safterignition. 5.5 Luminaires 5.5.1 Introduction ThediscussionsonphasingouttheincandescentGLS-typelampsandnewfindingsontheeffectsof lightonhumanwell-beingandhealthhaveincreasedthepublicawarenessoflighting.Besidethe lamps, luminaires are important elements in lighting installations, and their quality defines the visualandecologicalqualityofthewholelightinginlargepart.Duringthelasttwodecades,the developmentoflightingengineeringhasbeendrivenbycomputerizationofresearchanddesignof bothluminairesandlightingsystems,bywideuseofelectronicsinproductsandcontrolsystems, andbyapplicationofnewstructuralandlightingmaterials. Nowadays, one of the main future trends in lighting industry is to offer products which are

124 5LIGHTINGTECHNOLOGIES adaptabletothechangingneedsoftheusers,andwhichareenergyefficientandecologicalatthe sametime.Theseluminaireshavetobeintegratedinthebuildingmanagementsystems(orother control systems). Undoubtedly, the strongest trend in luminaire industry is towards LED- luminaires.Newmanufacturingandmaterialtechnologieslikehigh-reflective( ρ>98%)reflectors andcomplexsurfacetechniquesallowcompletely newluminaireconcepts.Additionally, LEDis revolutionizingthewholelightingindustrybychangingitfromasheetmetalformingindustrytoa hightechelectronicindustry. 5.5.2 Definitionofaluminaire Aluminaireisadeviceformingacompletelightingunit,whichcomprisesofalightsourceand electric operating devices (transformer, ballast, ignitor, etc.). It also includes the parts for positioning and protecting the lamp/s (casing, holder, wiring), and connecting the lamp/s to the powersupply,andthepartsfordistributingthelight(optics).Thefunctionofluminaire(ifnota pure decorative fitment) is to direct light to desired locations, creating the required visual environment without causing glare or discomfort. Choosing luminaires that efficiently provide appropriateluminancepatternsfortheapplicationisanimportantpartofenergyefficientlighting design. Different lamp technologies require different luminaire construction principles and features. For example,ametalhalidelampHCI150W(extremehighpowerdensity,verysmall,luminance20 Mcd/m 2,bulbtemperatureca.600°C)comparedtoaT8fluorescentlampHO35W(diameter16mm, 1.5m length, surface temperature 35°C, luminance 20000 cd/m 2) require completely different luminairetypes.

Figure5-17.Exampleofatechnicalluminaire(circularfluorescent,secondaryradiationtechnique,highquality shielding). Luminairescanbeclassifiedbytheirdifferentfeaturessuchas: ― Lamptype(incandescent,tungstenhalogen,FL,CFL,HID,etc.) ― Application (general lighting, downlight, wallwasher, accent light, spotlight,etc.) ― Function(technical,decorativeoreffectluminaires) ― Protectionclass(e.g.ingressprotectionIP-code) ― Installation(suspended,recessedorsurface-mounted,freestanding,wall mounted,etc.) ― Typeofconstruction(open,closed,withreflectorsand/orrefractors, high-specularlouvers,secondaryoptics,projectors,etc.).

125 5LIGHTINGTECHNOLOGIES

Figure5-18.Technicalluminaire–louvergrid. Figure5-19. Decorativeluminaire.

Technical luminaires are optimized for a certain function (e.g. a special luminous intensity distribution according to the task, prevention of glare, etc.), whereas decorative luminaires are designedwiththefocusonaestheticalaspects.

5.5.3 Energyaspects The luminaire is an important part of the electricity-luminance – chain (lamp including ballast, luminaire,room). Itisdecisiveforthe energy efficiencyofthelightinginstallation.Theenergy efficiencyofaluminaire(ηLuminaire )ischaracterizedbythelightoutputratio(LOR),whichisgiven bytheratiobetweenthetotalluminousfluxofthelampwheninstalledontheluminaire( φLuminire ) andthelampsalone( φLamp ).

Figure5-20.Historicaldevelopmentoflinearfluorescentlampluminairesregardingenergyconsumption.

126 5LIGHTINGTECHNOLOGIES

The efficiency of a luminaire depends mainly on the lamp type, control gear and optical components(definingtheopticalefficiency).Thenewgenerationoflinearfluorescentlamps,the T5(diameter16mm),togetherwithhighfrequencyballasts,allowsustoincreaseenergyefficiency anddecreasethecostsatthesametime,comparedtotheoldmagneticballastsandT12andT8 technologies. New generations of lamp of CFL, high-pressure sodium, metal halide and IRC incandescentlamptypes,havebeenintroduced.Togetherwiththeappropriateluminairetechnology andlightingcontrolstheycanreduceenergyconsumptionoflightingsignificantly. The development of high reflective surfaces (high specular or diffuse reflectance) for lighting purposes, of complex surface calculation methods and of new manufacturing technologies (e.g. injection molded plastics with Al-coating) has improved the efficiency (light output ratio) of luminairesreaching80%ormore.Thedeveloping LED-technologywillalsocontinuethistrend. Thus,thetechnicalpotentialforenergysavinglightingsolutionsisalreadyavailable.Adoptingitis onlyamatteroftimeandapplication.80%-90%ofthecurrentlightinginstallationsareolderthan 20 years. The replacement of these inefficient lighting installations with energy efficient components(lamps,controlgearsandluminaires)providesahugeenergysavingpotential.With thisstrategy,inparallel,thelightingqualitycouldbeimproved. 5.5.4 LEDLuminaires LEDswillrevolutionisethelumininairepracticesandmarketinthenearfuture.Thelonglifetime, colormixingpossibility(flexiblecolortemperature T f),spectrum(noinfrared),designflexibility andsmallsize,easycontrolanddimmingarethebenefitsofLEDs.Thesefeaturesallowluminire manufacturers to develop new type of luminires and designers to adopt totally new lighting practices. Further benefits include safety due to low-voltage operation, ruggedness, and a high efficacy (lm/W) compared to incandescent lamps. Duetothelowpricesandhighlumenoutput, fluorescentlampsarethemosteconomicandwidely usedlamps.Today,morethan60%ofthe artificiallightisgeneratedbythislamptype(IEA2006)Comparedtofluorescentlamps,LEDsare expensive(costs/lumenoutput)andofferstodayamuchlowerlightoutputperoneunit. ThegapbetweenconventionallightsourcesandLEDsisdecreasingbutstillexistsatthemoment. Inresidentiallightingincandescentandtungstenhalogenlampsarethemostwidelyusedlampsin spite of their very low luminous efficacy and short lifetime (<4000h). LEDs are an economic alternative to incandescent and tungsten halogen lamps. Up to now, the LED general lighting markethasbeenmainlyfocusedon architecturallighting .

Figure5-21.LEDDownlight. OtherbarriersformainstreamapplicationsofLEDsarethemissingindustrialstandards(holders, controlsandballasts,platines,etc.),therequiredspecialelectronicequipment(drivers,controls),

127 5LIGHTINGTECHNOLOGIES shortinnovationcyclesofLEDs,andrequiredspecialopticsdifferentfromtheconventionalmetal fabrication. The spectral distribution and intensity of the LED radiation depends strongly on its temperature, LEDs being much more sensitive to heat conditions than conventional lamps. It is thereforeessentialtocareforanoptimalheattransporttokeeptheLED’s p-njunctiontemperature aslowaspossible. LEDsofnominallythesametypemayhaveawidespreadintheirradiationfeatures(production tolerances). They are therefore grouped in so called binnings, i.e. they are graded in different classes regarding luminous flux, dominated wavelength and voltage. For applications with high demandsoncolorstability,itisnecessarytocompensateandcontroltheseproductionandoperating tolerancesbymicrocontrollerstoreachpredefinedcolorfeatures(spectra).Allthesefeaturesand requirementsmakethedevelopmentofanLEDluminaireahighlydemandingtask.Followingthe actualLEDperformanceforecast,whiteLEDlightingwillsoonoutperformsometraditionallamps withsuperiorlifetime,decreasingprices,andincreasingluminousefficacy,whichopensthewayfor LEDsinabroadfieldofapplications.Duetothecontinuousspectrumofwhite LEDs,itisthe perfectlampforreplacingincandescentandhalogenlamps.LEDsneedtobeequippedwithspecial electronicsandopticsandthiswillcreateawhole new industry for LED luminaires. One of the challengeswillbethemaintenanceofLEDluminaires. Newfindingsregardingbiologicaleffects(e.g.melatoninsuppression)oflightandtheinfluenceof lightonhealth(e.g.shiftworking)generateanincreasingdemandforinnovativelightingthatgives bettercontroloverthespectrum,distribution,andintensityoflight.ThiscreatesdemandsforLED applicationsingenerallightingandforluminairemanufacturers. 5.6 Networkaspects Descriptionofphenomena Contemporaryelectriclightingsystemsaresourcesofseveralelectro-magneticphenomena,which exertinfluenceonthesupplyingnetworkaswellonotherelectricenergyusersandcannotthusbe neglected.Themostimportantare:harmonicsandlowpowerfactor.Thesourcesofharmonicsare (Armstrong2006,Henderson1999): ― Lightingsystemsduetothedischargeplasma. ― Saturationoftransformersinlowvoltagesystems. ― Electronicdimmersandvoltagereductioncircuits. ― Ballastsin high-frequency fluorescentlamps(actuallysingle-phaseac-dc switchmodepowerconverters). ― Low voltage halogen lighting powered by so-called electronic transformers(Armstrong2006). Thecurrentwaveformofacompactfluorescentlamps(CFL)anditsspectrum(Figure5-22),the current waveform of an AC supplied LED lamp with its spectrum (Figure 5-23) and the current waveform of an electronic transformer supplying a halogen lamp (Figure 5-24) are presented below.

128 5LIGHTINGTECHNOLOGIES

Figure5-22.Currentofa20WCFLFLE20TBX/827(GE)lampanditsspectrum.

Figure5-23.Currentwaveformofa0,9WACdrivenLEDlamp(20diodes)anditsspectrum.

Figure5-24.Primarycurrentwaveformofanelectronictransformersupplyinga50Whalogenlamp. InFigure5-25,forcomparison,thecurrentwaveformofanincandescentlampispresented.

129 5LIGHTINGTECHNOLOGIES

Figure5-25.Currentwaveformofthe20Wincandescent(standard)lamp. Fromthefigurespresentedabove,itcanbeseenthatthecurrentssupplyinglampswithelectronic elements(ballasts,suppliers,andcontrollers)arenotsinusoidalandthattheirspectrumincludesall odd harmonics. The power factor (PF) of these lampsislow.Forthecompactfluorescentlamp (Figure5-22)PFisequalto0.64andfortheACsuppliedLEDlamp(Figure5-23)itis0.26. Singlephaseconvertersemitsignificantlevelsofthirdharmonics,whichareaparticularnuisance becausethey are added linearlyinneutralconductorsandinzero-phase transformer fluxcausing additionalheatingofcables.Totalneutralcurrent(inmodernoffices)canbeasmuchas1.7times greaterthenthehighestphasecurrent,whilethebuildingneutralsarenotfused(Armstrong2006). Inthedomesticsector,mosthousesdonothavelargethreephaselightingcircuits,sotheabove mentionedproblemsdonotoccur.However,theutilitymustbedesignedforsuchcircumstances,if theestimatedloadinagivendistrictispredominantlydischargelampslighting.Thedesignofthe utility in an electric domestic reticulation system should reflect this when calculating the After DiversityMaximumDemand(ADMD)valueforeachhouse. Whenelectricwaterheatersandstovesareinstalled,requiringhighcurrents,thelightingloadswill berelativelylowandtheeffectofharmonicsonthereticulationsystemwillbesmall(Henderson 1999). Harmonic currents may contribute to failures of power system equipment. The most commonfailuresare(Henderson1999): ― Overheating of the power capacitor due to higher currents flowing at higherfrequencies. ― Powerconvertersfailureinducedbyincorrectswitchingandcausingthe malfunctionoftheunit. ― Failure of transformers and motors caused by overheatingthewindings duetoharmoniccurrentsandhighereddycurrentsintheironcore. ― Higher voltage drops because of additional losses in the supply conductorsduetotheskineffectofthehighharmonics. ― Incommunicationsystems,thecross-talkeffectintheaudiblerangeand inthedatalinksystems. ― Effectsonmeteringiftheharmonicsareextremeandmaycauserelaysto malfunction. ― Malfunctionofthe remotecontrolsysteminthehouse (e.g. harmonics havebeenknowntocausethetelevisionsettochange channels or the garagedoortoopen).

130 5LIGHTINGTECHNOLOGIES

Inthehousesthatrunonnonelectricenergysources for cooking, heating water and for central heating, the lighting load will be a high proportion of the maximum power demand. With the introductionofCFLsinthosesituationstheharmoniccontentofthenetworkwillbehigh.Therefore theeffectoftheharmoniccurrentsonthetransformersmustbecalculatedusingtheformulaforde- ratingwheretheharmonicdistortionlevelsarehigherthan5%.Foratypicalinstallationwitha largenumberofCFLsonasmalltransformer,thetransformerwouldhavetobede-ratedto88%of itsfullloadcurrentoritsratedkVA.ThecurrentreductionusingCFLsinsteadofincandescent lampsisa80%reductionofload(e.g.from100WGLStoa20WCFL),whichnowmustbe adjustedbackby12%.Thesavingonthetransformerwouldbe0.88x0.8=0.72perunit,or72% reduction in load. The transformer would be able to supply 3.5 times more CFLs lamps than incandescentlamps,whichmusttranslateintoareticulationcostsavingtotheutility(Henderson 1999). Stroboscopiceffectoccurswhentheviewofamovingobjectisrepresentedbyaseriesofshort samples,andthemovingobjectisinrotationalorothercyclicmotionatarateclosetothesampling rate. This effect is observed when fluorescent lamps with magnetic ballasts are installed. The stroboscopiceffectcanbeeliminatedbyusinglampswithelectronicballastswhichusuallychange thefrequencyofthepowerfromthestandardmainsfrequencyto20,000Hzorhigher.Electricand electronic equipment in buildings generates electromagnetic fields. The health aspects related to electro-magneticfieldsarediscussedinChapter3.7andstandardsandrecommendationsconnected withelectricandelectromagneticaspectsaredescribedinchapter4.3.7. Risksandopportunities The harmonics of different manufacturers of CFLs are slightly out of phase, and then the total network harmonics can be smaller if a variety of CFLs are installed in the community. The cancellingeffectissmallanditisdifficultforautilitytocontrol(Henderson1999,IAEEL1995). HendersonhasgiventhemeasurementsofharmonicmagnitudesandphaseangleofsomeCFLs. (Henderson1999) Modernapplianceshavegooddesignsorfilterstostoptheharmonicsgoingbackintothenetwork. Filters are usually network of inductors and capacitors that resonant at the harmonic current frequency and, accordingly, reduce the magnitude of the harmonic currents. The filters are effective,howeverwhentheyareconnectedtothenetwork,aharmonicgeneratedelsewhereonthe systemwillfindthefilter.Theresultwillbethatthecorrectingfilters ofanotherusermayfilter harmonicsgeneratedbyadifferentuser.TheCFLsaresmallusersofenergyandthefilterswould naturallybesmall.Whentheseareconnectedtoadirtysystem(system withharmoniccurrents), theywilltrytofiltertheharmonicsfromotherusersand,consequentlyoverheat,causingthefailure. Andtherefore,CFLfailureshavetobemonitoredbytheutilitytodetermineifthesupplytoanarea isthecauseoffailure(Henderson1999). The total harmonics distortion (THD) of CFLs is high, but similar to that of other domestic appliances.TheuseoffiltersintheCFLsmay causeexcessivelampfailuresbecausethe filters would attempt to reduce the harmonics created by otherequipment.TheLEDsmustbesupplied withappropriatecurrent.Thiscaninvolveshuntresistorsorregulatedpowersupplies.SomeLEDs canbeoperatedwithanACvoltage,buttheywillemitlightonlywithpositivevoltage,causingthe LEDtoflickeratthefrequencyoftheACsupply.ThiscausesdifferentsolutionsofLEDdrivers anddiodesconfigurationswhichprovidetoself-cancelingharmonicswithinthesingleLEDlamp (Freepatentsonline2004) Thebestwaytoreduceelectromagneticfieldsisgroundingalllightingequipment.Theprofitability

131 5LIGHTINGTECHNOLOGIES of the special networks for lamps, computers and other appliances should be individually consideredforbuildings.Forexample,applicationofDCnetworksmightsimplifysuppliers(one main transformer instead of the individual transformers for every device). This would ease the powerfactorcompensationandharmonicsreduction,andincreaseefficiencyofthewholeelectric installationanditsappliances. 5.7 Hybridlighting 5.7.1 Introduction Anintegratedlightingsystemutilizingbothdaylightandelectricallightingiscalledhereahybrid lightingsystem.

Daylighting Control Electricallightingsystem system system Hybridluminaire

Figure5-26.Hybrid(integral)lightingsystemoverview. Ahybrid(integral)lightingsystemusuallyconsistsofthefollowingmajorelements(Figure5-26): ― A daylighting system (provides natural light to the hybrid lighting system) ― Anelectricallightingsystem(providesartificiallight,ifitisrequired) ― Alightingcontrolsystem(enhancetheenergeticperformance) ― Ahybridluminaire(integratedlightingdeliverysystemforbothdaylight andelectricallighting) ― Transportationmodules(inspecialcases) 5.7.2 Energysavings,lightingqualityandcosts Daylightisafreeandsustainablesourceoflightandthesupplyofdaylightistypicallyatitshighest duringthehourswithpeakelectricalenergyloads.Usually,thereisenoughdaylighttomeetthe demandforlightingofabuildingduringmostofthe working hours. Daylight is, however, also associated with negative factors such as glare and increased cooling loads. The challenge is to controldaylightinawaythatthelightisutilizedwithoutglare,andtheheatiskeptout.Studies haveshownthatbenefitsofdaylightingarenotonlyenergysavingsbutalsoimprovedsatisfaction, motivationoftheoccupantsandproductivityoftheworkers(HartlebandLeslie1991,Figueiroet al.2002). Costscanbereducedbyintegratingthecomponentsandutilizingthesamematerialsforcapturing, transportation and delivery of daylight and electrical lighting. Costs can also be reduced by combining the control systems for daylighting and electric lighting. In order to achieve cost-

132 5LIGHTINGTECHNOLOGIES effectiveness over its lifecycle, a functional hybrid system needs to be combined with an inexpensive actuation system. Its design has to be compatible with standard construction techniques. 5.7.3 Examples HybridSolarLighting(HSL) Daylightis collectedbya(suntracking light collector). A transportation system (here: opticalfibers)isusedtodistributethecollectedsunlightthroughoutthebuildinginteriors.

Figure5-27.HybridSolarLighting.IllustrationsfromOakRidgeNationalLaboratry. Lightshelfsystems Daylightiscollectedanddistributedtotheceilingbyareflector(lightshelf)positionedintheupper partofthewindow,completedbyanintegratedelectriclighting.

Figure5-28.AprototypeoftheDaylightLuminaire.Upwardreflectedsunlightaswellaselectricallightcanbeseen onthewalltotheleftoftheluminaire. Lightpipes Sunlightiscollectedbyfixedmirrorsorbysuntrackingmirrors()andtransportedintothe buildingthroughlightpipeswhichcanalsotransport and distribute theelectrical lighting from a centrallylocatedelectricallightsource.

133 5LIGHTINGTECHNOLOGIES

Figure5-29.PicturesfromanArthelioprojectinstallationinBerlin.Theheliostatontheroofsuppliesthelightpipe withconcentratedsunlight(left).Anelectricallightsourcesuppliesthelightpipeswithelectricallightwhenneeded (right). 5.7.4 Summary Hybrid(integral)lightingsystems(nottobeconfusedwithdaylightsystems)arenicheapplications, theirmarketpenetrationistoosmalltoplayaroleinlightingandenergy,buttheyattractattention, thustheyareimportantsignsincreasingtheawarenessofenergyanddaylighting. References Armstrong,K.,2006. LimitsforHarmonicCurrentEmission .REOAPracticalGuideforEN61000-3-2.Available from:http://www.reo.co.uk/files/handbook_en_61000-3-2.pdf Celma, 2007. Guide for the application of Directive 2000/55/EC on energy efficiency requirements for ballasts for fluorescent lightin . CELMA Federation of National Manufacturers Associations for Luminaires and Electrotechnical ComponentsforLuminairesintheEuropeanUnion. Availablefrom:http://www.celma.org/archives/temp/CELMA_Ballast_Guide.pdf COMMISSIONREGULATION(EC),n.245/2009.ImplementingDirective2005/32/ECoftheEuropeanParliament andoftheCouncilwithregardtoecodesignrequirementsforfluorescentlampswithoutintegratedballast,forhigh intensitydischargelamps,andforballastsandluminairesabletooperatesuchlamps,andrepealingDirective 2000/55/ECoftheEuropeanParliamentandoftheCouncil. COMMISSIONREGULATION(EC),n.244/2009.ImplementingDirective2005/32/ECoftheEuropeanParliament andoftheCouncilwithregardtoecodesignrequirementsfornon-directionalhouseholdlamps. COUNCILDIRECTIVE,2005/32/EC.Establishingaframeworkforthesettingofecodesignrequirementsforenergy- usingproductsandamendingCouncilDirective92/42/EECandDirectives96/57/ECand2000/55/ECoftheEuropean ParliamentandoftheCouncil. DOE(U.S.DepartmentofEnergy)2010.Solid-StateLightingResearchandDevelopment:Multi-YearProgramPlan. Availablefrom: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2010_web.pdf EC,2000. Directive2000/55/ECoftheEuropeanParliamentandoftheCouncilof18September2000onenergy efficiencyrequirementsforballastsforfluorescentlighting . Availablefrom:http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:279:0033:0038:EN:PDF EN50294,1998.EuropeanStandardEN50294:1998Measurementmethodoftotalinputpowerofballast-lampcircuits. EUROPA,2005. Energyefficiency:energyefficiencyrequirementsforballastsforfluorescentlighting [online] . ActivitiesoftheEuropeanUnion.SummariesofLegislation. Availablefrom:http://europa.eu/legislation_summaries/energy/energy_efficiency/l27032_en.htm

134 5LIGHTINGTECHNOLOGIES

Farin,T.,2008. 15ThingsYouShouldKnowAboutLow-VoltageLighting. Availablefrom:http://www.homerenovationguide.com/articles/15-things-you-should-know-about-low-voltage-lighting Fichera,P.,Scollo,R.,1999. ElectronicTransformerfora12VHalogenLamp . Availablefrom:www.st.com/stonline/books/pdf/docs/3707.pdf Figueiro,MarianaG.,MarkS.Rea,RichardG.Stevens,andAnneC.Rea.2002.DaylightandProductivity-AField Study.Proceedingsof2002ACEEESummerStudyonEnergy Efficiency in Buildings, Washington DC, American CouncilforanEnergyefficientEconomy(2002). Freepatentsonline,2004. LEDlightstringandarrayswithimprovedharmonicsandoptimizedpowerutilization .United StatesPatent20040201988.Availablefrom:http://www.freepatentsonline.com/20040201988.html Haitz,R.,Kish,F.,Tsao,J.AndNelson,J.,1999. Thecaseforanationalresearchprogramonsemiconductorlighting. Whitepaperpresentedpubliclyatthe1999OptoelectronicsIndustryDevelopmentAssociation(OIDA)forumin WashingtonDC Henderson,R.,1999. HarmonicsofCompactFluorescentLampsintheHome . In : DomesticUseofElectricalEnergy Conference , 30Marchto1April 1999 CapeTown. Availablefrom:www.ctech.ac.za/conf/due/documents/Rhenderson.doc Holonyak,J.,NickAndBevacqua,S.F.,1962.Coherent(visible)lightemissionfromGa(As1−xPx)junctions. Applied PhysicsLetters, 1(4),82. Humphreys,C.J.,2008.Solid-StateLighting.http://www.mrs.org. HartlebPuleoSBandLeslieRP.1991.Someeffectsofsequentialexperienceofwindowsonhumanresponse.Journal oftheIES20(1):91-99. IAEEL,1995. PowerQualityandLighting .IAEEL(InternationalAssociationforEnergyefficientLighting)Newsletter 3-4/95.Availablefrom:www.iaeel.org/iaeel/newsl/1995/trefyra1995/LiTech_a_3_4_95.html IEA2006.InternationalEnergyAgency.Light’sLabour’sLost.IEAPublications,France.360p. Jirasereeamornkul,K.,Booneyaroonate,I.,Chamnongthai,K.,2003.High-efficiencyelectr-onictransformerforlow- voltage halogen lamp. In: International Symposium on Circuits and Systems, 25-28 May 2003, Bankok . ISCAS’03. Proceedingsofthe2003InternationalSymposium.Vol.3. Kim,J.S.,Jeon,P.E.,Park,Y.H.,Choi,J.C.,Park,H.L.,Kim, G.C. AndKim,T.W.,2004.White-light generation throughultraviolet-emittingdiodeandwhite-emittingphosphor. AppliedPhysicsLetters, 85(17),3696-3698. Krames M. 2007. Progress in high-power light-emitting diodes for solid-state lighting. Proceedings of the 11th InternationalSymposiumoftheScienceandTechnologyofLightSources,May20th-24th,Shanghai,China.pp.571- 573. Liang,L.,Ma,Xiang-Ming,Zhang,Tie-Min,2006. LowElectricalSourceDesignwithPiezoelectricCeramic Transformer. ChineseElectronicPeriodicalServices. Availablefrom:http://ceps.com.tw/ec/ecjnlarticleView.aspx?jnlcattype=1&jnlptype=4&jnltype=29&jnliid= 1282&issueiid=28887&atliid=379134 Nakamura,S.AndFasol,G.,1997.Thebluediodelaser - GaN light emitters and lasers. 1st edn. Berlin: Springer- Verlag. Navigant Consulting Inc., Radcliffe Advisors and SSLS Inc., 2009. Multi-Year Program Plan FY’09-FY’15 -Solid- StateLightingResearchandDevelopment. U.S.DepartmentofEnergy. OSRAM2009.OSRAMnews:OSRAMXenonmercury-freecarlamps.Availablefrom: http://www.osram.com/osram_com/News/Trade_Press/Automotive_Lighting/2009/090513_Mercury_Free.jsp Radiolocman,2007. ElectronicTransformerfor12VHalogenLamp .

135 5LIGHTINGTECHNOLOGIES

Availablefrom:http://www.radiolocman.com/shem/schematics.html?di=28080 Reineke,S.,Lindner,F.,Schwartz,G.,Seidler,N.,Walzer,K.,Lüssem,B.andLeo,K.,2009.Whiteorganiclight- emittingdiodeswithfluorescenttubeefficiency. Nature, 459,234-238. Steigerwald,D.A.,Bhat,J.C.,Collins,D.,Fletcher,R.M.,Holcomb,M.O.,Ludowise,M.J.,Martin,P.S.AndRudaz, S.L.,2002.Illuminationwithsolidstatelightingtechnology. IEEEJournalonSelectedTopicsinQuantumElectronics, 8(2),310-320. UN-ECE, 2009. E/ECE 324, E/ECE/TRANS/ 505, 24 February 2009, Regulation No. 99: Uniform provisions concerningtheapprovalofgas-dischargelightsourcesforuseinapprovedgas-dischargelampunitsofpower-driven vehicles.UnitedNations. UNEP, 2008. UNEP(DTIE)/Hg/OEWG.2/7. Report on the major mercury containing products and processes, their substitutes and experience in switching to mercury free products and processes. United Nations Environment Programme,July2008. VanTichelenP.,B.Jansen,T.Geerken,M.VandenBosch(Laborelec),V.VanHoof,L.Vanhooydonck(Kreios),A. Vercalsteren.2007.FinalReport,Lot8:Officelighting,271p. Žukauskas,A.,Shur,M.AndGaska,R.,2002.Introductiontosolid-statelighting.NewYork:Wiley. Zukauskaset.al.2008.Spectraloptimizationofphosphor-conversionlight-emittingdiodesforultimatecolorrendering. Appliedphysicsletters93,2008.

Zukauskaset.al.2002.Optimizationofwhitepolychromaticsemiconductorlamps.Appliedphysicsletters,Vol80, Number2,2002.

136 6LIGHTINGCONTROLSYSTEMS

Chapter6:Lightingcontrolsystems Topicscovered 6 Lightingcontrolsystems...... 139 6.1 Introduction...... 139 6.2 Identificationofthelightingcontrolneeds ...... 140 6.2.1 Specificationbook ...... 141 Thebuildingownerneedsanefficientlightingsystem ...... 141 Theoccupantneedstocontrolthesystem ...... 141 Theoccupantneedstounderstandthesystem ...... 141 Thelightingcontrolsystemmustbeeasytouse...... 141 6.3 SuitableLightingControlStrategies...... 142 6.3.1 Introduction...... 142 6.3.2 Predictedoccupancycontrolstrategy...... 144 6.3.3 Realoccupancycontrolstrategy(ROCS) ...... 145 6.3.4 Constantilluminancecontrolstrategy...... 146 6.3.5 Daylightharvestingcontrolstrategy...... 146 6.3.6 Lightingmanagementsystemandbuildingmanagementsystem...... 147 6.3.7 Lightingcontrolintegrationlevels...... 148 Level1(artificiallightingalone) ...... 148 Level2(artificiallightingcontrolbasedonexternalinformation)...... 149 Level3(artificiallightinganddaylightandHVACsystem) ...... 149 Sharingofequipmentandsensor...... 151 6.3.8 Lightingcontrolstrategyanalysis ...... 152 6.4 Lightingcontrolarchitecture...... 153 6.4.1 Lightingcontrollevels ...... 153 PlantControlArchitecture ...... 153 ZoneControlArchitecture ...... 154 WiringDeviceControlArchitecture...... 155 EmbeddedFixtureControlArchitecture...... 155 ArchitectureSWOTAnalysis ...... 156 6.4.2 Lightingcontrolcomponents ...... 157 Controllers ...... 157 Sensors...... 157

137 6LIGHTINGCONTROLSYSTEMS

Actuators...... 161 Networks...... 163 Componentanalysis...... 169 6.5 Recommendations...... 169 6.6 Illustrations...... 172 6.6.1 Illustration1:NOSSNationalOfficeforSocialSecurity–Belgium ...... 172 Controlandmanagementofthedaylight...... 172 Controlandmanagementoftheartificiallight ...... 172 6.6.2 Illustration2:TheBerlaymontBuilding-alouvresfaçade–Belgium ...... 173 Façadedescription ...... 174 Controlandmanagementofthedaylight...... 174 Controlandmanagementoftheartificiallight ...... 176 6.6.3 Illustration3:Intecomproject-France...... 176 6.6.4 Illustration3:DAMEXproject-Finland...... 178 6.7 Conclusions...... 180 References ...... 181

138 6LIGHTINGCONTROLSYSTEMS

6 Lightingcontrolsystems

6.1 Introduction Abuildingcanbecomparedtoasystemwithavarietyofphysicalprocessesinteractingwitheach otherandwiththeenvironment.Fromthecontrolpointofview,itisconsideredashavingmulti- variantdynamicsubsystemsshowinglinearornon-linearbehaviours.Environmentalandoccupancy changes in a building increase the complexity of control operations. Occupants not only impose controlgoalsrelatedtothermalcomfort,visualcomfortorindoorairqualitybutalsoinfluencethe buildingprocessesimpactingindirectlyonthecontrolfunctionsofthedifferentprocesses(HVAC, lighting,etc.). Duetotheincreaseofenvironmentalconcerns,lightingcontrolsystemswillplayanimportantrole in the reduction of energy consumption of the lighting without impeding comfort goals. As mentioned in the IEA Annex 31 (IEA 2001), energy is the single most important parameter to consider when assessing the impacts of technical systems on the environment. Energy related emissionsareresponsibleforapproximately80%ofairemissions(IEA2001),andcentraltothe mostseriousglobalenvironmentalimpactsandhazards,includingclimatechange,aciddeposition, smogandparticulates.Lightingisoftenthelargestelectricalloadinoffices,butthecostoflighting energyconsumptionremainslowwhencomparedtothepersonnelcosts.Thusitsenergysaving potential is often neglected. According to an IEA study (IEA 2006), global grid basedelectricity consumptionforlightingwasabout2650TWhin2005,whichwasanequivalentof19%oftotal globalelectricityconsumption.Europeanofficebuildingsdedicateabout50%oftheirelectricityfor lighting, whereas the share of electricity for lighting is around 20-30% in hospitals, 15% in factories,10-15%inschoolsand10%inresidentialbuildings(EC2007).

Figure6-1. Lowenergybuildingconcept. Thehumanrequirementsandthequalityoftheworkingenvironmentareoftenexpressedintermsof thermalandvisualcomfort.Theoptimalconditionsofthermalcomfortcanbeeasilydescribedas theneutralperceptionoftheinteriorenvironment,whereoccupantsdonotfeeltheneedforchange towardswarmerorcolderconditions.Visualcomfort,however,isnotdescribedeasily.Ratherthan referringtoastateofneutralperceptionoftheinteriorenvironment,itisperceivedasreceivinga message. Aspects such as daylighting, glare, luminance ratios, light intensity and contact to the outsidehavetheirinfluencesonourperceptionofvisualcomfort.

139 6LIGHTINGCONTROLSYSTEMS

To fulfill the the requirements about comfort and energy efficiency, building managers have implemented programs to reduce lighting energy requirements by installing more efficient light sourcesandluminaires.However,thisisnotsufficient.Lightingenergymanagementhastoprovide theoptimallightinglevelforthetasksbeingperformedusingthemostefficientlightsourcesuitable fortheapplication,andprovidinglightonlywhenandwhereitisneeded.Thiscanbeachievedby usinglightingcontrolstrategiesandlightingcontrolsystem.Themainpurposeofthesesystemsisto reduceenergyconsumptionwhileprovidingaproductivevisualenvironment.Thisincludes: ― Providingtherightamountoflight ― Providingthatlightwhereit’sneeded ― Providingthatlightwhenit’sneeded In fact, lighting control will depend on the considered zone. Thus, it is necessary to define the followingfactorsbeforehand: ― Thelightingneeds(levelofillumination,ambience,etc.) ― Thetaskzone/area(position,size,disposition,etc.) ― Theoccupationtime ― Thecontrolneedsoftheuser 6.2 Identificationofthelightingcontrolneeds

Developmentofaquestionnaireforusers Lightingcontroliscontinuouslyevolvingduetotheconstantevolutionofrequirementsforvisual comfortandtheincreasingdemandforlightingenergysavings.Butthereisoftenalackofaclear identificationoftheneeds.Annex45proposesherebyaquestionnaireinordertohelpthedesigner toidentifytheneedssothatoptimizedsolutionscanbeadopted.Notethattheidentificationofthe personansweringthequestionnaireisusefultounderstandtheneeds:abuildingenergymanager pays more attention to the energy consumption and the energy savings than the occupant. The questionnaireavailableinappendixBshouldprovideinformationon: ― Thedifferentpracticeswithinthebuilding ― Theperceptionofthecontrolbarrier’s ― Theneededcontroltype ― Thecontrolledarea ― Theflexibilityandmodularityofthelightingcontrolsystem Forexample,theidentificationoftheusageshelpsthedesignertounderstandthewayhehasto design the installation. In a school, an On/Off system coupled with daylight dimming may be adequate but in some offices, it could be necessary to go one step further by integrating more advanced techniques. Similarly, asking the perception of the people on the barriers of lighting control may give information about the type and quality of lighting control system that can be applied (basic On/Off switching system, advanced daylight dimming system, etc.). It is also importanttocollectinformationabout: ― Flexibilityandmodularityofthelightingsystemwhichgivesinformation about the future affectations of the building. For some buildings (e.g. rented offices) light structure walls are displaced and spaces are reorganizedregularly.Achangeofthelightingcontrolsystemthenhasto bepossibleandeasy. ― Maintenanceschemeandneeds.

140 6LIGHTINGCONTROLSYSTEMS

6.2.1 Specificationbook Thebuildingownerneedsanefficientlightingsystem Anobjectiveevaluationofasystemrequiresthedefinitionofperformanceparameters.Inaddition, it depends on baseline conditions to which the performance should be compared. Performance parametersinclude: ― Visualperformanceandcomfort ― Buildingenergyuse ― Costeffectiveness ― Easeofuse ― Maintenance ― Flexibility(versatility) ― Existingbuildingconstraints ― Systemstability ― Systemsintegration Anoptimalsystemperformanceneedsnotonlytoreachagoodperformancewithrespecttosaving electrical energy, but also to be accepted by the end-user. The end-user may be disturbed by the operationofthesystemanddisableit.Ahighuseracceptanceguaranteesundisturbedoperations and consequently energy savings. Existing buildings have specific constraints and requirements. Thereisaneedtoanalyzetheexistinglightingsystemandtodeterminetheupgradepossibilities considering the technical and economical constraints. Therefore, an audit of the existing lighting installationisnecessary.Advancedcontrolrequireselementssuchaselectronicdimmableballasts anddistributedelectricindoorgrids.Similarly,theuseofwirelesstechnologies(switches,sensors, etc.)isasuitablesolutionforretrofitsothattheplacementandexploitationcostscanbelimited. Theoccupantneedstocontrolthesystem Withinthelimitsofcomfort,itisdifficulttodefine exactly what the needs and priorities of the occupantare.Theyvaryfromoneoccupanttoanother,andalsowithtimeforthesameoccupant. For instance, some occupants may be concerned by energy savings, and some prefer better algorithmiclightingscenesevenifitrequiresmoreenergyandgenerateshighercosts.Therefore,it is recommended that the occupant should have the possibility to change the system’s behaviour accordingtohiswill. Theoccupantneedstounderstandthesystem Theuseracceptanceofalightingcontrolsystemisbetterifthesystemanditsworkingprinciple havebeenexplained.On-sitevisitsbypractitionersandinformaldiscussionswithend-usersshowed that about 90% of them accept the system operation if they know/understand what its aims and working principles are. It has also been demonstrated that occupants react to a need (a specific condition)butnotnecessarytothedisappearanceofthisneed.Forexample,ifanoccupantswitches onthelightsduetoasuddenobstructionofthesun,theprobabilitythathewillswitchoffwhenthe highdaylightlevelshaveturnedlow. Thelightingcontrolsystemmustbeeasytouse Theusabilityofthesystemmustbedefinedtoaddressallthetypesofusers(buildingoperators, occupants,facilitymanagers,maintenanceteams,installers,etc.).Usabilityexpressesthequalityof theexperienceofanuserwheninteractingwithasystem.

141 6LIGHTINGCONTROLSYSTEMS

Itisthecombinationoffactorsaffectingtheexperienceoftheuserwiththeproductorsystem: a. Easeoflearning ― Howquicklycananuntraineduserlearntooperatethesystemsufficiently well? b. Efficiencyofuse ― How well and fast can an experienced user carry out tasks using the system? ― Whatabouttherequiredtimeforservicingandmaintenance? c. Errorfrequencyandseverity ― Howoftendousersmakeerrorswhenoperatingthesystem? ― How severe are these errors and how easily can they be detected and corrected? d. Subjectivesatisfaction ― Doestheuserfeelcomfortablewiththesystem? ― Doestheuserfeelthatusingthesystembringsanyadvantages? ― Inwhatwaydoesheinteractswith? e. Maintenance ― What about determination and implementation of the maintenance schemes? 6.3 SuitableLightingControlStrategies 6.3.1 Introduction Lighting and lighting control represents a significant contribution to the energy consumption of building.Inordertoestimatethelightingenergy consumptionandrelatedimpactofcontrolsthe simplifiedequationfromtheEuropeanstandardEN15193couldbeused: W = W +W L,t P,t (kWh) (6-1) Where W-Totalenergyusedforlighting-theamountofenergyconsumedinperiodt,bythe luminaireswhenoperating,andparasiticloadswhentheluminairesarenotoperating, inaroomorzone,measuredinkWh. WL,t -Energyconsumptionusedforillumination-theamountofenergyconsumedin periodt,bytheluminairestofulfilltheilluminationfunctionandpurposeinthe building,measuredinkWh. WP,t -Luminaireparasiticenergyconsumption-theparasiticenergyconsumedinperiod t,bythechargingcircuitofemergencylightingandbythestandbycontrolsystem controllingtheluminaires,measuredinkWh. {(P × F )×[(t ×F ×F )+ (t × F )]} = n c D O D N O WL,t ∑ (kWh) (6-2) n 1000 Where tD–Daylightoperatinghours. tN-Non-daylightoperatinghours. Pn–Totalinstalledlightingpower,measuredinwatts. FD-Daylightdependencyfactor-factorrelatingtheusageofthetotalinstalled lightingpowertodaylightavailabilityintheroomorzone. FO-Occupancydependencyfactor-factorrelatingtheusageofthetotalinstalled

142 6LIGHTINGCONTROLSYSTEMS

lightingpowertooccupancyperiodintheroomorzone. FC-Constantilluminancefactor-thefactorrelatingtotheusageofthetotalinstalled powerwhenconstantilluminancecontrolisinoperationintheroomorzone. The estimation of the parasitic energy ( WP,t ) required to provide charging energy for emergency lighting and for standby energy for lighting controls in the building is established using the followingequation: {{P × [t − (t + t )]}+ (P × t )} = pc y D N em e WP,t ∑ (kWh) (6-3) 1000 Where ty-Standardyeartime-timetakenforonestandardyeartopass,takenas8760h. tD–Daylighthours-theoperatinghoursduringthedaylighttime. tN-Non-daylighthours-theoperatinghoursduringthenon-daylighttime. te-Emergencylightingchargetime-theoperatinghoursduringwhichtheemergencylighting batteriesarebeingchargedinhours. Ppc -Totalinstalledparasiticpowerofthecontrolsintheroomorzone-theinputpowerofall controlsystemsinluminairesintheroomorzone,measuredinwatts. AdetaileddescriptionoftheseequationsisgiveninAnnex4:EN15193. Thereductionoftheenergyconsumptionispossible by playing on the different elements of the equations,forexample: ― The installed power can be reduced by using low consumption light sources and efficient control gear (electronic ballasts, electronic DC transformer,etc.). ― Daylight dimming can lead to an important reduction of the energy consumptionbyadjustingthelightfluxsmartlyaccordingtothedaylight level.ThisiswhatisdonebytheF Dparameter. ― Operating hours can be reduced by adjusting lighting according to predictedorrealoccupationstrategiesthroughtheF Oparameterandthe amount of working hours (t N and t D). In fact, only a fraction of a building’slightingsystemisrequiredatanygiventime.Lightsfrequently are left on in unoccupied places where there is no need for lighting Throughthereductionofthet N,t DandF Ovalues,energysavingscanbe calculated. Thefirstlightingcontrolslevel,alsothemostwidelyused,isthemanualswitchtoputonoroffan individual luminaires or a group of luminaires. This type of control is not robust enough with respect to energy efficiency as it relies solely on the behaviour of the occupants who are not necessarilyconcernedbyenergysavings,especiallyinthetertiarysectorbuildings.Lightingcontrol strategies provide additional cost-savings through real time pricing and load shedding. Reducing lightingpowerduringelectricitypeak-useperiodswhenenergyratesareatthehighestcanalsobe achievedthroughaLightingManagementSystem(LMS). LightingManagementSystemsallowbuildingoperatorstointegratedlightingsystemswithother buildingservicessuchasheating,cooling,ventilation,inordertoachieveaglobalenergyapproach forthewholebuilding,inparticularforgreenbuildingoranenergy-producingbuilding.

143 6LIGHTINGCONTROLSYSTEMS

Energyefficiencyoflightingcontrolsystemsdependonthestrategiesimplementedaspresentedin figure6-2.

Figure6-2. Relationbetweencontrolstrategyandenergyefficiency.

6.3.2 Predictedoccupancycontrolstrategy The Predicted Occupancy Control Strategy (POCS) is used to reducetheoperatinghoursofthe lightinginstallation.Itgeneratesenergysavingsbyturninglightingonandoffonapresetdailytime schedule. Schedules usually vary on a daily basis according the building occupancy. By automatically turning off lights at a preset time, the systems assist building operators /facility managers to avoid having the lighting be on during unoccupied hours, mainly at night and at weekends.Differentschedulescanbeprogrammedfordifferentareasofthebuildingbasedonthe occupantneeds. Figure6-3. Timeschedulingcontrolscheme. The time scheduling control strategy enables switching on or off automatically based on time schedulesandoccupancypatternsfordifferentzones.Twenty-fourhourtimersallowtheoccupants to set certain times for lighting. The timer is set to switch lighting on during occupancy. Measurementshaveshownthatthebestenergyefficientsolutionsarecombiningtheuseofacutoff system with a manual switch on system; potential gains are between 10 and 15% (without

144 6LIGHTINGCONTROLSYSTEMS

daylighting)(Floydetal.1995,Rundquistetal.1996).Notethatthegainmaybemorethan50% incaseof24hourslighting(Manicciaetal.1999,NBI2003). Thisstrategyisusedmostwidelyinapplicationswherebuildingoccupancypatternsarepredictable andfollowdailyandweeklyscheduleslikeclassrooms,meetingroomsandoffices.

Figure6-4. Duskdawncontrolscheme. The DuskorDawncontrolstrategy isatypeofpredictedoccupancystrategybasedonsunriseand sunsetwhichcanbecalculatedforeverybuildinglocation.Lightisswitchedonautomaticallywhen itgetsdark,andoffwhenthereisenoughdaylight.Thiscontroltypeisnotoftenappliedforindoor lighting but is very efficient for atriums with good daylight availability or for glazed corridors linkingbuildings.Thisstrategyisnotnecessarilyachievedwithanoutdoordaylightsensor.Theon andoffhourscanbeprovidedbyascheduler. 6.3.3 Realoccupancycontrolstrategy(ROCS) Real Occupancy Control Strategy limits the operation time of the lighting system based on the occupancytimeofaspace.Inoppositiontothepredictedoccupancycontrol,itdoesnotoperatebya pre-establishedtimeschedule.Thesystemdetectswhentheroomisoccupiedandthenturnsthe lightson.Ifthesystemdoesnotdetectanyactivityintheroom,itconsiderstheroomasunoccupied andturnsthelightsoff.Topreventthesystemfromturningthelightsoffwhilethespaceisstill occupied,adelaytime(rangingtypicallyfrom10to15minutes)canbeprogrammed.

Figure6-5.Occupancycontrolscheme. RealOccupancyControlStrategiesarebestusedinapplicationswhereoccupancydoesnotfollowa set schedule and is not predictable. Classic app-lications include private offices, corridors, stairwells, conference rooms, library stack areas, storage rooms and warehouses. The savings potentialofrealoccupancycontrolvarieswidelyfrom20to50%(systemcombination)(Maniccia

145 6LIGHTINGCONTROLSYSTEMS

etal.2000,NBI2003).Itdependsonthelevelofdetection,theplaceofthesensor,thecoupling withdaylight-harvestingandofcoursethemovementsoftheoccupants. 6.3.4 Constantilluminancecontrolstrategy The Constant Illuminance Control Strategy (CICS) takes into account the ageing of the lighting systemintheroom.Itcompensatestheinitialoversizingofthelightingsystemintroducedbythe useofthemaintenancefactor(MF)atthedesignstage.

Figure6-6. Constantilluminancecontrolscheme. The constant illuminance control strategy usesaphotocelltomeasurethelightinglevelwithin a space ordeterminesthepredicteddepreciation(ageing)ofthelightinglevel.Ifthelightlevelistoo high,thesystem’scontrollerreducesthelumenoutputofthelightsources.Ifthelightlevelistoo low, the controller increases the lumen output of the light sources. The result is a system that minimizeslightingenergyusewhilemaintaininguniformandconstantlightinglevels. 6.3.5 Daylightharvestingcontrolstrategy The Daylight Harvesting Control Strategy (DHCS) allows facilities to reduce lighting energy consumptionbyusingdaylight,supplementingitwithartificiallightingasneededtomaintainthe requiredlightinglevel.

Figure6-7. Daylightingharvestingcontrolscheme. The Daylight harvesting control strategy usesaphotocelltomeasurethelightinglevelwithin a space,onasurfaceorataspecificpoint.Ifthelightlevelistoohigh,thesystem’scontrollerreduces thelumenoutputofthelightsources.Ifthelightlevelistoolow,thecontrollerincreasesthelumen outputofthelightsources.Sensorsareoftenusedinlargeareas,eachcontrollingaseparategroup oflightsinordertomaintainauniformlightinglevelthroughoutthearea.Theresultisasystemthat

146 6LIGHTINGCONTROLSYSTEMS

minimizes lighting energy use while maintaining uniform lighting levels. This system can also providetheconstantilluminancestrategy. Daylightharvestingsystemsaregenerallyusedinspacesthathaverelativelywideareasofwindows orskylights.Typicalapplicationsincludeclassrooms,high-riseofficebuildingsandretailfacilities. The savings potential varies from 20% (daylight-harvesting alone) to more than 50% (daylight- harvestingplusrealoccupancy.(NBI2003) Toillustratethepotentialgainobtainedwiththesedifferentstrategiesanofficebuildinghasbeen simulatedaccordingtotheenergycalculationmethoddescribedinFrenchregulationRT2005.Tests havebeendonefortwoclimaticzones-ParisandNice-ona600m²officebuilding.Theresultsare showninFigure6-8.

Figure6-8. EstimationofenergysavingsaccordingtotheFrenchthermalregulationcalculationtool"methodTh- CE". In office buildings, predicted occupancy control strategy (based on scheduler) allows 10% gain whereas real occupancy (based on presence detector) allows 20% gains. We can notice that Daylight-harvestingimpactdependsontheclimaticzone.So,inofficebuildingpotentialgainsvary from30%(Paris)to40%(Nice).Couplingofdifferentstrategiesshouldresultinmoreenergygains, for instance, daylight harvesting and real occupancy achieves up to 50% gains. These gains are functionoftheroomandwindowsizes,buildingorientationandsensor(s)position(s). 6.3.6 Lightingmanagementsystemandbuildingmanagementsystem Allthestrategiesdescribedabovecanbeappliedinalmostanybuilding.Theycanbestandalone systems or part of a fully interoperable lighting management system (LMS). With LMS one can schedulethelightoperationsinanyareawithinthebuilding,ormonitoroccupancypatternsand adjustlightingscheduleasrequired.TheLMSgivesfacilitymanagerstheabilitytoremotelycontrol buildinglightingenergyconsumption.Italsoenablesthefacilitymanagertoperformloadshedding strategiesincaseofhighelectricitydemandinthebuilding.Theutilizationcostsisthusreducedas thecontrolstrategyhasturnedoffordimmedsomelightsorlightingcomponentsduringpeak-use periods. Moreover,thankstoLMS,buildingoperatorswillbe able to record lighting scenes or predefine scenarios.Forinstance,asimplepushonabuttoncouldselecta videoprojection scenariowhich wouldconsistofdimminglightlevel,loweringblindsandsettingdownthescreen.

147 6LIGHTINGCONTROLSYSTEMS

LMSalsogiveafinestwaytocontrollamps.Buildingoperatorswillbeabletomanagelampsin one zone independently. The lighting rows close to the windows (usually less than 4m as best practice) will be controlled with daylight strategywhereastheotherswillnotbe.Anadditional advantage of LMS is their ability to monitor the operation of the lighting systems such as the numberofoperatinghoursinagivenarea,thenumberoftimesthelightsareswitchedon.Using thisinformation,maintenanceoperationlikerelamping(actiontoreplaceaburnedoutlamp)canbe scheduled. In case of implemented Building Management System (BMS), the management of the lighting system can be combined with heating, ventilation, air conditioning, security, etc. This type of integrated management system will allow sharing actuators and sensors. Some examples of integrationaregivenbelow. 6.3.7 Lightingcontrolintegrationlevels Three levels of integration can be distinguished for the indoor lighting control.These are listed below: ― Thefirstleveltakesintoaccounttheartificiallightingalone. ― Thesecondleveltakesintoaccountartificiallightinganditscontrolby externalinformationlikedaylighting,occupancy,.. ― Thethirdleveltakesintoaccountartificiallightingdealingwithartificial lighting plus external interaction with external elements like HVAC systemsandblinds. Level3 Level2 Level1 Figure6-9. Levelsofintegrationstrategies. Level1(artificiallightingalone) Inthisintegrationexample,theusercontrolstheartificiallightingthroughamanualswitch/dimmer.

Figure6-10. Simplestrategy.

148 6LIGHTINGCONTROLSYSTEMS

This allows artificial lightingcontrolaccordingto a manual switch (ON/OFF or dimming). This solutionisoneofthemostusedsystemsinbuildingconsistingofonlyaswitchforalampora groupoflamps. Level2(artificiallightingcontrolbasedonexternalinformation) Inthisintegrationexample,anilluminancesensorandanoccupancysensorhavebeencombinedto themanualswitch-dimmerinordertoincreasethevisualcomfortoftheoccupant.Foreachsensor, aprioritylevelisset.

Figure6-11. CouplingbetweenArtificiallighting,daylightingandrealoccupancy. Thissystemallowsartificiallightingcontrolaccordingto: ― Amanualswitch(on/off)ordimmingwithahighprioritylevel ― Anoccupancysensorwithanintermediateprioritylevel ― Anilluminancesensor(inordertoassumeaconstantlightlevel)witha lowprioritylevel Wecannoticethattheplanbecomesrathermorecomplicatedwhenwewanttosharesensors.The savingpotentialofthissolutionisquitethesameasdaylightharvestingplusoccupancysensor. Level3(artificiallightinganddaylightandHVACsystem) Inthisintegrationexample,thereisafullintegrationofthelightingsystemwiththeHVACsystems andtheblindssysteminordertoincreasethevisualandthermalcomfortoftheoccupant.

149 6LIGHTINGCONTROLSYSTEMS

Figure6-12. Couplingb:etweenartificiallighting,daylightingandHVAC. This system allows control of artificial lighting, daylighting (with blinds) and HVAC. Supplementarysensorsarepresentedwiththeirownprioritylevel,suchas: ― Amanualtemperaturesetpointbuttonwithahighprioritylevel ― Amanualswitchblindbuttonwithahighprioritylevel ― Anindoortemperaturesensorandwindspeedsensorwithaintermediate prioritylevel ― Aglaresensorwithalowprioritylevel Thecommunicationschemeofthisthirdintegration leveliscomplicatedbecauseofthemultiple interactionsbetweenthesensorsandthecontrollers(reddouble-arrow).Inthissystem,thesharing ofequipmentsandsensorsisnecessaryasshowninFigure6-13.

Figure6-13. Interactionofthesensorsonthedifferentcontrollertypes.

150 6LIGHTINGCONTROLSYSTEMS

Figure6-14. Exampleofinteractionsbetweencontrollers. Figure 6-14 represents the possible interactions between the different controllers. Contradictory situationmayleadtoproblems.Ablind-uprequest fromtheHVACcontrollerandablind-down requestfromthelightcontrollerhavetobesolvedbyanarbitrationsystemtoadaptthebestsolution in function of predefined priorities. If correctly implemented, the energy saving potential of this integration level is more significant than a level 2 integration solution with daylight harvesting alone. Itisimportanttonotethatthiskindofintegrationisnotdesignedforbuildingswhichconsumelarge amount of energy (other cheaper solutions are, mostly, more relevant and less expensive). Nevertheless,itseemstobearealchallengetoreachtherequirementsofnewbuildinggenerations (Greenbuildingandinpositiveenergybuilding). Sharingofequipmentandsensor Theequipmentsharingisanimportantissuetoachieveaproperintegrationofthecontrolstrategies (level1to3).Inordertomaintainagoodindoorclimate,thecontrolsystemcangenerallyactonthe applicationsasshowninTable6-1. Table6-1. Equipmentsandsensorsinvolvedinthecontrolstrategies–impactclassification. Sensor Equipment Temperature Indoorilluminance Outdoor Occupancy sensor sensor illuminancesensor sensor Solar VisualcomfortSA VisualcomfortMA VisualcomfortMA - protection Thermalcomfort Thermalcomfort Thermalcomfort system MA SA SA Artificial - VisualcomfortMA VisualcomfortMA VisualcomfortMA lighting Thermalcomfort system MA Heating Thermalcomfort - - Thermalcomfort system MA MA Cooling Thermalcomfort - - Thermalcomfort system MA MA MA impliesamainactor, SA impliesasecondaryorminoractor.

151 6LIGHTINGCONTROLSYSTEMS

6.3.8 Lightingcontrolstrategyanalysis Table6-2. Lightingcontrolstrategyanalysis1. Strategy Predictedoccupancy Realoccupancy Constant Daylightharvesting illuminance Main -Lowcosts -Relativelylow -Constantlight -Constantlight Advantages -Easy to install and costs levelconsidering level. use -Highrateof aging. -Possibilityto -10to20%gain energysavingfor -5to15%gain CouplewithBlind spacewith andHVAC intermittent -20to50%gain. occupationfor examplewhen peopleregularly gothrough (20to 50% 1). Main -Settingofclock -Ultrasonicsensor -Sometimeshigh -Sometimeshigh Disadvantages hastobechanged canbefooledby costs. costs. ifoperatinghours HVACsystems -Noteasyto -Noteasyto change. (vibrationofair configure. configure. flow) -lowprecision sensorswillcause uncomfortforthe occupant. Main -Classrooms, -Corridors, -Offices(open -Offices(open Usages -Meetingrooms stairwells space), space), -Offices(open -librarystack -Classrooms, -Classrooms, space). areas, -High-riseoffice -High-riseoffice -Store, -Storagerooms buildings buildings supermarket -Warehouses -Retailfacilities. -Retailfacilities. -Museum -Toilet. Basic -Scheduler -Occupancy sensor -Photosensor -Photosensor Components -Timeclock (Infraredor/and -Dimmer -Dimmer -Switch ultrasonic) -Multi-switch -Dimmer -Switch -Dimmer Table6-3. Lightingcontrolstrategyanalysis2. Strategy Level 1 : Artificial Level 2 : Artificial lighting control Level 3 : Artificial lighting lightingalone basedonexternalinformation and daylight, and HVAC system Complexity -Low -Intermediate -High Potential of -Intermediate -High -High energysaving Control -Predictedoccupancy -Predictedoccupancy -Predicted strategies -Realoccupancy -Realoccupancy occupancy involved -Constantilluminance -Constantilluminance -Realoccupancy -Daylightharvesting(main) -Daylightharvesting(main) LMS -NoLMSorBMS -LMS -BMSneeded needed -BMS(optional)

160%isconsideredforRealoccupancyplusDaylight-harvesting

152 6LIGHTINGCONTROLSYSTEMS

6.4 Lightingcontrolarchitecture The lighting control architecture supports the implementation of the defined strategies. It can be organizedinfourlevels: ― Lightingservice ― Lightingplant ― Lightingzone ― Lightingdevice Thelightingserviceleveldealswiththeoveralllightingmanagementsystem,itcouldalsobecalled thelightingbackbone.Lighting plant asananalogytoHVACcentralplantdealswiththecontrolof centraltechnicalareas.Itoftenappearsateachbuildingfloor.Lightingzonedealswiththedifferent interactionsinazone(zone=aroomorasetofrooms).Finally,lightingdeviceistheterminal device,whichcontrolsthevisualcomfortofaspecificarea. Plantcontrol Zonecontrol Wiringdevicecontrol Embeddeddevicecontrol Figure6-15. Levelstructureofthelightingcontrolarchitecture. Theselevelshavebeenestablishedthankstoastudyofthevariouslightingsystems.Thesesystems aredescribedwithgenericcomponentlistedinFigure6-16.

Figure6-16. Lightingcomponents. Thekeypointoflightingarchitecturedefinitionisthepositionoftheactuator.Wecanconsiderany lightingfixtureasoneoramixedofthesearchitectures. 6.4.1 Lightingcontrollevels PlantControlArchitecture ThePlantControlArchitecture(PCA)isanarchitecturewhereactuatorsandcontrollersareplaced inonepanelboardatthelightingplantlevel.Thistypeofarchitectureisusuallyusedforon/off controlinbuildingslikeindustrialbuildings,supermarket.Itcouldalsobeusedforspecificzones, forexample,acompletestoreyinanofficebuilding,orevenforindividualcorridorsorstaircases. Thisarchitectureissimpleandrobustandthuswidelyused.

153 6LIGHTINGCONTROLSYSTEMS

Figure6-17. Plantcontrol. ZoneControlArchitecture TheZoneControlArchitecture(ZCA)isanarchitecturewheretheactuatorandcontrolleractona defined area of the building floor. This architecture is widely used for offices with open spaces, schoolsandhospitalsbecauseitenableseasychangesofthecontrolstrategy.

Figure6-18. Zonecontrol.

154 6LIGHTINGCONTROLSYSTEMS

WiringDeviceControlArchitecture IntheWiringDeviceControlArchitecture(WDCA),theactuatorsarelocatedatthewiringdevice level.Itcanbeawall,ceilingorfloorwire.Theactuatorisusuallyembeddedwiththesensors.This kind of architecture is most popular for residential buildings, small offices and hotels because commands are distributed in the room to allow the occupant to perform fine control. This architecture is commonly used for simple control. Nevertheless, there exists more integrated dimmingapplications.Moreover,WDCAcaneasilybecombinedwithplantcontrolarchitecture.

Figure6-19. Wiringdevicecontrol. EmbeddedFixtureControlArchitecture The Embedded Fixture Control Architecture (EFCA) is an architecture where actuators and controllerarepositionedinthelightingdevice,usuallyintheballast.MostoftheEFCAsystemsare connecting all control gears through a BUS system. They provide individual or mutual control thankstocontrollersthatarecommonlyplacedatthefloorpanelboard,inthefalseceilingorina device.Ononesidethebindingbetweendeviceisphysicalthrough,forexample,wiring.Onthe otherside,thebindingislogical,throughforinstance,linksbetweenthepushbuttons,sensors(PIR) andtheactuatorsaresetbythecontroller.Thelogicbehindthebindingandtheprogrammingmakes configuring the system really flexible and versatile. This kind of architecture uses proprietary or opennetworksprotocols 2likeKNX,LON,Zwaveandofcoursethewell-knownDALI. InFigure6-20protocolsarerepresentedwithablueline.SomeBUSsystemcandirectlyprovide powertothelamp(likeLED),theyarecalledPowerOverBUS. 2See1.4.4Networks

155 6LIGHTINGCONTROLSYSTEMS

Figure6-20. EmbeddedDevicecontrol. ArchitectureSWOTAnalysis Table6-4presentstheSWOTAnalysisofthelightingcontrolarchitecture.(TheSWOTanalysisis astrategicplanningmethodusedtoevaluatetheStrengths,Weaknesses,Opportunities,andThreats ofelementsorstrategies). Table6-4. SWOTanalysisoflightingcontrolarchitectures. Easyto Mixingwith Visualperformance Architecture Costs Flexibility install BMS andcomfort PlantControl Intermediate Intermediate Quiteeasy Possible Low ZoneControl Intermediate Intermediate Easy Quiteeasy Intermediate WiringDevice Low Low Veryeasy Difficult Intermediate Control Embedded High High Noexpertis Easy High FixtureControl needed

156 6LIGHTINGCONTROLSYSTEMS

6.4.2 Lightingcontrolcomponents Controllers A lighting controller is an electronic device used in building to control the operation of one or multiplelightsourcesatonce.Majorityoflightingcontrollerscancontroldimmerswhich,inturn, controltheintensityofthelights.Othertypesofcontrollerscanalsocontrollighting,accordingto specific scenarios. Lighting controllers communicate with the dimmers and other devices in the lighting system via an electronic control protocol (DALI, DMX, ZigBee, KNX, etc.). The most common protocol used for lighting today is Digital Addressable Lighting Interface which is commonly known as DALI. Controllers vary in size and complexity depending on the types of buildings(fromsmallresidentialbuildingstobigtertiaryone).Formostofthetimethepurposeof lightingcontrollersisthesame:tocombinethecontrolofthelightsintoanorganized,easy-to-use system,andtoreducelightingenergyconsumption. Figure6-21. Lightingcontrollers. Sensors Asensorisadevicethatmeasuresordetectsareal-worldcondition,suchasmotionorlightlevel andconvertstheconditionintoananalogordigitalrepresentation.Thesensorspecificationsinclude performance factors (range, accuracy, repeatability, sensitivity, drift, linearity and response time) and, practical and economical considerations (costs, maintenance, compatibility with other componentandstandards,environmentandsensibilitytonoise). Illuminancesensor Illuminance sensors indicatetheilluminancelevel in the sensor detection area. They are used to measureindoorilluminance(e.g.onaworkingplane)andoutdoorilluminance(e.g.ontheroofofa building). Illuminance sensors are mostly used to switch or to dim luminaires. Some basic illuminance sensors enable day/night detection. They can also be used in integrated control strategies,particularlyifsolarprotectionsareinvolved. Illuminancesensorcommandsthelightingcontrolsystemtodimortoswitchon/offaccordingto thedaylightlevel.Illuminancesensorshavetobeplacedsothattheymeasurethelightlevelswhich arerepresentativeofthespace.ItisusefultomarktheIlluminancesensorpositioninthelighting controlpanelsothatbuildingoperatorscanfindtheminthefuture.

Figure6-22. Exampleofindoorilluminancesensor. Outdoorilluminancesensorsmeasuretheoutdoorilluminancelevel.Theycanbecombinedwiththe lightingcontrolsothatindoorluminairescanbecontrolledbydimmingorswitching.

157 6LIGHTINGCONTROLSYSTEMS

Table6-5.Illuminancesensor–Input/Outputandapplications.

Component InformationInputs/Outputs Applicationsinbuildings Input:Illuminanceontheworkplane Visualcomfort Indoor illuminance Output:Analogueor/anddigitalsignalto Energyconsumption sensor controller Input:Outdoorilluminance Energyconsumption. Outdoor illuminance Output:Analogueor/anddigitalsignalto sensor controller Particularcaseofday/nightsensors Thisdeviceenablesthecomparisonofoutdoorilluminancewithapredefinedthresholdinorderto trigger actions on outdoor lighting (street lighting) or closing of shutters. They were developed primarilyforstreetlightingandaregenerallyveryrobust.

Figure6-23. Exampleofday/nightsensor. Table6-6.Illuminancesensor–Input/Outputandapplications . Component InformationInputs/Outputs Applicationsinbuildings Input:Outdoorilluminance Visualcomfort(outdoor Day/nightsensor Output:Analogueor/anddigitalbinary lighting,shutters,etc.) signal(on-off) Energyconsumption(blinds, heating,etc.) Presencesensors Presencesensorsdetectthepresenceofoccupantsbydetectingtheir movements .Themostcommon sensorsusedinthebuildingsectorarepassiveinfrared(PIR)sensorsthatreacttovariationsofinfra- redradiationsduetomovementofpersons. Table6-7.Presencesensor–Input/Outputandapplications. Component InformationInputs/Outputs Applicationsinbuildings Input:Movement Security PIRsensor Output:Analogueor/anddigitalbinary Visualcomfort signal(occupied/notoccupied) Energyconsumption

158 6LIGHTINGCONTROLSYSTEMS

PassiveInfraRed(PIR)sensor ThesesensorsareusuallyequippedwithFresnellensesthatdefinethezoneofdetection.Twokinds ofPIRareusuallydistinguished:themovementsensor and the occupancy sensor. They havethe sameworkingprinciplebutdifferonthenumberofscannedareas. Figure6-24. PIRsensor. Figure6-25. Multi-functionPIRsensor. Multi-functionPIRsensorcanintegrateupto4functionslistedbelow: ― Occupancydetection ― Indoorilluminancesensor(levelofilluminancefortheswitchonofthe lamps) ― Infra-redsensor ― Atimer(turnthelampsoffafteracertaindelay) ThePIRsensorshavesomeinconveniences,suchas: ― Somehumanactivitiesareachievedwithoutanymovement.e.g.watching television,readingbook,sleep,etc. ― They are position sensitive and may be irrelevant if looking to a dead zone ActiveInfraRed(AIR)sensor ActiveInfraReddevicesuseinfraredtechnologyconsistingofaninfrareddiodewhichconstantlyor episodically sends infrared rays into the controlled area. A receiver monitors the reflected wave levels. The non-appearance of a reflected ray or a modification of its properties (wavelength or amplitude)indicatesachangeoccurredinthedetectionzone.

Figure6-26. Infraredsensor. UltrasonicPresence(UP)sensor Ultrasonic devices send out inaudible sound waves. At the same time, a device is scanning for soundwaveswhicharereflectedataspecificrate.Ifachangeinthereflectedwaveisdetected,it indicatesthatsomethingorsomeonehasmovedinthedetectionzone.

159 6LIGHTINGCONTROLSYSTEMS

Figure6-27. Ultrasonicsensor. There are products combining the two technologies, for example, the PIR and the ultrasonic presence detections. They are called Passive Dual Technology sensors. They see and hear the occupantsothatpresenceisdetectedevenifthereisnomovement. Windspeedsensors Cuporpropelleranemometersareadaptedtowindandairflowsinductmeasurements.Theyarethe mostcommonsensorsforwindspeedinsystemsintegratingthisdataformanagementofexternal shadings.Theyareusefulforthecontrolofblinds. Table6-8. Windspeedsensor–Input/Outputandapplications. Component InformationInputs/Outputs Applicationsinbuildings Windspeed Input:windspeed Security sensor Output:Analogueor/anddigitalsignal(wind Visualcomfort speed) Energyconsumption CO 2sensors

CO 2sensorscanincertaincaseswhereadvancedventilationcontrolstrategiesareappliedbeused aspresencedetectors.Particularlywhensharingsensorsamongapplicationsisbeingconsidered. Table6-9. Windspeedsensor–Input/Outputandapplications. Component InformationInputs/Outputs Applicationsinbuildings

Input:CO 2concentration Thermalcomfort CO sensor 2 Output:Analogueor/anddigitalsignal(CO 2 Visualcomfort concentration) Energyconsumption SensorPosition Positioning the sensors cannot be neglected. For example,to get a relevant indication of the illuminancelevelontheworkplane,theilluminancesensorshouldbeinstalledontheworkplane. Forobviouspracticalreasons,sensorsareneveractuallyplacedontheworkplane.Similarly,tohave a proper evaluation of the thermal comfort level, the temperature and humidity level should be measuredatthecentreoftheroom.Thisishardlypossibleinpracticeinanoccupiedspace.Itis highlyimportantformovementsensorstohaveagoodviewofthespacesothattheycorrectlycan detectthemovementinthearea.

160 6LIGHTINGCONTROLSYSTEMS

Actuators Actuators are used for the automation in all kinds of technical process plants. They are used in wastewatertreatmentplants,powerplantsandeveninrefineries.Thisiswheretheyplayamajor part in automating process control. Depending on their type of supply, the actuators may be classified as pneumatic, hydraulic or electric actuators. They measure or detect real-world conditions,suchasdisplacementorlightlevelandconvertstheconditionintoananalogordigital representation. Switch Theswitchisthemostcommoninterfacebetweenthelightingsystemandtheoccupant.Theswitch canintegrateseveralmodes: ― On-offswitch ― Timerforswitch-off

Figure6-28. Manualswitch. Switching hardwares are relatively simple and generally very cost effective. Switching is appropriatedinsinglyoccupiedspaceswherelightlevelchangesaregeneratedbythebehaviourof thatoccupant(whentheoccupantswitchesthelightsonorwhenthelightsareswitchedonbyan occupancy sensor). For multiple-occupant spaces, automatic on/off switching must be used with care.Anautomaticcontrolthatcausesunexpectedchangesinlightlevel,whileaspaceisoccupied, mayconfuseorannoyoccupants. Switchingsystemsthatautomaticallychangelights accordingtodaylight,shouldonlybeusedin spaceswherethedaylightlevelsareveryhighduringmostoftheday.Inthiscaselightswillbeoff duringmostofthedayandtheoccupantswillnotbebotheredbycycling.Switchingmayalsobe acceptable when occupants are transient or performing non-critical tasks. Switching systems are often appropriate for atria, corridors, entryways, warehouses and transit centres, especially when thereisabundantdaylight. Dimmer Dimmingsystemsadaptthelightlevelsgradually,andthusreducepowerandlightoutputgradually over a specified range. Dimming can generate important energy savings. However, dimming hardware/devices are more expensive than switching devices. The dimming can be achieved throughtwomodes: ― Continuousdimming ― Stepbystepdimming

Figure6-29. Dimmer.

161 6LIGHTINGCONTROLSYSTEMS

Continuous dimming is a continuous adaptation of the luminous flux of the light source(s) in functionofexternalinformation.Mostofthetime,thiskindofdimmingisachievedthroughaDC control command on the ballast of the luminaire (discharge lamp) or through the transformer (halogenlamp).Somemanufacturershaveadoptedastandardanalogue0-10Vdimmingprotocol thatallowsballastsfromdifferentmanufacturerstobeusedwithcompatiblesystems. Step by step dimming is awaytocontrolthelightoutputoftheluminaires based on a limited number of configurations. The rated dimming levels are based on information generated by the controller, received by the actuator and transmittedtothelightsource.Thenumberofdimming stepsisdefinedbytheprotocolused.DALI-baseddimmingsystemisanexampleofthiskindof stepbystepdimming(256dimmedlevels).Switchingsystemsperformverywellinclimateswith stableskyconditions,suchassouthofFrance,whiledimmingsystemsispredisposedtosavemore energyinclimateswithvariableskyconditions,suchasBrussels. Wirelesssensorsandactuators Wirelesssensors(Presencesensor,illuminancesensor,etc.)andactuators(dimmers,switches,etc.) are based on old existing concepts what their intrinsic functionalities concern. It is the way the control is achieved that makes them now attractive: wireless. Their main advantage is their flexibility (no need for cabling). Thus, both installation and operational costs can be reduced significantly.Thatiswhytheyareusedmoreandmoreinrefurbishingandopenspacearea. Wireless sensor networks in commercial and industrial buildings are exposed to an increasing numberofinterferencesources,likeWiFinodes,microwaves,Bluetoothdevices,RFID,andother wirelesssensornetworks.Mostwirelesssensornetworksperformwellina clean RFenvironment after initial installation. The challenge is to maintain good performance when there is another deploymentofsupplementaryRFsource. Otherscomponents Thebuildingshellcanbeintegratedinseveraltypesofactiveorpassivecomponentsthatimpact directly on heat/cool energy or illuminance level. Thesecomponentscanbeplacedinrooforin facade.SeeIEAtask31andIEAtask21ondaylightingformoredetails.Thevisualcomfortmay beinfluencedbythedaylightavailability.Wecanidentifyalargelistofcomponentsinfluencingthe daylightingofthebuildingsuchasthedynamicglazingsystemsortheblinds,louvresandshutters family. Dynamicglazingsystems Electrochromic, gazochromic and crystal-liquid glazing (EC, GC and CL) are color changing glazing(throughvoltagecontrol).Thesewindowsbelongtoanewgenerationoftechnologiescalled switchable glazing-or smart windows. Switchable glazing can change the transmittance, transparency, or shading of windows in reaction to an environmental signal such as sunlight, temperature or an electrical control. Smart windows alter from transparenttotintbyapplyingan electrical current. Potential uses for these technologiesincludedaylightingcontrol,glarecontrol, solarheatcontrol,andfadingprotectioninwindowsandskylights.Byautomaticallycontrollingthe amountoflightandsolarenergythatcanpassthroughthewindow,smartwindowscanhelpsave energy.

162 6LIGHTINGCONTROLSYSTEMS

Blinds,louvresandshuttersfamily Generally, louvres and shutters are opaque, rigid, operable blades or panels with manual or automatic controls such as clocks, timers, illuminance sensor or thermostats. Flexible and translucentdesignsarealsoavailable.Louvresreduceheatgainandcantransmit,disperse,reflector reduce daylight. Automatic blinds coupled with blind controllers and combined with lighting controlcansignificantlyreducetheneedforelectriclightingduringtheday. Networks The evolution of building automation and direct digital control in the 1980’s has favoured the developmentofcommunicationtechnologiesinbuildings.Todaybuildingautomationsystemoffers two main possibilities to integrate the control of different equipment/applications in a building, namely: a.Proprietarysystems b.Opensystems − Standardsystem(whichcomesfromastandard) − Defactostandard(whichcomesfromindustrybestpractice) A proprietarysystem isaclosedsystemthatisdevelopedbyasinglemanufacturer/contractor.The manufacturerholdstheknowledgeunderlyingthedevelopmentofthesystem.Insuchsystems,the initial costs might be relatively low and easy to set up, but the building owner is locked into productsofasinglemanufacturerandcannottakeadvantageofinnovativetechnologieseasily. An opensystem isonewherestandardsaredeveloped,publishedandmaintainedbyanindependent recognisedorganisationbody(CEN,ISO,ASHRAE/ANSI,etc.)oranindustrialalliance(defacto standard).Anychangetothesystemrequiresthecommentsofusers,industry,professionalsbefore beingapprovedbythestandards/organisationorthealliance.Opencommunicationprotocolsare nowbecomingusedfortheintegrationofequipmentfromdifferentmanufacturers.Thisoffersthe followingbenefits: ― Mediasharing.Inthissystem,differentproductsfromdifferent manufacturersrunonthesamecommunicationscables ― Vendorindependence.Thisappliesforinitialpurchaseofdifferent equipmentand/orsystemextension Standardizationofprotocols TheCENTC247WG4hasbeenworkingonstandardisationofdatatransmissionmethodsbetween productsandsystemsforHVACapplications.Thisworkinggrouphasdividedthecommunication withinabuildingautomationsystemintothreetypesofcommunicationrequirements: ― TheManagementnet.Itisusedforworkstationtoworkstation communication ― Theautomationorcontrolnet.Itisusedforplantcontrollersand workstations ― Thefieldnet.Usedforterminalunitcontrollers,sensordevices,drives etc.

163 6LIGHTINGCONTROLSYSTEMS

TheworkofCENTC247istoenhancetheimplementationofBuildingAutomationSystem(BAS) bysupportinganumberofstandards.Tobringdowncost,thestandardizationworkpromotesopen systemsarchitecture. Table6-10givesalistofcommunicationprotocolsandthemediathatarerequired: Table6-10. Communicationprotocolsandmedia.(Adaptedfrom:BCGgroup-UK) Level Protocol TransmissionMedia Management BACnet(ISO14684-5) Ethernet,PSTN/dialupmodem,IP,MS/TP WorldFIP(EN50170) TwistedPair Automation BACnet(ISO14684-5) Ethernet,LONtalk,PSTN/dialupmodem KNX(ISO14543) Ethernet LONtalk(EN14908) Twistedpair,RF,CPL,IP Field KNX(ISO14543) Twistedpair,Mainssignalling LONtalk(EN14908) Twistedpair,RF,CPL,IP SomecommonlyusedopenstandardshavenotbeenrecognisedbyCENTC247,butareinuse,for example: ― MODBUSwhichisoftenusedtoattachHVACplantmodulessuchasa chillertoaBAS. ― IT standards such as Microsoft COM, DCOM or internet standards (TCP/IP,HTTP,etc.)whichisusedatthemanagementlevel. Proprietarysystemsandprotocols ZWAVE(Willbecomeadefactostandard) Z-Wave is a new technology in wireless remote control developed by Zensys (http://www.zen-sys.com ),fromDenmark.Z-Waveisanext-generationwireless ecosystem thatletsallhomeelectronicstalktoeachother,andtothecustomer, via remotecontrol.Itusessimple,reliable,low-power radio waves that easily travel through walls, floors and cabinets. Z-wave uses a sharp Mesh network topology and hasnot master node. Therefore, a Z-wave network can span much further than the radiorangeofasingleunit. ENOCEAN TheEnoceancompany(Enocean2007)hasdevelopedatechnologythatisbased on the efficient exploitation of slightest changes in the environmental energy using the principles of energy harvesting. In order to transform such energy fluctuationsintousableelectricalenergy,electromagnetic,piezogenerators,solar cells,thermocouples,andotherenergyconvertersareused. The products (such as sensors and radio switches) from Enocean are batteryless and were engineered to operate without maintenance. The most pervasive example of a product stemming from the proprietary RF protocol is the battery-free wireless light switch. This product is been marketedwiththeargumentthatitrequireslesstimeandwiretoinstallbecausenowireisrequired betweentheswitchandthelightfixture.Theyalsoavoidtheneedtorunswitchedcircuitsasthe actualpowerswitchingisperformedlocallyattheloaditself.Theabovelistisnotexhaustive.In facttherearemanyothersproprietaryprotocolsforHomeandbuildingautomation(andespecially

164 6LIGHTINGCONTROLSYSTEMS

for lighting) such as system from Creston, Legrand, Wavenis, Lutron, Delta Dore, Schneider electric,Insteonandsoon. Opensystemsandprotocols(standardsystem and defactostandard) BACnet BACnet (http://www.bacnet.org/) stands for The Building Automation and Controlnetwork.ItwasdevelopedbyASHRAEandisnowpublishedasan ASHRAE/ANSIstandard,aCENstandardandanISOstandard.BACnetisa communicationsprotocolforbuildingautomationandcontrolnetworks.Itisequallysuitablefor boththeautomationandmanagementlevels,especiallyforHVAC,lightingcontrolandfirealarm equipment.ItisrecognizedasanANSIandCENstandardaswellasISOstandard16484-5.The protocolisbasedonfourlayersoftheOSImodel. LonWorks LonWorks(http://www.echelon.com/)wasdevelopedbyEchelonintheUSA.It isageneralpurposenetworkusingtheLonWorksprotocolandtheNeuronchip. Itismostsuitablefordevice-levelintegrationandwidelyusedinbuildingson twisted pair cable using a transceiver known as FTT-10. The use of Standard Network Variable Types (SNVTs, pronounced snivets ) contributes to the interoperability of LonWorks® products fromdifferentmanufacturers. MODBUS(Defactostandard) MODBUS(http://www.modbus.org)designedbyGouldModiconCompanyis not an official standard and is supported by most Programmable Logic Controllers (PLC). It relies on a Master/Slave serial protocol. Modbus is consideredtobeverysimpleandeasytoimplementanduse,andhasbeenadoptednotonlybythe industrialmanufacturingmilieubutalsobymanymanufacturersofbuildingequipmentsModbus has become extremely popular for the reason that it is free, inexpensive to implement both in hardware and software. It is however limited to simple data exchange and is not used for more sophisticatedrequirements. KONNEX Konnex(http://www.knx.org) results from the formal merger of the 3 leading systems for Home and Building automation (BatiBUS, EIB and EHS) into the specificationofthenewKonnexAssociation.Thecommonspecificationofthe KNX system provides, besides powerful runtime characteristics, an enhanced toolkit ofservicesandmechanismsfornetworkmanagement.OntheKonnexdevicenetwork,all thedevicescometolifetoformdistributedapplicationsinthetruesenseoftheword.Evenonthe leveloftheapplicationsthemselves,tightinteractionispossible,whereverthereisaneedorbenefit. All march to the beat of powerful interworking models with standardised data-point types and FunctionalBlock objects,modellinglogicaldevicechannels.

165 6LIGHTINGCONTROLSYSTEMS

X10(Defactostandard) X10 ( http://www.x10.com ) is an industry standard for communication among devices used for home automation. It primarily uses power line wiring for signalling and control, yet now a radio-based transportisalsodefined.X10was developed in 1975 in order to allow remote control of home devices and appliances.Itwasthefirstdomesticautomationtechnologyandremainsthemost widely available. X10 was the first home automation technology and remains the most widely available.However,nowitseemsobsolete.Dataratesareverylow(around20bit/s).Tosummarise, withitstinycommandsetandpoorreliabilityX10protocolissimplytoolimitingfortoday’shome environmentcontrol. ZIGBEE TheZigBee(http://www.zigbee.org)Specificationdescribestheinfrastructureand services available to applications operating on the ZigBee platform (ZigBee, 2004).ZigBeeisapublishedspecificationsetofhighlevelcommunicationprotocolsdesignedto usesmall,lowpowerdigitalradiosbasedontheIEEE802.15.4standardforwirelesspersonalarea networks(WPANs).ZigBee'scurrentfocusistodefineageneral-purpose,inexpensiveselforgan- izingmeshnetworkthatcanbesharedbyindustrialcontrols,medicaldevices,smokeandintruder alarms,building-automationandhomeautomation.Thetechnologyisdesignedtobesimplerand cheaperthanotherWPANssuchasBluetooth.ThemostcapableZigBeenodetypeissaidtorequire onlyabout10%ofthesoftwareofatypicalBluetoothorWirelessInternetnode,whilethesimplest nodesareabout2%.TherearecurrentlydiscussionsbetweentheZigBeecommissionandBACnet commissiontosetupabridgebetweenthe wired and wireless openprotocols. Communicationsystemsandprotocolsspecifictolightingsystems DALI DALI(DALIa,DALIb)isadigitalcommunicationprotocoldesignedspecifically forlightingsystems.DALIiseffectiveforsceneselectionandforgettingfeedback regarding faulty light sources. This makes it very useful to use together with buildingautomationsystemswhereremotesupervisingandservicereportsarerequired.DALIwas originally introduced in 1999 by ballast manufacturers who wanted to introduce a standardized digitalballastcontrolprotocol.Itisdesignedto be very easy to install and to (re)configure. All actuators,controllersandsensorsareconnectedtoonesinglecontrolcable.ADALI-systemconsists ofloadinterfaces(electronicballasts),controlpanels(pushbuttons),sensors(occupancysensor) and control interfaces (controller) and gateways ( 1-10V converter). Example of possible DALI operations: ― Individual,grouporbroadcastmessaging ― Requeststatusdatafromanindividualluminaire ― Assigningofaddressestoluminairesusingadiscoveringalgorithmwhich makestheneedforhardaddressingobsolete ― Selectionoflightingscenes ItisimportanttonotethatDALIisnotanewBuildingManagementSystem(BMS),DALIisonly availableforlighting.However,itcanbeaneasyaddtoexistingBMSlikeBACnet,Lonworksor KNXthankstogateway.

166 6LIGHTINGCONTROLSYSTEMS

DMX512/1990 DMX512/1990isaDigitalMultiplexDataTransmissionstandardforDimmersandControllers operatinginsimplexmode(unidirectional).Itcancontrolupto512channels.Dataistransmittedin packets.Eachpacketupdatesallthedevicesinstalled.Eachpacketconsistsofupto513frames. Afterastartframe(consistingofzeros),upto512framescanfollowcontainingthedataforeach deviceconnected.Thedevicesarenotdirectlyaddressed.Theinformationsenttothemisdefinedby theframepositionwithinthepacket. Conclusions The main issue for the success of integrated solutions in buildings is to define the appropriate communicationprotocolandthemediafortheinformationtransfer.ItismostlikelythatBACnet, KonnexandLonWorkswillbethemajoractorsinthis field as there will be integrating HVAC, lighting,firesafety,securityfunctions.However,DALIandwirelesslowpowertechnologieshavea certainfutureregardinglightingcontrol.Ontheonhand,DALIhasbeenestablishedworldwideas thestandardfordigitallightingcontrol.Itisanopennon-proprietarystandardthatmakesgenuine freelyaddressablelightingcontrolareality(individual,group,andalltogether).DALIseemstobe mucheasiertoinstall,extremelyversatileandmuchmorecost-effectivethananylightingcontrol systemsalreadyonthemarket,despiteitsgreaterfunctionality. On the other hand, wireless technologies (low consumption or battery less) may present a new solutiontobringtheinstalledcostdownandtoensure energy efficiency.Overthepast10years many new RF solutions have been developed into our every-day life. It is expected that soon a reliable, robust, easy-to-install and secure wireless network technology for connecting devices in buildingswillgainmarketacceptanceandsubstantialsharesofnewandretrofitinstallationssoon. ZigBeeandZwaveareheadinginthisdirection.Neverthelesstheyarestillnotwelldefinedona semanticpointofview.Moreoveritdoesn’texistefficienttoolstodesign,install,commissionand troubleshootthiskindoftechnologies. InternetProtocols(IP) IPissaidtobeamongthemostimportanttechnologiesforourindustry.IPnetworksaredeployedin theInternet,inextranets,andinintranets.Numerousdifferentmediaareconcerned,forexample, fiberoptics,cablesandwireless.IPisapowerfulvehicleforenablingcommunicationbutitdoes notspecifythecontentofmessagesinsuchdetailthatisneedede.g.tomaketwosystemsexchange atemperaturevalue. Today, IP serves as the intermediary network technology. It is principally found in building backbonesandaccessnetworkstothefield-areanetwork.Technologiesthatprovidemechanismsto betransportedoverIPincludeLonWorks(EIA-852),BACnet/IPandKNX/IP.

167 6LIGHTINGCONTROLSYSTEMS

Table6-11. StandardandnonstandardnetworksforbuildingautomationCommunicationprotocolsandmedia. Network Applications Sectorof Media/Option Standard MainAdvantages protocol forlighting application BACnet IP,Ethernet, YesISO16484- Building Norm PTP,ZigBee, 5 automation Manynetworking ٭٭٭ MS/TP,Lontalk, options Arcnet LonWorks IR,PLC,TP, YesEN14908 Buildingand Norm home ٭٭٭ RF,IP automation KNX IR,PLC,TP, YesISO14543 LBandHA Norm ٭٭٭٭ RF,IP PROFIBUS IP,TP Notanormbut Industrial Robustness ٭ anindustrial standard MODBUS IP,PTP,MS/TP Defacto Industrial Robustness ٭٭ Simplicity Industrial Robustness ٭ WorldFIP IP,TP EN50170 X10 PLC,RF OPENnota HA lotofproducts ٭٭٭ norm Electronics lowcost ٭ Bluetooth RF IEEE802.15.1 ZigBee RF BaseonIEEE LBandHA lowconsumption ٭٭٭٭ 802.15.4 DALI TP IEC62386 Lighting Dedicatedtolighting ٭٭٭٭٭ control DMX MS/TP YES Theatre Dedicatedtolighting ٭٭٭٭٭ lighting Zwave RF Notanormbut LBandHA Lowconsumption Manyapplicationin ٭٭٭٭ Industrial standard USA INSTEON RF,PLC Proprietary HA Robustness ٭٭٭ Simpletouse Wavenis RF Proprietary HA Simpletouse ٭٭٭ INONE RF,PLC Proprietary HA Simpletouse ٭٭٭ Simpletoinstall Enocean RF Proprietary HA Batteryless Manyproducts ٭٭٭٭ IP: InternetProtocol ,RF: RadioFrequency٭ :Veryfewlightingapplications IR: InfraRed ,PLC: PowerLineCommunication ٭٭ :Fewlightingapplications , PTP: PeartoPear ,TP: TwistPair ٭٭٭ :Somelightingapplicationsexists MS/TP: MasterSlave/TokenPassing ٭٭٭٭ :Manylightingapplicationsexists LB: LittleBuilding ,HA: HomeAutomation ٭٭٭٭٭ :Dedicatedtolighting

168 6LIGHTINGCONTROLSYSTEMS

Componentanalysis Table6-12belowgivesanoverviewofthetypicaluseofthedifferentcomponents. Table6-12. Componentsapplicationoverview. Simplestrategies Integratedstrategies Predictable Real Constant Daylight Integration Integration Components Occupancy Occupancy Illuminance Harvesting withblinds withHVAC Control Control Control Control Strategy Strategy Strategy Strategy Sensors Scheduler     Clocks    Illuminance     sensor Presence    sensor Temperature  sensor Windsensor  Actuators Switch      Dimmer     Others Skywells    Smart   windows Automatic   blinds Networks Proprietary       Open       6.5 Recommendations GeneralRecommendations This section suggests a generic analysis scheme to design lighting control systems for new and existingbuildings.The firststep istocollectthebuildingownerneedsandtheexpectationofthe differentusersofthebuilding(facilitymanager,buildingoperator,occupants).Thisstepiscrucial todesignalightinginstallationasitwill: ― enhance the acceptation of the system by the users (expected visual comfortlevel,adaptedhumaninterface,etc.), ― facilitate the overall management of the system by providing relevant informationandtoolslikefaultdetection,energymonitoring,dashboard etc. Thismaybedifficultincaseofnewbuildingespeciallywhentheownerisnottheenduser.The secondstep istoachievethefunctionalanalysisinordertotranslatetheneedsintotechnicalterms,

169 6LIGHTINGCONTROLSYSTEMS

thatis,tochoosetherelevantcontrolstrategies,networkarchitectures,systemsandequipments.It includes the definition of a commissioning (Cx) plan corresponding to the above mentioned functionalanalysis. The thirdstep istoproduceuserguidesfor: ― Thebuildingoperatortounderstandthesystemandoptimiseitsoperation (faultdetections,maintenance,etc.) ― The facility manager to understand the performance indicators of the dashboard(energyconsumption,runningcost,paybacktime,etc.) ― Theoccupantstounderstandthecontrolstrategies(predictedoccupancy control strategy, real occupancy control strategy, constant illuminance controlstrategy,daylightharvestingcontrolstrategy,etc.)andhowtouse the control system to optimize his visual comfort with an eco friendly behaviour(e.g.remotecontrol,dimmer,tasklighting,etc.) SpecificRecommendationforexistingbuildings Installinglightingcontrolsysteminexistingbuildingrequires,inadditiontotheuserneedsanalysis, anauditoftheexistinglightinginstallationinordertogetadetaileddescriptionoftheexisting strategies,architectures,systemsandcomponents. This audit allows to determine the control potential of the lighting installation (e.g. presence of separatedlightingcircuitfordifferentzones,presenceofelectronicballasts,possibilitytoinstall anduseawirelessnetwork,electricalnetworkquality,etc.)andtodesignarelevantsystemforthis building. Forexample,wirelessnetworksorpowerlinecommunicationsystem(PLC)seemveryattractiveas theyareflexibleandlessexpensivetoinstall.Howeverthesesolutionshavelimitationswhenthe lightingsystemisverylarge(inbuildingsover10.000m²)duetosignalattenuation,electromagnetic compatibilitydisturbance,etc.Figure6-30presentsageneralschemetodesignanenergyefficient lightinginstallationwithspecificconsiderationforthecontrolsystem.

170 6LIGHTINGCONTROLSYSTEMS

Building New Refurbish

Zone1 Zonen Zone1 Zonen Zone2 Zone2

Doanauditofyour Useoflow lightinginstallation consumptionlight sources

NO Yes Low Moreenergy consumption Stop saving ? lightsource

Yes NO

NO NO Uselowconsumptionlight Isoccupancy Peopleuseto sources predicable? passinand out?

Moreenergy Stop Yes Yes saving ? NO Usepredictedoccupancy Userealoccupancycontrol controlstrategy strategy

Islighting Stop control Moreenergy possible? Stop saving ? NO Yes

NO Isdaylight harvesting Stop possible?

Yes

Usedaylightharvesting controlstrategy

NO Doyouneedtoimprove thethermalcomfortand energyefficiency? Stop

Yes

UseintegratedstrategiesthankstoBMS insteadofstandalone.

Stop Figure6-30 .Generalschemeforenergyefficientdesignoflightingcontrol.

171 6LIGHTINGCONTROLSYSTEMS

6.6 Illustrations

6.6.1 Illustration1:NOSSNationalOfficeforSocialSecurity–Belgium Thiscasestudyisanexampleofaverysimplelightingcontrol system working in a very efficient way. The building is organised in landscape offices (open plan) of about 20 work stations. Controlandmanagementofthedaylight There is no advanced daylight control system in the NOSS building. The users have vertical lamellas that they can manuallycontrolinordertoassumetheirvisualcomfort. Figure6-31 . NOSSbuilding.

Figure6-32 .Landscapeofficeatdaytime . Figure6-33. Luminaire Figure6-34. Landscapeofficeatnighttime. withdaylightsensor. Controlandmanagementoftheartificiallight Landscapeoffices Theartificiallightingiscontrolledby: ― Amanualswitchineachlocal(landscapeoffice)inordertoswitchlights manuallyonoroff ― Tworowsofluminaires(neartothewindowsanddeeperinthelocal)are connected to a daylight dimming system based on the individual measurementoftheluminanceoftheareaundertheluminaire. ― A central clock cut the luminaires off at 19:00. A second cut off commandissentat21:00. Circulationareas Theartificiallightingisautomaticallyswitchedonat7:00inallcorridors(day time mode). At 19:00, the artificial lighting of the circulation areas is set on night time mode. two luminaires on out of are switched off in order to save energy. But one luminaire out of three stays on for the movement of night workers(forsecurity,cleaning,etc.).Acycleofthreedaysisusedtoavoidun- uniformageingoftheluminaries.Thisisdonethroughspecialcablingsothat theluminairethatstaysonforthenightchangeseachnight. Figure6-35. Circulationarea.

172 6LIGHTINGCONTROLSYSTEMS

Restrooms Duringdaytime,theartificiallightingoftherestroomsiscontinuouslyOn.Duringnighttime,the artificiallightingoftherestroomsiscontrolledbyapresencePIRsensorwithadelayseton15 minutes. Table6-13. NOSSbuilding-lightingcontrolsystemproperties. Features Systemproperties PredictedOccupancyControlStrategy Strategy RealOccupancyControlStrategy (TimeSchedulingControlStrategy) DaylightHarvestingControlStrategy Integrationlevel Level2 Architecture ZoneControlArchitecture Network Opensystems-Standardsystem BuildingInformation Architect:RégiedesBâtiments Buildingowner:Régiedesbâtiments(occupant:NOSS) Location:PlaceVictorHorta,nr11,B-1060Brussels,Belgium 6.6.2 Illustration2:TheBerlaymontBuilding-alouvresfaçade–Belgium TheconceptofVentilatedDoubleSkinFacades(VDSF)isincreasinglyoftenappliedinnewoffice buildingsorretrofittings.ForcommonVDSFequippedwithparallelglazingpanes,alinkcaneasily bemadebetweentheamountofdaylightpenetratingthebuildingandthetotalglazedareaofthe facade.LouvresfacadesareaparticularconceptofVentilatedDoubleSkinFacadesequippedatthe outsidewithinclinableglazedlamellas.Theyofferadynamicbehaviour,whichisfunctionofmany elements:slopeofthelamellas,climaticconditions(diffuseordirectlight),incidenceangleofthe sun, control algorithm, etc. Such a louvre facade concept has been applied on the Berlaymont building,thenewretrofittedbuildingoftheEuropeanCommissioninBrussels(Belgium). Themulti-storeylouvreventilateddoubleskinfacade of theBerlaymontpresentsacavitythatis partitionedneitherhorizontallynorverticallyandthereforeformsasinglelargevolume.Metallic floorsareinstalledateachstoreyinordertoallowaccessforcleaningandmaintenance. Figure6-36. Viewofthelargecavity Figure6-37. Louvresin Figure6-38 .ShadowontheBuilding–10 andthelouvresinverticalposition.horizontalposition.December–14:00 Thedifferencebetweenthistypeoffacadeandtheclassical multi-storeyfacadeliesinthefactthat theoutdoorfacadeiscomposedexclusivelyofinclinablelouvres.

173 6LIGHTINGCONTROLSYSTEMS

Façadedescription TheBerlaymontbuildingisalouverVDSFbuilding. Its interior skiniscomposedoftraditional doubleglazingelements.Itsexternalskinismadeofawholeofsuspendedframeworksonwhich arefixedtheglazedplates(200cmoutof50cm),withun-uniformthickness(8mmonthebottom ofthefacadeand12mmonthetopofthefacade)duetotheirdimensioningwiththewind. Figure6-39. Cross-sectionofalamella. Figure6-40. View Figure6-41 .Viewofthe throughthelouvres. building. Theglazedlamellasoftheexteriorskinaremadeupoftwoglassleafswhichencloseamulti-layer perforatedfilmpresentingawhitefacetotheexternalsidetobetterreflectthelight.Ontheinterior side, the louvres present a dark face so as to allow the seeing them. Indeed, the contrast of brightnessbeingpositive,viewispossiblefromtheinsidetotheoutsidebutimpossibletheother way. Controlandmanagementofthedaylight Theslopeofthelamellasisensuredbyengines,whichareorderedfromacentralprocessingunit. Thecontroloftheslopeisdoneaccordingtovariousparameters,suchas: ― Thepositionofthesun(dateandhour) ― Thepositionofthelamellasonthefacade(orientationandheight) ― Theinformationcollectedbytheoutdoorsensors(horizontalillumination, windspeed,rain,outsidetemperature) When the outdoor horizontal illuminance is higher than 25000 lx, the lamellas are positioned accordingtotheirpositiononthefacade. Ifthelamellasarelocatedinasunnyzone(whichisfunctionof thedateandthelamella’spositiononthefacade),theyaretilted soastobeperpendiculartotheraysofthesun.Theirslopelies thusbetween0°and80°,inordertoworkassolarprotection; If the plates are located in a shaded zone and if the external horizontalilluminationishigherthan25.000lx,theyareplaced inpositionofluminouspenetration(slopewith110°),towork asreflectorsoflight. Figure6-42. Differentlouvrespositions. Whenthehorizontaloutdoorilluminanceislowerthan25000lx,allthelamellasaresetinposition of luminous penetration (110° of slope) to allowthe daylight penetration in the building. Other modesarealsointegratedintothecontrolalgorithm,suchasmaintenancemodeandalarmmodein caseoffire.

174 6LIGHTINGCONTROLSYSTEMS

Figure6-43 . Louvresinhorizontalposition–90°slope. Figure6-44.Louvresinlightpenetration mode–110°slope. Thecontrolstrategyofthelamellaisstructuredasanopen-loopsystemorganizedaspresentedin Figure6-45. Figure6-45. StructureofthecontrolstrategyofthedaylightingoftheBerlaymontBuilding.

175 6LIGHTINGCONTROLSYSTEMS

Controlandmanagementoftheartificiallight ThecontroloftheartificiallightintheindividualofficesoftheBerlaymontBuildingisafunction of: ― An individual switch. An individual switch controls the luminaires for eachlocal(ManualOnandManualOff) ― The absence detection. If there is nobody in a local (office), the light switchoffafteradelay(thancanbeadjusted) ― Thedaylightinglevel.Theilluminancelevelofthe artificial lighting is automaticallysetto300lxor500lxinthelocal(office)infunctionofthe outdoorilluminancelevel(daylightinglevel).Thiscontroloftheartificial lightingisfunctionofgeneralsettingsforeachwingthebuilding. Table6-14. Berlaymontbuilding-lightingcontrolsystemproperties. Features Systemproperties

Strategy ConstantIlluminanceControlStrategy DaylightHarvestingControlStrategy Integrationlevel Level3 Architecture PlantControlArchitecture Network Opensystems-Standardsystem BuildingInformation Architect:P.Lallemand,S.Beckers,Berlaymont2000 Buildingtenant:EuropeanCommission Location:Ruedelaloi,nr200,B-1000Brussels,Belgium. 6.6.3 Illustration3:Intecomproject-France TheaimoftheIntecomprojectwastodevelopsmartsystemstointegratethelightingcontrol,blinds and HVAC applications to improve the indoor environment and reduce energy consumption. A good integration can be achieved through a limited data exchange. CSTB has focused on the interactionsatthezonelevelamongthethreeapplications:HVAC,lightingandblinds.Atthezone level,thedifferentapplicationsenabletoreachthefollowinggoalsduringoccupiedperiod: ― Providedesiredthermalcomfort ― Providedesiredilluminancelevel ― Avoidglareorproviderequestedcontrastlevel When the space is unoccupied, only the energy economy target needs to be met. The control strategieshasbeenfirstassessedbysimulationusingtheSIMBADBuildingHVACtoolbox.The implementation has been carried out using the general-purpose simulation tool (MATLAB/Simulink/Stateflow). Two emulators have been developed, namely; a zone emulator andabuildingemulator.Thecommunicationbetweenbuildingandprototypeswassupportedbythe Lonworksstandardprotocol. Thezoneemulatorconsistsofasingleroomwithafancoilunit,aluminairewith electronicballastandascreenblind. Figure6-46. Onezonesample.

176 6LIGHTINGCONTROLSYSTEMS

Thebuildingemulatorconsistsofasix-zonesbuildingwitha VAVsystemfor airconditioningandthesamecharacteristicsasthezoneemulatorforthelight andblindequipments. Figure6-47. Sixzonessample. Thefollowingfactscanbeconsideredonthecommunicationamongthecontrollers: ― TheblindcananswertoarequestoftheartificiallightorHVACsystem. ― Thelightcontrollercanrequestblindformoredaylight ― TheHVACcontrollercanrequesttheblindtoreducesolargainsorask thelighttoswitchontobringmoreinternalgains. ― Theinteractionsamongtheapplicationswilldependontheamountand typeofdatathatisexchanged.

Goal oriented Glare Illuminance Thermal Controller Controller Controller controller

Equipment Artificial Blind oriented Light HVAC Controller controller Controller Controller

Figure6-48. Communicationbetweengoalorientedandequipmentorientedcontrollers. Thesimulationstudieshaveshownthat: ― Thereissignificantpotentialforenergysavingsandvisualcomfortwith integratedcontroloflightandblindsonlyifthelightingsystempossesses adimmingactuator. ― TheintegrationofHVACandblindsapplicationsdoesnotgainanymajor advantages. ― TheintegrationofHVAC,lightandblindsapplicationscanbringupto 50%ofenergysavingsduringsummerperiods. ― InthecaseofintegrationofHVAC,lightandblinds,thereisatendency of an increased number of blind movements during summer. This is usuallynotacceptedbyoccupant.

177 6LIGHTINGCONTROLSYSTEMS

Table6-15. Intercomproject-lightingcontrolsystemproperties. Features Systemproperties RealOccupancyControlStrategy Strategy ConstantIlluminanceControlStrategy DaylightHarvestingControlStrategy Integrationlevel Level3 Architecture PlantControlArchitecture Network Proprietarysystem 6.6.4 Illustration3:DAMEXproject-Finland The objective was to improve energy efficiency of an office building by maximizing daylight utilization.Thiswasachievedbymeansoftheintegratedcontrolsystemconsistingofilluminance sensors,venetianblindsandelectriclights,allinterfacedtotheDALIbus(Figure6-49). Shortdescriptionofthecharacteristicfeaturesofthesystem: ― Both blinds and lights were controlled using only a vertical outdoor illuminancesensorwithoutanyindoorlightsensors. ― Accordingtomeasuredverticalfaçadeilluminance,andcurrentdateand time,thecontrolsystemselectsapredeterminedlightingscenetobeused. The scenes stored in the system memory contain all the information whichisneededtocontrolthedevices. ― Only a little instrumentation is needed. The principle was to apply the daylight measurements and computer simulations in modelling the lightingprocessandthenutilizethemodelincontrol. ― Individual light output levels for each luminaire or lamp and blind positionwerecreatedandstoredusingDALIprogrammingsoftware.The predeterminedsceneswerecreatedusingrealdaylightmeasurementsand lighting software. The DALI system is capable of storing 16 different scenes. The measurements gave important information how indoor lighting and window luminances are changingindifferentdaylightsituations.Predeterminedsceneswereselectedtominimizetheglare, nottomaximizetheindoorlightlevels.Theblindangleswereselectedtokeeptheluminanceofthe windowwithinanacceptablerange.Delaysincontrolareshortenoughtopreventintolerableglare indynamicdaylightsituationswithhighsunintensity. Resultsshowedthatthedescribedsystemcanbeeffectivelyusedtoutilizethedaylightinoffice building without causing glare to the users. The glare caused by the daylight reduces often the savingsotherwiseachievablethroughdaylight. AnexampleoftheresultsisshowninFigure6-50 werethedataismeasuredon21 st ofDecember, i.e., the shortest day of the year. Due to the glare the blinds shut at 10:51 AM when vertical illuminanceexceeded16000lx,andopenedagainat14:28PMwhentheverticalilluminancefalls

178 6LIGHTINGCONTROLSYSTEMS

under12000lx.Thefigurepresentstheverticalilluminance(highestcurve),indoorsensordataof thehorizontalilluminance(middlecurves)andtheblinds(lowercurve). TherelativepowerofthelightingduringonedayisshowninFigure6-51.Theminimumpowerat noon was 43% and the average power 73% of the night-timevalue.Themainconclusionisthat eveninDecemberitispossibletoachieveenergysavingsintheFinnishclimate.Insummertime whendaysarelonger,thesavingsareremarkable,becausewithanoptimalblindcontroltheneedof electriclightisminimalduringnormalworkinghours.

Blindcontrolunit

DALI -bus Motorized Luminaires with venetian Dali -ballasts blinds

Digidim Toolbox softwareinPC

Figure6-49.TheintegratedcontrolsysteminterfacedtoDALIbus. Resultsof21stDec2007

45000 1400 40000 1200 35000 1000 30000 25000 800 20000 600 15000

400 Horizontal 10000 Blindangle illuminance(lx) illuminance(lx) Verticaloutdoor 5000 200 0 0 8:24 10:48 13:12 15:36 Time Figure6-50.Illustrationofthesensordataandoperationoftheblindsduringoneday.

179 6LIGHTINGCONTROLSYSTEMS

Resultsof21stDec2007

1.2

1

0.8

0.6

0.4

Relativepower 0.2

0 8:24 10:48 13:12 15:36 Time Figure6-51.ElectricpowerreductionsduringthedayofFigure6-50. 6.7 Conclusions Lightingisanimportantparttheglobalbuildingenergyconsumption.Itcanrepresentabout5to10 kWh/m².year in the residential sector and reach to more than 60 kWh/m².year in tertiary sector. Lightingconsumptioncanbeeasilyreducedwithefficientlightsources.Furtherenergygainscanbe achieved with smart lighting control strategies. Today, the most common form of control (the standard wall switch) is being replaced by automatic systems which are based on occupancy or daylightharvesting.Mostcommonexamplesareoccupancysensorswhichturnthelightsoffwhen the area is unoccupied, time-based controls and the dimmer plus photocell combination. All are more effective thanthestandardswitchesinsaving energy. Potential gains vary from 10% with simple clock to more than 60% with a total integrated solution (occupancy plus daylight plus HVAC). However, each sensor can turnthelightsoff by mistake if they are not well specified, installedandmaintained.Ontheotherhand,iftheyoperatewelltheyprovideadirectbenefittothe occupantintermofenergysaving,comfortandeaseofuse,innewbuildingaswellasinrefurbish one. Furthermore,todaynewcomponentsarecomingonthemarketlikesmartwindowsandintelligent automatic blinds. The last component allow obtaining significant energy savings. However, no concretestudycanactuallyshowthis.Finally,lightingmanagement/controlsystemscaneasilybe associated with BMS. Smart integration with others technical equipments (such as Blinds and HVAC)canbedonetodecreaseenergyconsumptionandimprovegeneralcomfort.Suchsolution canallowbuildingoperatortoprovidethe rightamountoflightwhereandwhenitisneeded .Onthe other hand, it increases the complexity of the lighting system so that commissioning becomes essentialforagoodintegration. Lighting automation systems must be calibrated when installed, if possible after the building is occupiedandthefacilitystaffhastobeinvolvedinthecommissioningprocess.Thebuildingsector isrifewithanecdotesonlightingcontrolsystemswhichdonotrunasexpectedordonotworkatall because they were improperly installed or because the facility managers or occupants do not understandthem.Thecommissioningprocesswillreducetheseproblems.

180 6LIGHTINGCONTROLSYSTEMS

References

EC(EuropeanCommission)2007.Availablefrom: http://www.ec.europa.eu/comm/energy_transport/atlas/html/buildings.html Floyd, D.B., Parker, D., 1995. FieldCommissioningofadaylight-dimminglightingsystem.InProceedingsofRight LightThree,3rdEuropeanConferenceonEnergyEfficientLighting,Newcastle,UK,pp.83–88 IEA2001.IEATask31-DaylightingBuildingsinthe21 st Century,websitehttp://www.iea-shc.org/task31/ IEA2006.InternationalEnergyAgency.Light’sLabour’sLost.IEAPublications,France. ManicciaD,RutledgeB,ReaMS,MorrowW.1999.Occupantcontrolofmanuallightingcontrolsinprivateoffices. JournaloftheIES,28(2):42-56. Maniccia,DoreneandAllanTweed2000.Occupancysensorsimulationsandenergyanalysisforcommercialbuildings. Troy,NY:LightingResearchCenter,RensselaerPolytechnicInstitute. NBI2003.AdvancedLightingGuidilines,NewBuildingInstituteInc.,2003. Rundquist, R. A., McDougall, T. G., and Benya, J.R. (1996). Lighting controls: Patterns for design. (TR 107230) PleasantHills,CA:ElectricPowerResearchInstitute.

181 6LIGHTINGCONTROLSYSTEMS

182 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Chapter7:Lifecycleanalysisandlifecyclecosts Topicscovered 7 Lifecycleanalysisandlifecyclecosts...... 185 7.1 Lifecycleanalysis...... 185 7.2 Calculationoflightingenergy...... 187 Normalizedpowerdensity ...... 189 7.3 Economicevaluationoflighting...... 190 Costs...... 190 Exampleoftheuseofequations ...... 192 Otherconsiderations ...... 194 Maintenance...... 194 7.4 Examplesoflifecyclecosts...... 195 7.5 Longtermassessmentofcostsassociatedwithlightinganddaylightingtechniques.. 199 References...... 200

183 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

184 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

7 Lifecycleanalysisandlifecyclecosts

7.1 Lifecycleanalysis Lifecycleanalysis(LCA)givesanoverviewoftheenergyandrawmaterialsuseofaproductfrom cradle to grave. It considers also how much solid, liquid and gaseous waste and emissions are generatedineachstageoftheproduct’slife.(GDRC2009)

Extraction and processing of raw materials

Recycling and disposal as Manufacturing waste

Use,reuse and maintenance of Packaging theproduct

Marketing Figure7-1. Aprincipleschematicofalifecycleanalysis. ThescopedefinitionisverycrucialinLCA.Itdefineswhatisincludedintheanalysis.Forexample aretransportsorminingoftherawmaterialsincluded,doestheanalysisconcentrateonaspecific lifecyclephase,oristhewholelifecycleisconsidered.Theenergyresourcesusedintheoperation phaseisveryimportanttobedefined.Usually,theenergyuseinoperationphasecausesthelargest environmentalimpactsofthewholelifecycle,especiallywhenitcomestoenergy-usingproducts, suchaslightingequipment. TheLCAisausefultoolinenvironmentallyconsciousproductdesign.TheresultsoftheLCAcan beusedto compareproductsortechnologies,andtheresultsindicateonwhattoconcentratein ecodesign.TheresultsofanLCAareoftengivenasenvironmentalimpactcategoriesorastheso called single scale indices. Environmental impact categories are for example primary energy, toxicological impacts, global warming potential and acidification potential. These allow the comparisonfromthepointofviewofasingletypeofenvironmentalimpact.Singlescaleindices weigh different environmental impacts and calculate them into one score to describe the total environmental performance of a product. This makes the comparison of the total environmental impactofproductseasier.SinglescaleindicesareforexampleEcoindicator'99andCML2001.The Ecoindicator'99 concentrates on respiratory effects and climate change, whereas the CML2001 emphasizesglobalwarmingandacidification.(Eco-Indicator2009)(CML2001) In the following examples the environmental effects of different lamp types are compared on a generallevel.Thecomparisonismaderegardingtheirenergyconsumption,notinenvironmental impactcategoriesofsinglescaleindices.Thismakestheanalysisverysimpleandthecomparison easy.

185 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

InanearlystudybyGydesenandMaimann(1991),theenergyconsumptionofa15WCFLanda 60 W incandescent lamp is compared for the production, operation and disposal phases. The lifetimeswere8000hforCFLand1000hforincandescentlamp,respectively.Theenergyused wasalsocalculatedagainstthelightservicethelampsprovideinlumenhours.Theresultsshowed thatCFLconsumes17kWh/Mlmhandincandescentlamp82kWh/Mlmh. Table7-1. EnergyconsumptionandemissionsduringlifecycleofCFLandincandescentlamp.(GydesenandMaimann 1991) 15WCFL 60WGLS 15WCFL 60WGLS Energyconsumption&quantityoflight Productionanduse 1.4kWh 0.15kWh 14.4kg 70.0kg Production CO 2 120kWh 60kWh 0.11kg 0.53kg Use SO 2 0kWh 0.07kg 0.35kg Disposal NO x 121kWh 60kWh 0.05g 0.25g Total CH 4 flyash 0.82kg 4.00kg Service 7.2Mlmh 0.73Mlmh mercury 1.00mg 4.86mg EnergyconsumptionperMlmh gaseous/solidsplit 0.40/0.60 1.94/2.92 Production 0.19kWh 0.21kWh Disposal Use 17kWh 82kWh mercury 0.69mg Disposal 0kWh 0kWh solidwaste 0.015kg 0.042kg Totalmercury 1.69mg 4.86mg Total 17kWh 82kWh Totalsolidwaste 0.83kg 4.04kg Themercurycontentinoperationwasachievedbyassumingthattheelectricityisproducedwith coalpowerplant.Theamountofmercuryandotheremissionsfromelectricitygenerationdependon theelectricitygenerationsystemthatdifferscountrybycountry. The European Lamp Companies Federation has published environmental impact assessment of lampsontheirwebpage.Accordingtothat90%oftheenergyisconsumedduringtheoperation phase.Inotherphases,energyisconsumedasfollows:resource4%,production5%andtransport 3%,anddisposalreleases2%(ELC2009).

100%

80% 90% 60%

40%

20% 4% 5% 3% -2% 0% Resource Production Transport Use Disposal -20% Figure7-2. LampenergyconsumptionduringlifecycleaccordingtoEuropeanLampCompaniesFederation(ELC 2009). Preliminary data of Osram on LEDs life cycle assessment show that only 2% of total energy consumedbyLEDbasedlampsisusedintheirproduction.(LEDsMagazine2009)

186 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Inthelifecycleanalysisoflightsourcestheenvironmentalimpactsareassessedinrawmaterial production, manufacturing, distribution, use / consumption and disposal through fifteen environmentalindicators.OneoftheindicatorsistheGlobalWarmingPotential(GWP),whichis measuredinkilogramsofcarbondioxide(CO 2)equivalents.IntheusephasetheGWPindicatoris measuredbythepowerconsumption.InthefollowingthepercentageistheGWPimpactoftheuse calculatedoverthetotalGWPimpactfordifferentlightsourcesystems.(DEFRA2009). ― integrallyballastedLEDlamp,93.3% ― dedicatedLEDluminairesystem,97.3% ― ceramicmetalhalideluminairesystem,98.7% ― T5luminairesystem,97.7% ― integrallyballastedcompactfluorescentlamp,97.7% ― generalserviceincandescentlamp,99.7%. 7.2 Calculationoflightingenergy The total lighting energy used by a lighting systemdepends,in additiontotheused equipment (lamps,ballastsandluminaires),onthelightingdesignandtheroomitself.Theefficiencyofthe lampscanbedefinedasluminousefficacy(lm/W).Theballastlossesdefinetheefficiencyofthe ballastandluminaireoutputratio(LOR)definestheefficiencyoftheluminaire.Thelightingdesign has an effect on the position of the luminaires (related e.g. to working desk), the illuminance, illuminancedistributionandmaintenance.Alsotheroomhasaneffectontheilluminance,sincepart ofthelightcomestotheworkingdeskthroughreflections.Anextremeexampleofthisisindirect lightinginwhichallthelightisreflectedthroughceilingandwallstohorizontalsurfaces.Theshape oftheroom,height(luminairedistancefromhorizontalplane)andthesurfacereflectances(related to colors) together with the luminous distribution of the luminaire affect the illuminance and illuminancedistributionintheroom. Figure7-3showsthefactorsaffectingthetotallighting ρ ρk c energy consumption in a room. The efficiency of the MFβ ffol luminaire (light output ratio) is represented by the ff dp η symbol LOR . The utilance Udescribesthe amountof LORva β ρs ρw Φ luminous flux reaching the task area divided by the

heighth luminous flux of the luminaires. The utilance is affected by the luminous intensity distribution of the m luminaire,reflectancesoftheroomsurfaces(ρc, ρw, ρf), f width (w)andlength(l)oftheroomandthedistance fck f fs between the workplane and the luminaires ( hm). The Uη lumen maintenance factor (MF) includes the lumen depreciationofthelampsandthedepreciationcaused

le n bycontaminationofluminaireandtheroomsurfaces. g lengthlh t ρ l l The energy consumption can be reduced by dimming ρf the lights according to daylight (fd). Lights can be controlled also by an occupancy sensor (fo), a switch widthw (fs) or a dimmer (fc)intheroom. Figure7-3.Factorsaffectingthetotalenergyusageoflighting. Reducingtheinstalledpowerofalightingsystemrepresentsonlyonepartofthelightingenergy saving opportunity. Lighting energy consumption can also be decreased by reducing the use of powerbyusinglightingcontrolsystems.Thiscanbedonebytheapplicationofoccupancysensors,

187 7LIFECYCLEANALYSISANDLIFECYCLECOSTS andautomaticswitchinganddimmingaccordingtothe availability of daylight. The total energy consumptioncanbecalculated,ifthetotalinstalledpowerisknown. W = Ptf ∑ (7-1) where Wenergyconsumption,kWh P installedpower,W t annualburninghours,h f controlfactor,whichtakesintoaccountboththedimmingandswitchoffperiods. Theaverageilluminanceisluminousfluxperilluminatedarea.Partoftheluminousfluxofthe lampsisblockedbytheluminairewhilepartoftheluminousfluxreachingthetaskareaisreflected fromtheroomsurfaces. Theaverageilluminanceoftheroomis NΦ E = MF ⋅η A (7-2) where E averageilluminance,lx MF maintenance factor (product of lamp lumen depreciationandcontaminationofthe luminaireandroomsurfaces) η utilizationfactor(productofluminairelightoutputratioandutilanceoftheroom). N numberoftheluminaires Φ luminousfluxofthelampsinoneluminaire,lm A areaoftheroom,m 2 Thetotalluminousfluxoftheluminaires( NΦ)istheproductofsystemluminousefficacy(ηΦ)and installedpower(P)i.e. NΦ= ηΦP.InsertingthisinEquation(7-2)leadsto: P E P = = A A MF ⋅ηη Φ (7-3) where 2 PA lightingpowerdensityinaroom,W/m

ηΦ systemluminousefficacy(lampluminousefficacyincludingballastlosses),lm/W Equation(7-3)isusedtocalculatepowerdensitiesasafunctionoflightsourceluminousefficacyin Figure7-4.WithT5lampstheluminousefficacyofthesystemis90lm/Wand500lxcanbe reachedwithinstalledpowerdensityof15W/m 2.WithCFLsthepowerdensitywouldbeabout 27W/m 2.

188 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Inc. 100 90 CFL T5 80 2 70 100lx 60 300lx 50 500lx 40 750lx 30 1000lx PowerdensityW/m 20 10 0 0 20 40 60 80 100 120 140 160 180 200 Luminousefficacylm/W Figure7-4.Powerdensity(W/m 2)asafunctionoflightsourceluminousefficacy(lm/W)at differentilluminancelevels(lx),maintenancefactorMF=0.75andutilizationfactor η=0.5. Figure7-5showstheeffectsofmaintenancefactorMF andutilizationfactor ηonpowerdensity.In thecalculationsilluminancehasbeen500lxandlampluminousefficacy80lm/W.Itispossibleto achievethedesiredilluminancelevelof500lxwithpowerdensitiesoflessthan10W/m 2,whenthe maintenancefactorishigherthan0.90andtheutilizationfactorishigherthan0.80.

45 40 35 2 30 0.50 25 0.75 20 0.90 15

PowerdensityW/m 10

5 0 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Utilizationfactor η Figure7-5.Powerdensity(W/m 2)asafunctionofutilizationfactoratdifferentmaintenancefactorvalues(MF=0.50, 0.75,0.90),calculatedforilluminanceE=500lxandsystemluminousefficacy ηΦ=80lm/W . Normalizedpowerdensity Hanselaer etal. (2007)definedthenormalizedpowerdensityNPDbydividingtheinstalledpower bythemaintainedluminousfluxonthetaskarea(inunitsof100lmor100lx,m2)as:

189 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

P 100 NPD = sys [W / m2 ⋅100 lx ]= Φ fin MF ⋅U ⋅ LOR ⋅η ⋅η TA lamp gear (7-4) Where NPD normalisedpowerdensity,W/(m 2,100lx) Psys totalsystempower,lamps,ballasts,etc.,W Φ fin TA maintainedluminousfluxonthetaskarea,lm MF maintenancefactor,ratiooftheaverageilluminance on the working plane after a certainperiodofuseoflightinginstallationtotheinitialaverageilluminance Uutilance,relates theluminousfluxfromtheluminairestotheluminousfluxon thetargetarea LOR LightOutputRatioortheefficiencyoftheluminaire ηlamp initialluminousefficacyofthelamp,lm/W ηgear efficiencyofthecontrolgear AccordingtoHanselaer etal. (2007)thetargetvaluesforefficientlightinginstallationsare ηgear > 0.84, ηlamp >70lm/W, LOR >0.75, MF >0.75, U>2/(1+0.5( AnTA /ATA )). ATA isthetaskareaand AnTA thetotalnon-taskarea.Indefiningtheutilance,itissupposedthatthemeaninitialilluminance onthenon-taskareaislowerthantheinitialilluminanceonthetaskarea. 7.3 Economicevaluationoflighting Foreconomicevaluationofdifferentlightingsolutions,alifecyclecostanalysishastobemade. Thismeans,thatallcostcategoriesincludinginitialandvariablecostsmustbeconsideredoverthe lifetimeofthewholelightinginstallation.Initialcostsaree.g.costsforthelightingdesign,lighting equipment,wiringandcontroldevices,andthelabourfortheinstallationofthesystem.Variable costsmayincludereplacementoftheburntoutlamps(relamping),cleaning,energy,replacementof otherparts(reflectors,lenses,louvers,ballasts,etc.)oranyothercoststhatwillbeincurred. Usually, only the installation costs are taken intoaccount.Peoplearenotawareofthevariable costs.Incommercialbuildingsthevariablecostsareoftenpaidbyotherswhorenttheapartment, andtheinitialcostsareusuallypaidbytheinvestorwhomakesthesystemdecisions.Theenergy costsofalightinginstallationduringthewholelife cycle are often the largest part of the whole costs. Costs Initialcosts Theinitialcostsaretheinvestmentcosts,whichcanbeconvertedtoannualcostsbymultiplying thembythecapitalrecoveryfactor. i 1( + i)n C = I × I n 1( + i) −1 (7-5) where CI annualcostsoftheinitialinvestment,€ I investmentcost(initialcostsofequipment,design,installation,etc.),€ i interestrate(i=p/100,wherepisinterestrateinpercentage) n numberofyears(servicelifeoflightinginstallation).

190 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Variablecosts Thevariablecostsconsistofmaintenancecostsandservicecosts.Themaintenancecostsinclude energycostsandlampreplacementcosts.Theservicecostscaninclude,forinstance,thecostsof cleaningandreparationofluminaires.

Energycosts Ce Energy costsarecalculatedbymultiplyingthetotal power of the lighting installation by annual burninghoursandthepriceofelectricity. = −5 Ce nlu cetP 10 (7-6) where

Ce energycosts,€ n numberoftheluminaires lu ce priceofelectricityc/kWh t annualburninghours,h P poweroftheluminaire,lampandballast,W.

Lampcosts CL Theannuallampcostsarecalculatedbymultiplyingthelamppricebythequotientoftheannual burninghoursandlamplife( t/tLL ).Insteadofthequotientalsothecapitalrecoveryfactorcanbe used.Thisisreasonableif t/tLL issmall,i.e.eithertheburninghoursaresmallorthelamplifeis long. = ( ) + CL nLcL t / tLL 1( k) (7-7) where CL annuallampcostsincludingthelampsforspotrelamping,€ nL numberofthelamps cL priceofalamp,€ t burninghours,h tLL lamplife,h k averagemortalityduringlampgroupreplacementperiod,%.

GroupreplacementcostsCG If lamps are changed by group replacement, the replacement period can be chosen based for exampleon30%decreaseofilluminanceduetolumendepreciationandlampmortality.Fluorescent lampscontainmercuryandthereforethereplacementcostshavetoincludealsothedisposalofthe oldlamps. = CG nLcG /T (7-8) where CG annualgroupreplacementcost,€ nL numberofthelamps groupreplacementcostsperlampingroupreplacementincludinglampdisposal,€ cG T groupreplacementperiodinyears,a.

191 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

SpotreplacementcostsCS = CS nLcS k /T (7-9) where C annualspotreplacementcosts,€ S nL numberofthelamps

cS spotreplacementcostsperlampinspotreplacementincludinglampdisposal,€ k averagemortalityduringlampgroupreplacementperiod,% T groupreplacementperiodinyears,a Servicecost Servicecostsresultfromthecleaningandreparationofluminairesandindirtyconditionsalsofrom the cleaning and/or painting of room surfaces. Service costs are very dependent on the circumstances. Ifthelampsandluminairesarecleanedonaregularbasis,forinstancecombined withthegroupreplacement,thentheannualcleaningcostscanbecalculatedbydividingthework andmaterialcostsbythecleaningperiod. = ( + ) CC nL cC cm / tC (7-10) where C annualcleaningcosts,€ C n L numberofthelamps cC workcostsofcleaningperlamp,€

cm materialcostsofcleaningperlamp,€

tC cleaningperiodinyears,a. Exampleoftheuseofequations

InthefollowingtheenergycostsC eandlampcostsC Lusingdifferentlampsarecalculated.The lampsareincandescent(Inc.),compactfluorescent(CFL)andLEDlamps.Sincethepriceofthe lampsisquitedifferent,thelampcostshavebeencalculatedbyusingthecapitalrecoveryfactor, Equation(7-5).Theservicelife(numberofyearsn)isoneyearforincandescent,threeyearsfor CFL1andfiveyearsforCFL2,LED1andLED2lamps. The actual service life of, for example, LED2ismuchlongerthanfiveyears,takingtheannualburninghoursof2000handlamplifeof 50000 hours. The service life of LED2 would be 25 years and the initial costs only 3.55 €. However,duetoservicelifeoffiveyearsusedinthecalculations,theinitialcostsforLED2are 11.55€.Table7-2showstheinitialvaluesusedforcalculations.Withincandescentlamp,another lampcostsof1.05€hasbeenaddedafter1500hours,2500hoursandagainafter3500burning hours.

192 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Table7-2.Initialvaluesforcalculationofenergycostsandlampcostsand theresultsofthecalculationsfordifferentlamptypes. InitialValues GLS CFL1 CFL2 LED1 LED2

cepriceoftheelectricity,c/kWh15 15 15 15 15 P powerofthelamp,W 60 15 15 15 10 cLpriceofthelamp,€ 0.5 5 10 20 50 tLL lamplife,h 1000 6000 12000 20000 50000 t annualburninghours 2000 2000 2000 2000 2000 kmortality,% 0 0 0 0 0 i interestrate 0.05 0.05 0.05 0.05 0.05 nservicelife(numberofyears) 1 3 5 5 5 Calculatedvalues CIInitialcosts,€ 0.53 1.84 2.31 4.62 11.55 CeEnergycosts,€ 18.00 4.5 4.5 4.5 3.00 CLLampcosts,€ 1.05 1.84 2.31 4.62 11.55 Figure7-6showstheeffectofannualburninghoursonthelampandenergycosts.Whenusingthe servicelivesof3yearsand5years,thetotalcostsforCFL1are4€andforCFL24.50€,andfor incandescentlamp9.50€with1000annualburninghours.

40.00

30.00 Inc. CFL1 20.00 CFL2 LED1 10.00 LED2

Lampandenergycosts/€ 0.00 0 1000 2000 3000 4000 Burninghours Figure7-6.Combinedlampandenergycostsasafunctionofannualburninghoursfordifferentlamptypes. Figure7-7showsthedistributionoflampcostsandenergycostswith2000burninghours.Incase oftheincandescentlamp,twolampsareusedduringthisperiod.WithLED1annualenergycosts andlampcostsarealmostequal,4.50€and4.62€.ThepriceoftheLED1lampis20€andthe servicelifeisfiveyears.Thepriceofelectricityis15c/kWhandthepowerofthelampis15W. WithCFLandIncandescentlampstheenergycostsaredominating.

193 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

20,00

15,00 Lamp 10,00 Energy 5,00

0,00 Lampandenergycosts/€ GLS CFL1 CFL2 LED1 LED2 Lamptype Figure7-7.Lampandenergycostsofdifferentlamptypeswith2000annualburninghours. Otherconsiderations ― The electric energy for lighting is an internal heat gain in a room. In winterpeakingregions(coldareas)itcanbeutilizedforheating,butin otherregionsandinsummertimeitwillincreasethe need for cooling energy. ― If the lighting is dimmed, for instance according to daylight, this will decrease the energy consumption. With fluorescent lamps even if the luminousfluxisontheminimumlevel(1%to5%)the system energy consumptionisstillabout20%. ― Lightingcontrolstrategiescanhelptosaveenergy.Iffluorescentlamps are switched off regularly, this will save energy, butitwillshortenthe lamplifeandthusincreasethelampandreplacementcosts.Calculations showthatgenerallyitiseconomicaltoswitchofffluorescentlampswhen theswitchofftimeis15minutesorlonger. Maintenance Allsystemcomponentsagebytimeandmustbereplacedatcertainperiods(beforedroppingout). Lamp performance decreases over time before failure (Figure 7-8), and dirt accumulations on luminaires and room surfaces decreases the utilization factors. The lack of maintenance has a negativeeffectonvisualperception,taskperformance,safetyandsecurity,anditwastesenergyas well.Bothaginganddirtaccumulationcanreducetheefficiencyofawholelightinginstallationby 50% or even more, depending on the application and equipment used. The following measures shouldbedefinedbyaregularmaintenanceschedule: ― Cleaningofluminaires,daylightingdevicesandrooms(dirtdepreciation) ― Replacementofburnedoutlamps ― Replacementofotherparts(e.g.corrodedreflectors) ― Renovationandretrofittingofantiquatedsystemsandcomponents.

194 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Figure7-8.Lampluminousfluxdepreciationduringlifetime(principalsketch). 7.4 Examplesoflifecyclecosts Asimpleappraisalwithverycommonparameters(assumptions)fortwolightingexamples(shop lightingandofficelighting)showstheLCCdimensions. Thefollowingterminologiesareusedintheexamples: E averageilluminace,lx MF maintenancefactor,includinglamplumendepreciationanddirtaccumulationonluminaires andonroomsurfaces η utilizationfactor(productofluminairelightoutputratioandutilanceoftheroom) Φ luminousfluxofthelampsinoneluminaire,lm A areaoftheroom,m 2 W energyconsumption,kWh P installedpower,W t annualburninghours,h Shoplighting Requiredilluminance E=1000lx Dimensions A=4mx5m=20m² η 0,6 MF 0.67(acc.toDIN12464) t 3000h 5m lamptype HCI-T35W 3500lm power(perluminaire) 40W 87.5lm/W 4m

195 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Simplecalculationwithoutmaintenanceandrelampingcosts Φ=E.A/( η.MF)=49.8klm fort=3000h 149Mlmh P=49.8klm/87.5lm/W=569W 28W/m² fort=3000h W=1700kWh 85kWh/m²,a Installationcosts 100€/m 2 Energyconsumption 85kWh/m 2,a Costsforelectricity(0.15€/kWhprice) 12.75€/m 2,a Costsforelectricityfor10years 127€/m 2

Presentvalueofagrowingannuity Presentvalueofanannuityisaseriesofequalpaymentsorreceiptsthatoccuratevenlyspaced intervalsthatoccurattheendofeachperiod.Inthepresentvalueofagrowingannuity(PVGA) thereisarateofgrowthoftheannuity.Annuityisthepaymentinthefirstperiod. n a  1+ g  p  PV (a) = 1−    − + i g   1 i   where PV(a) valueoftheannuityattime=0 a valueoftheindividualpaymentsineachcompoundingperiod i interestratethatwouldbecompoundedforeachperiodoftime np numberofpaymentperiods g increaseinpayments,eachpaymentgrowsbyafactorof(1+g). Wecanconsiderthepreviousexampleofshoplightingwiththefollowingassumptions. Totallifecycle 24years Maintenanceinterval 3years(n p=8) (cleaningandrelamping) Maintenancecosts 22€/m 2 Interestrate 6% 2 Electricitycost 12.75€/m year(n p=24) Electricitypriceincrease 1%/5% Presentvaluesofthetotallifecyclecostsare Installation 100€/m 2 Electricity 175€/m 2(1%annualincrease) Electricity 259€/m 2(5%annualincrease) Maintenance 137€/m 2(noannualincrease) Figure7-9showstheshareofenergycostsinthelifecyclecosts.Thecalculationisdoneover24 years.Figureshowstwoexamplesoftheincreaseofthepricesonewith1%annualincreaseinthe electricitypriceandtheotherwith5%annualincreaseintheelectricityprice.

196 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

20% 24% 28% 33%

1%increase 5%increase inelectricity 43% inelectricity 52% Installation Electricity Maintenance Installation Electricity Maintenance Figure7-9. Distributionofcosts[€/m 2]forshoplightingduringlifecycleofaninstallation(24years). Increaseof1%(left)or5%(right)ofthepriceofelectricityhasbeenconsidered. Office-lighting Energyefficientoffice–lowpowerdensity Requiredluminance 500lx Dimensions: A=4mx5m=20m² η 0.7 5m MF 0.67(acc.toDIN12464) t 2000h lamptype LFL54W 4450lm power(perluminaire) 58W 77lm/W 4m Simplecalculationwithoutmaintenanceandrelampingcosts Φ=ExA/( ηxMF)=21klm fort=2000h 42Mlmh P=21000lm/77lm/W=270W13.5W/m 2 fort=2000h W=540kWh27kWh/m2 Installationcosts 31€/m 2 Energyconsumption 27kWh/m 2,a Costsforelectricity(0.15€/kWhprice)4.05€/m 2,a Costsforelectricityfor10years 40€/m 2 Lifecyclecostswithmaintenancecosts Totallifecycle 24years Maintenanceinterval 6years(n p=4) (cleaningandrelamping) Maintenancecosts 5€/m 2 Interestrate 6% 2 Electricitycost 4.05€/m ,a(n p=24) Electricitypriceincrease 1%/5% Presentvaluesofthetotallifecyclecostsare

197 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Installation 31€/m 2 Electricity 56€/m 2(1%annualincrease) Electricity 82€/m 2(5%annualincrease) Maintenance 20€/m 2(noannualincrease) Figure7-10showstheshareofenergycostsinlifecyclecostsinofficelighting.Thecalculationis doneover24years.Thefigureshowstwoexamplesoftheincreaseoftheelectricityprices;one with1%annualincreaseinelectricity,andtheotherwith5%annualincreaseinelectricityprice.

15% 19% 23% 29%

5%increase 1%increase 52% 62% inelectricity inelectricity Installation Electricity Maintenance Installation Electricity Maintenance Figure7-10. Distributionofcosts[€/m 2]forofficelightingduringlifecycleofaninstallation(24years). Increaseof1%(left)or5%(right)ofthepriceofelectricityhasbeenconsidered. ´ThestandardEN15193defineslimitsforconnectedlightingpowerdensity.Forofficelightingthe recommended power density is 15 -25 W/m 2, ranging from basic requirements (15 W/m 2) to comprehensive requirements (25 W/m 2).Inthefollowing,costsforofficelightingare calculated withpowerdensityof25W/m 2,andpresentedinFigure7-11.Theinstallationcostsare50€/m 2. Totallifecycle 24years Maintenanceinterval 6years(n p=4) (cleaningandrelamping) Maintenancecosts 5€/m 2 maintenancecostsincrease 1% Interestrate 6% Energyconsumption 25W/m 2x2000h=50kWh/m 2year 2 Electricitycost 7.5€/m year(n p=24) Electricitypriceincrease 1%/5% Presentvaluesofthetotallifecyclecostsare Installation 50€/m 2 Electricity 103€/m 2(1%annualincrease) Electricity 153€/m 2(5%annualincrease) Maintenance 20€/m 2(noannualincrease) Theincreasingofthelightingpowerdensityupto25W/m²(maximumpowerdensityforoffice- roomsaccordingtoEN15193)increasestheenergycostssignificantlycomparedtotheinstallation costs,Figure7-11.WhencomparedtoFigure7-10andrelatedcalculations,theelectricitycostsare increasedbyabout85%.

198 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

9% 11% 22%

29%

69% 1%increase 60% 5%increase inelectricity inelectricity Installation Electricity Maintenance Installation Electricity Maintenance Figure7-11. Distributionofcosts[€/m 2]forofficelightingduringlifecycleofaninstallation(24years). Increaseof1%(left)or5%(right)ofthepriceofelectricityhasbeenconsidered. Thelightingpowerdensityis25W/m 2.

Conclusions Thereislackofawarenessofthefactthatthevariablecosts(operationcosts),especiallytheenergy costsofalightinginstallationduringthewholelifecycle,aremostlythelargestpartofthetotal costs,andthatpropermaintenanceplanscansavealotofenergyduringtheoperatingphaseofthe installation. Due to this lack of awareness in common practice, life cycle costs (LCC) and maintenanceplansareveryseldomputintopractice.Thecalculationsshowthatthemanagementof LCCinthedesignphasecanchangetheevaluationofdifferentlightingsolutionssignificantly.This adds weight to the energy aspects and thus influencing the final decision of the client to more energyefficientlightingsolutions. 7.5 Longtermassessmentofcostsassociatedwithlightinganddaylightingtechniques Fontoynont (2009) has studied financial data leading to the comparison of costs of various daylightingandlightingtechniquesoverlongtime periods. The techniques are compared on the basis of illumination delivered on the work plane per year. The selected daylighting techniques were: roof monitors, façade windows, borrowed light windows, light wells, daylight guidance systems, as well as off-grid lighting based on LEDs powered by . These solutions werecomparedwithelectriclightinginstallationsconsistingofvarioussources:fluorescentlamps, tungsten halogen lamps and LEDs. Figure 7-12 shows the annual costs for various options (€/Mlmh).

199 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Figure7-12. Annualcostsforvariouslightinganddaylightingtechniques(Fontoynont2009). Generalresultsofthestudywere: ― Aperturesintheenvelopeofthebuildingarecosteffectiveindirecting lightintheperiphericalspacesofabuilding,mainlyiftheyaredurable andrequirelittlemaintenance. ― Daylightingsystemsaimedatbringingdaylightdeeplyintoabuildingare generally not cost effective, unless they use ready-made industrial productswithhighopticalperformanceandlowmaintenance,andcollect daylightdirectlyfromthebuildingenvelope. ― Tungstenhalogenlamps,whenusedcontinuouslyfor lighting, are very expensiveandneedtobereplacedbyfluorescentlampsorLEDs. ― Depending on the evolution of performance and costs of LEDs and photovoltaic panels, there could also be options to generalize lighting based on LEDs and possibly to supply them with electricity generated directlyfromphotovoltaicpanels. References CML2001.http://cml.leiden.edu/research/industrialecology/researchprojects/finished/new-dutch-lca-guide.html, accessed6November2009. Eco-Indicator2009.Eco-indicator99method. http://www.pre.nl/eco-indicator99/default.htm, accessed 30 September 2009. ELC2009.EuropeanlampcompaniesFederation.Didyouknow…thepotentialenergysavingsofanenergyefficient lamp?http://www.elcfed.org/1_health.html,,accessed17September2009 EN15193.Energyperformanceofbuildings–Energyrequirementsforlighting,EuropeanStandard

200 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

Fontoynont 2009. Long term assessment of costs associated with lighting and daylighting techniques. Annex 45 Newsletter1/2009,p.3. GDRC, 2009. The global development research center. http://www.gdrc.org/uem/lca/life-cycle.html, accessed 17 September2009. Gydesen&Maimann,1991.Lifecycleanalysesofintegralcompactfluorescentlampsversusincandescentlamps. ProceedingsofRightLightBrightLight,Stockholm,.Sweden1991. http://www.iaeel.org/iaeel/archive/Right_light_proceedings/Contents/RL1_contents.html Hanselaer etal. 2007.Powerdensitytargetsforefficientlightingofinteriortaskareas.LightingRes.Technology,39,2 (2007)pp171-184 LEDsMagazine2009.Osramunveilslife-cycleassessmentofLEDlamps,http://www.ledsmagazine.com/news/6/8/4,6 August2009. DEFRA2009.LifeCycleAssessmentofUltra-EfficientLamps.FinalReporttotheDepartmentforEnvironment,Food andRuralAffairs,5thMay2009.http://www.defra.gov.uk/environment/business/products/roadmaps/lighting.htm

201 7LIFECYCLEANALYSISANDLIFECYCLECOSTS

202 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Chapter8:Lightingdesignandsurveyonlightingtodayandinthe future Topicscovered 8 Lightingdesignandsurveyonlightingtodayandinthefuture ...... 205 8.1 Thoughtsonlightingdesign...... 205 8.2 Atechnologicalapproach...... 208 8.3 TheroleofLEDs...... 209 8.4 Architecturalviewonilluminants...... 210 8.5 Energyefficientlightingculture ...... 211 8.6 Surveyontheopinionsoflightingprofessionalsonlightingtodayandinthefuture . 211 8.6.1 Introduction...... 211 8.6.2 Results...... 212 8.6.3 Summaryanddiscussion...... 225 References 227

203 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

204 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

8 Lightingdesignandsurveyonlightingtodayandinthefuture

8.1 Thoughtsonlightingdesign “Primarily,itislightwhichbringsmaterialstolifeandgivesaroomitsform.Asinglebeamof lightallowsforasurfacetoexpressitselfandcreatesshadowsbehindobjects”,statesTadaoAndo, oneofthemostfamousarchitectsoflight. Lighting design is more than the planning of stipulated light intensities and luminance levels. Lighting design is also more than the fulfillment of physiological visual requirements of visual perception. The fulfillment of these requirements belongs to the necessary prerequisites of illumination. Lighting design is more than just the fulfillment of normative guidelines. Lighting designmeansthe creationofan appearance(e.g.ofaroom),which compliesnotonlywiththe technicalrequirementsbutalsowiththeemotionalandaestheticrequirementsoftheuser. Designingwithlightisbasedonpsychologicalperceptioncorrelations,whichcannotbemeasured quantitatively(atleastatpresent),andthereforecannotbemathematicallydescribedorconverted. Lightingsolutions,inthesenseofcreationsinlightareverydifficulttorepresentandcommunicate astheyareabstractandcanpracticallyonlybeconceivedbymeansofvisualperception(onehasto beabletoseethesolution).Inordertobeabletoconveyanilluminationsolution,theyareeither graphicallyrepresented(artwork)withthehelpofcomputersimulations(renderings),orrepresented byscalemodels.Ultimately,thesearejustaidsandthetrueeffectscanonlybeexperiencedinareal situation. Fromanarchitecturalpointofviewlightingisameantoexpressandunderlinethedesiredcharacter ofthebuildingspace,whichmaybedefinedbyanoveralldesignstyleofthearchitect. Differentplacesneeddifferentwaysoflightingdesign.Anyway,itispossibletoidentifythreemain typologiesofenvironments,eachonecharacterised bydifferenthierarchiesofobjectives, witha specifictechnical,functionaloraestheticalpriority: a. Environmentsdesignedforworkandservicestothepublic:placeswherethefunctionalityis thekeyelementguidingtheworkofthedesigner,andthemainaspectstosatisfyarethe rulesofthevisionandergonomics,thesafetyandthecommunication b. Environmentsdesignedforexhibitionsandsale:placeswherethemostimportantneedisthe image,beitfaithfultothetruthordistanttothereality,virtual,fascinating c. Environmentsdesignedforresidenceandtourism:placeswherelightshouldsatisfytheneed forcomfort,relaxation,aestheticalvalue,statussymbol Visualperceptionisfirstofallamentalprocedure,andnotonlyapuresensation(likee.g.athermal sensation,whichcausesfeelingsofcoldnessorwarmness).Itisameanstoreceiveinformation aboutoursurroundings,aboutthedistances,surfaces,textures,aboutwhathappensaroundus,and allthisinformationarousesemotions.Ourperceptionisveryselective,prejudicedbyourpersonal experience,andisinfluencedalsobyouractualmentalstate,historyandexpectations. Through the visual perception system we receive the largest amount of information (most of it unconsciously) about our environment. Optical illusions are very popular to demonstrate this perceptionprocedure:weinterpret(unconsciouslyandnotcontrollably)byamentalprocesswhat weareseeing(seeFigure8-1).

205 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Figure8-1.OpticalIllusion. ThepictureintheFigure8-2isanexampleofafacadethatisilluminatedfromthegroundupwards, whichcausesveryunusualshadowsandthusisestrangingtheappearanceofthebuilding.

Figure8-2.Estrangementofabuildingfacadebyuplighting(Bartenbach2009). ThecomparisonoftwoantitheticexamplesforshoplightingisshowninFigure8-3.Ontheleft picturemanyglaringlightsources(noshielding)togetherwithspecularsurfaces(floor,ceilingand shelves with ware) give a glittery appearance, whereas on the right side the light sources and luminairesarehidden,andthewareisinthefocus.

206 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Figure8-3.Comparisonofshoplighting:leftthelightpointsareinthefocus,righttheware(Bartenbach2009). AnotherexampleisthecorridorlightinginFigure8-4.:ontheleftisseenashinydarkfloorwhich appearslikeablackhole,andontherightsurfaceswhicharemadevisiblebytheillumination.

Figure8-4.Comparisonoftwodifferentfloorlightingconcepts(Bartenbach2009). InthemuseumlightingshowninFigure8-5theilluminationideawastousethefluorescentlamps themselvesasart.Theeffectofsuchilluminationsisobvious:thepaintingsareinthebackground.

207 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Figure8-5.Aspecialapproachtomuseumlighting(Bartenbach2009). Figure8-6demonstrateshowtheappearanceofilluminatedpaintingsonawallcanbechangedby simple measures. The change in the background reflectance from white to dark increases the visibilitystrongly.

Figure8-6.Comparisonoftwodifferentbackgrounds(Bartenbach2009). These few examples make it evident that lighting design is much more than the planning of stipulatedilluminancelevels. Theaimofanoptimumlightingdesignistoachievecertainappearancesand,atthesametime,to fulfillthefundamentalphysiologicalandpsychologicalvisualrequirementsandtoultimatelyput thewholethingintoeffectinanenergyefficientmanner.

8.2 Atechnologicalapproach Fromanenergypointofview,wecanidentifythreestepsthattransformelectricalenergyintolight: the lamp (light source, including controls and ballasts), the luminaire, and the room. The lamp transformselectricpowerintoluminousflux,theluminairedistributesthelightintheroom,andthe roomtransformsthislightintovisibleluminancesbythesurfacereflections. Theenergeticperformanceofthesedifferenttransformationsarecharacterizedbythefactors

208 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

- lampluminousefficacy(inlm/W,includingoperatingdevices) - luminairelightoutputratio(LOR,in%) - roomutilizationfactor( η,in%). The‘sum’ofthesefactorsgivestheultimate(total)utilizationoftheelectriclightinstallation.

Figure8-7.Supplychainfromtheelectricpowergridtothevisualenvironment. Theenergyconsumptionoftheinstallationisfurtherdefinedbytheoperatingtimes,i.e.theneed forartificiallightingshouldbeminimizedbyintelligentarchitectureanddaylightharvesting.Proper controls(occupancy,daylightdependence,etc.)havetobeinstalledtoavoidneedlessoperatingof theartificiallight. The first key point for an energy efficient lighting installation is the choice of efficient lamps (characterised by the lamp luminous efficacy in lm/W), which produce the proper spectrum (correlatedcolortemperatureandcolorrenderingindex)andoffertherequiredoperatingfeatures. Besidestheuseofenergyefficientlamps,theapplicationofhighqualityluminaires(characterised by the LOR) together with efficient room lighting concepts (characterised by the η) and clever controls,areimportantforthevisualandecologicalqualityofthewholelightinginstallation. Theluminaireshouldnotonlybeadecorativeelement,butratheradevicetodistributethelightof the lamp according to the illumination tasks in the room without causing glare, thus creating togetherwiththeroomsurfacesthedesiredvisualenvironment.

8.3 TheroleofLEDs With the emerging LED technology a new white light source is available which offers a great potentialforenergyefficientlighting.Withanefficacyofmorethan100lm/Winthenearfuture,a lifespanupto50000handmore,andwitheasycontrolanddimmingpossibilities,LEDsofferall thekeyfeaturesforanenergyefficientlightsource.Additionally,thelightoutputratiosofLED- luminairesareusuallymuchhigherthanforconventionallightsources. LEDsallowforcompletelynewdesignsandarchitecturesforlightingsolutions,thusopeninganew andwide fieldofcreativityforalllightingprofessionals.Atthesametime,someoldrules and

209 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE standardsforagoodlightingdesignarenolongerapplicabletoLEDs(e.g.glareassessment,color rendering,lightdistribution,etc.).Theydemandsomeadjustmentsandsometimesalsonewrules, andthisneedstimetobecomeawidespreadandcommonacceptedstateoftheart.Inthistransition periodsomemeandersandmistakeswilloccur. As an example, LEDs are very often used as replacement of low voltage incandescent lamps operatedlikeastarrysky(manysmalllightspotswithoutanyshading),buttherearenoclearrules for glare assessment of such an application. Another example is the color rendering topic, the commonlyusedCRIforlampsismisleadingifappliedtoLEDs. Thereisincreasedattentionforbiological(non-visual)effectsoflightinginthelightingcommunity. For these different biological effects of light special light spectra may be needed. Although the scientificbasicsarestilltooweaktobeapplied,lightingindustryalreadyoffersalotofsocalled ‘dynamiclighting’solutions,e.g.toassistthedailyactivityandcircadianrhythmofpeople.With themixtureofdifferentLEDsitispossibletocreatealmostanydesiredspectraldistribution.This enablesthecreationoflightingenvironmentforpotentialvisualandbiologicaleffectsforhuman beings.

8.4 Architecturalviewonilluminants Lightsourcesorilluminantsaredefinedasdeviceswhichtransformelectricalpowerintoluminous flux.Aluminaireisadevicewhichisnecessaryfortheoperationofanilluminant.Itconsistsofa lampholder,anoperatingdevicefortheilluminanttogetherwiththenecessaryelectricalwiring,a mechanical construction including a housing and the light directing elements (reflectors, prisms etc.).Theselightdirectingelementsservetodistributethelightaccordingtorequirementsandalso toshieldorfade-outtheilluminant. An architect views the luminaire as a visible part of the interior decoration, whereas a lighting engineerconsidersitasadevicewhichfulfilsthephotometricrequirements.Thelightingdesigner however,wantstobecreativewithlightandtoachieveeffects.Forarchitects,aestheticdemandson thebodyofaluminaire(housing)anditsarrangementinaroomisparamount.Ontheotherhand, thelightingengineerhasthephotometric requirements in mind (illuminance, glare values, etc.), whichcomefromrelevantregulationsandtheexperienceoftheengineer.Thelightingdesigner,in turn,workswiththeemotionaleffectsoflight,asonecanobserve fromtheworkofatheatrical stageilluminator.Inthiscase,thespotlightsthemselvesarenotimportantandarerarelyvisible. Photometricvaluesandrequirementsarealsounknown,onlytheemotionaleffectonthestageis whatcounts. In accordance with these considerations, the effectsofalightingsystemcanbedividedintothe followingthreecategories: ― Thebodyoftheluminaireasacomponentofthearchitecture(decorative) ― Thepurelyvisibleeffectofthelight(makesthingsvisible) ― Theassociatedaestheticalandemotionaleffects. Dependingontheobjective,thelightingsystemhasitsfocalpointinoneofthesethreecategories, butultimatelyitisacombinationofalleffects.Therefore,alloftheseaspectsmustbecollectively considered.Agoodlightingdesign,whetherfromaspecialistorageneralist,alwaysconsidersthese effectsasawhole.Inthefuture,furtheraspectswillbemoreintensivelyconsidered.Theseaspects includeenergyconsumption,environmentalimpact,maintenance,andcostoftheilluminationover alifecycle.

210 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

8.5 Energyefficientlightingculture Itisessentialthatinfuturelightingdesignpractices,maintenanceschedulesandlifecyclecostswill becomeasnaturalasilluminancecalculationsalreadyare.Asustainablelightingsolutionincludes an intelligent concept, high quality and energy efficient lighting equipment suitable for the application,andpropercontrolsandmaintenance. ThereareactivitiesandeffortsunderwayinEurope(e.g.byCELMA,ELC)toestablishaLighting DesignLegislation,whichshouldmakesurelighting design follows energy efficient rules in the future.Duetothefactthattheobjectivesofalightingsystemcandiffer,andthattherecanonlybe limited standardsforarchitectureanddesign,wemusttakecareinourendeavortoregulatethese areasandtoimplementlimitations.Forexample,ifwesetourlimitationsforthepowerinputper unitareatoolow,notonlythearchitectural,butalsothephotometricleewaycanbelostandonlya trimmedstandardilluminationwithminimalenergyconsumptionwouldbepossible.Ontheother hand,ifwesetsuchaleewaytooloose,therewouldbenoeffectonenergyefficiency. Amorepromisingprospectseemstobebymeansofinformation,clarificationandtheraisingof awareness, together with well targeted technical advancement. This can help to increase the awarenessoflightingsothatpredominantlygoodandenergyefficientlightingsolutionswillbeput intopractice. We have to be careful to avoid overregulation, and we cannot forget that lighting design is essentiallyacreativedesignprocess.

8.6 Surveyontheopinionsoflightingprofessionalsonlightingtodayandinthefuture

8.6.1 Introduction Thesurveywasconductedduring2006-2007andtheopinionsaspresentedherereflectthoseofthe respondents. PartoftheAnnex45workwastoidentifyknowledgeablepeopleinthelightingcommunityandto collectinformation.Thegoalwastofindouthowlightinghasbeendevelopedindifferentcountries withinlast5to10yearsandhowpeopleseeitsdevelopmentinthefuture.Theexpertswerealso askedwhatkindofinformationabout(energyefficient)lightingisneededandinwhatformthis informationshouldbeprovided. AquestionnairetemplatewassenttokeycontactsofAnnex45andtheycoulddecidewhethertodo itbyintervieworbysendingbackthefilledquestionnaire. Altogether twenty-five answers were receivedfromthefollowingelevencountries. ― Austria 1 ― Belgium 2 ― Canada 2 ― China 4 ― Finland 3 ― France 3 ― Germany 1 ― Italy 4 ― Russia 1 ― Turkey 3 ― Sweden1

211 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Thememberswerefromtheresearch,manufacturingorapplicationsectors.Thefollowingtopics werecoveredintheinterviewquestionnaires: ― Backgroundoftherespondent ― Historyandstateofart ― Meaningoflightingforthecomfortofindoorenvironment, health and productivity ― Future of indoor lighting, light sources, installations, integration, automation,daylight,developingneeds ― Energyefficiency,lifecycle,environment ― Flexibility,changeabilityanddynamicsoflighting ― Automation ― LEDs ― Informationandstandardization ― Summary

8.6.2 Results

Background Respondentswereaskedabouttheirexperienceinthelightingfieldandalsotheactivitiesoftheir companiesinthelightingfield.Ifthecompanyhadseveralactivitiesitwasclassifiedbythemain field of activities. For instance, manufacturers often have also R&D but they were classified as manufacturers.

Manufacturer 4% 8% Lightingdesign,architecture, consultant,engineering 8% 32% Research

8% Buildingmanagement

Distributionofequipment

Electricalutility,publiclighting 20% 20% Energyefficientauthority

Figure8-8.Companies’(representedinthesurvey)activitiesinthelightingfield.

Historyandstateofart

Howhaslightingbeenchangedduringlast5to10years Whenpeoplewereaskedhowlightinghasbeenchangedduringthelast5to10years,morethan halfoftherespondentsmentionedtheincreaseddemandforenergyefficiencyorenergysavings. ThesecondlargestgroupmentionedtheincreaseofCFLsandtheincreaseof(small)gasdischarge lamps(mainlymetalhalidelamps)inindoorlighting.Afterthat,thearrivalofT5-lampsandthe increaseduseofelectronicsinthelightingmarketwerementioned.

212 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

The increased use of electronic ballasts as well astheincreaseofcontrolandtheintegrationof controltobuildingmanagementwasindicated.Luminairedesignhasbeenchangingwiththenew lamps(forinstanceT5),butalsoduetonewmaterials.Theuseofdaylightisincreasing,partlydue toenergysavingsdemand,andthiswasalsorelatedtotheincreaseduseofcontrolsystems. Theimportanceoflightingdesignwasmentionedanditwasindicatedthatnowadaysitisnolonger justelectriciansthatdothedesign.Atthesametime,designinghasbecomemucheasierbecauseof powerfulcomputertools.Theincreaseoflightingquality,LEDs,reductionofincandescentlamps, dynamiclightingandreducedoperationalcostswerealsomentionedinthesurvey. Table8-1. Howhaslighting(techniques,design,installation,useandmaintenance)beenchangingduringthelast5to 10years? Howlightinghasbeenchanging No.of responses Increasedenergyefficiency(oflighting,luminaires,ballasts)andenvironmental friendliness 13 IncreaseofCFLs,smallgasdischargelamps 9 IncreaseofT5lamps 7 Introductionofelectronics,digitaltechnology 7 Control(intelligent,digital,integrationinbuildingmanagement) 6 Luminairedesign,easiertoinstall,bettermaterials 5 Daylighting 5 Lightingdesignmoreimportantbuteasier(faster) 4 Focusonlightingqualityandwell-being,health 4 LEDsareentering 3 Reductionofincandescentlamps 2 Dynamiclighting(CCTchange) 2 Reducedoperationcosts(throughincreasedlamplife,lowerwattages) 1

Theproblemsofcurrenttechnology Table8-2Error!Referencesourcenotfound. liststheproblemsofcurrenttechnologyasindicated bythesurvey.Themostevidentproblemwasthepriceoftheproducts;ninerespondentsoutof twenty-fivementionedtheprice. Table8-2. Problemsofcurrenttechnology. Problemsofthecurrenttechnology No.of responses Price(costs) 9 Reliabilityofelectronicballasts 4 Sizeandshape 3 Lackofknowledgeofbestoptionforthecustomer,marketingconfusing 2 Oldinstallationsarenotrenovated 2 Efficiency 2 Lifetime 2 Compatibilityofcomponentsfromdifferentmanufacturers,standardization 2 Problemswithlightingcontrols,lackofcontrolstandards 2 Marketisslow(takeslongtimeuntilanewtechnologycanbeestablishedonthemarket) 1 Glare(T5andLEDs) 1 Feasibility 1 Acceptancebyusers 1 Lightingdesignnotpaidattention 1 Communicationbetweendifferentplayers 1 Lackofeducatedprofessionals 1 Transitionperiodbetweenoldandnewproducts 1 Mercury 1

213 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Fourrespondentsmentionedthereliabilityofelectronicballasts.Threerespondentswerereferring tosizeandshapeofCFLlampsandthefactthattheydonotfitintooldincandescentluminaires. CompatibilityofcomponentsfromdifferentmanufacturerswasalsomentionedrelatedtoCFLsand theirballasts.Itwasalsopointedthatcustomersarelackinginformationonthebestoptionsandthe marketing can be misleading. Two respondents mentioned that the old installations are not renovated and that there is still need for further improvements in efficiency and life time of products.

Howshouldmanufacturersimprovetheirproducts? Respondents were asked how manufacturers should improve their products. They could freely expresstheiropinionsonthesubjectandarrangethegivenninecharacteristicsoftheproductsinan orderfrommostimportanttoleastimportant.Figure8-9showstheaspectsthatwereconsideredin thesurveyandthesurveyresults.Thelargestgroupofrespondentschoseenergyefficiencyasthe mostimportantcharactertobeimproved. The respondents also mentioned that manufacturers should communicate more with lighting designersandresearchers.Thelackofstandardizationwasalsomentioned.Itwaspointedoutthat newtechnologyhasdefectsintheearlystage.Also,moreenergysavingtechnologysuchasPIR sensorswasrequested.

14 12 10 8 6 4 2 0

y e e ) s t y c c c y l it e ility ia ien ien Pri b c nal ic aran fi io anc f e ater t en ef M eef t rgy Compati App sponsibilit Func ain re mor ne g m E lin sof more c ( cy e R asines E fecycle Li Figure8-9.Analysisofhowmanufacturersshouldimprovetheirproducts.

Usage,maintenance,needsofdevelopment Opinionsontheusageandmaintenanceoflightingincluded: ― Significanceofthetotalcostsofownership:Moreconsciousnessofthis wouldleadtomuchhigherrateofrenovationoflighting,andthussavea lotofenergy. ― Maintenance has become more expensive: electrician is needed quite often, faults are expensive, and conventional ballasts more reliable, electronicballastsbecomingmorereliablethantheywerefiveyearsago. ― Tomakegreendesignareality,utilitiesandgovernmentshavetoworkin synchronizationwithmanufacturersandbuildingownerstostimulatethe

214 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

useofthemostefficienttechnologiesandtocompensateforthepremium costs until market is transformed. Incentives, tax deduction, real estate appraisalaregoodexamples. ― More control systems solutions oriented at energy savings and user comfort.

Meaningoflightingforthecomfortofindoorenvironment,healthandproductivity

Viewoftheimportanceofhumanfactors(well-being,health,productivity,visualenvironment)in thefuturelightingtechnology

Whatkindofresearchisneeded?Didyounotetheimportanceinyourownactivities? The answers for these questions highly reflected the need for more research; 64% of all the respondentsexpressedtheneedformoreresearch.Theywantedalsoguidelinesandsolutions.Few examplesoftheanswers: ― Researchonimpactofdesignonvisionandhumanhealth ― Health,productivityandwell-beingareveryimportantaspectsandmuch more research is needed to understand the impact of lighting on these quantities. ― Much more research and dissemination is needed to increase the knowledgeandawarenessonthevisualandnon-visualeffectsoflighting. Thisisapreconditiontoreachahigherstateoftheartforourlighting solutions. ― Importancemostlynotnoted ― Thereisalotofresearchbuteachstudyisonasmallscale.Thereisa needforacomparisonofallthestudiesandgivingoverallconclusions. Industryisinterestedinmorestudiesontheeffectsofdynamiclight.

Future of indoor lighting, light sources, installations, integration, automation, daylight, most importantdevelopingneeds

Newlightsourcesandballasts TwothirdsoftherespondentsmentionedLEDswhentheywereaskedwhatnewlightsourcesare coming on the market. Nine respondents mentioned that electronics, intelligence and communicationsareincreasing(wirelessorwithwire).Itwasexpressedthatthemarketwantsmore energyefficientlightingandproductswithlongerlife-time. Table8-3. Newlightsourcescomingonthemarket. Newlightsources,theircomponents&theirimportantfeatures No.of responses LEDs 16 Electronics,intelligence,sensors,communicationisincreasing 9 Moreenergyefficientlighting 5 Longerlife 4 Dimmable/smallerwattageshighpressuredischargelamps 4 Moreefficientballasts 2 Mercuryfreelamps 1 Controllability 1 Takeintoaccountvisualandnon-visualeffects 1

Barriersfornewlightsources Priceseemstobethemostimportantbarrierfortheentryofnewlightsourcesinthemarket.The

215 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE respondentswerealsoconcernedaboutthequalityandperformanceofnewproducts.Itwasseen that the pay-back time of new products can be rather high. It was seen that the markets are conservativeandittakestimebeforenewproductsareapproved.Ontheotherhand,sincevolumes arebigittakesalsotimeforthemanufacturerstochangevolumes.Somerespondentsexpressedthat themanagementoflightingisbecomingmorecomplexandthereislackofstandardizationandthat somedimensionscanbeinappropriate(CFLsvs.incandescentlamp).

12

10 8

6 4 2 0 Price quality, Reliability, Marketare Lackof complexity conservative performance Management Dimensions Pay-backtime standardization, Figure8-10. Barriersfornewlightsources.

Trendsinluminaires Accordingtothesurveythetrendinluminairesisthattheywillbecomemoreefficientinthefuture. It was seen that energy efficiency will also improve through better lamps and ballasts, better reflectance materials and optics. It was expressed that the design of a luminaire (in-fashion appearance)isbecomingmoreimportantandluminaireswillbecomesmaller;luminairesshouldbe environment-friendlyandthenpartsshouldberecyclable.Indirectlightingwasseenasonetrend, althoughonerespondentconsideredthissomethingthatshouldbeavoided.

14 12 10 8 6 4 2 0

s R) ss ect O ne lasts) (L design hange indir c ter tteroptic iency friendli e ed, c Bet B Maintenance ffi al E aller(incl.bal Suspend m S ironment Tool-lesslamp nv E Figure8-11.Trendsinluminaires.

216 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Controlmethods When the respondents were asked about the future of lighting control methods most often they mentionedwirelesscontrol.Wirelesscontrolwasalsoseenasawayforindividualdimmingand easyaccess.Ontheotherhandonerespondentsaid“Peoplegoinandoutoftheirroomsintheir routineworkanddon’tthinkaboutthelight.Atthebeginningitisfun,butthenthelightingisleft thewayitis”. Itwasseenthatthecontrolsystemsenableenergysavingsandtheuseofdaylight. Futurepossibilitiesoflightingcontrolwereseenasdynamiclighting(variablecolortemperature), intelligentcontrolandadaptive,learningsystems. Table8-4. Futurelightingcontrolmethods. Lightingcontrolmethods No. of responses Wirelesscontrol 7 Daylightuse,energysavings 6 Integrationtootherbuildingsystems 4 Individual,personaliseddimming 3 Easyaccess,userfriendly 3 Dynamiclighting(variableCCT) 2 Intelligentcontrol 1 Selflearningsystems 1

Vision of the exploitation potential of daylight and the needs for development to achieve the exploitationpotential,thebiggestbarriersonthepointofviewofone’sowncountry Inprinciplealltherespondentsthatansweredthisquestionconsideredtheuseofdaylightasuseful for energy savings, visual comfort, health and well-being. Artificial lighting was also seen as a supplementarylightsourcesupplementingandassistingdaylightduringthedaytime. However,therespondentsalsofoundbarriersfortheuseofdaylight: ― Lackofgeneralawarenessandknowledgeofenergysavingpotential:in manycasestheenergyefficiencyhastocompetewithlow-costsolutions inordertomeetbudgetrestrains ― Unevenluminousdistributionintheroomindaylightconditions ― Lightingdesignisveryimportantinordertocreateproperenvironment forvisualtasks ― Architecturaldesignsaremadebyaestheticandlocalconcernsnottaking sunlightintoconsiderations. ― Controlofartificiallightinghastobedoneautomatically ― Investmentcosts,difficulties toestimateenergysavings ― Thermalproblemsinsummer Thesolutionswereseenas: ― More education and know-how workshops for architects and electrical/lightingconsultants ― Financialanddesignincentives ― Moreattentionbybotharchitectsandlightingdesigners

Lightingdesign Therespondentsviewwasthatinmanycaseslightingdesigniscarriedoutasasidetaskbypeople (electricaldesigners)withlowlevelofexpertiseinlightingfield.

217 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Itwasexpressedthatthecustomersmightnotbereadytohirelightingdesignersastheymaybe unawareoftheimpactoflightingontheoperationalcosts.Itwasseenthatpoordesignsareunable tomakeuseoftheenergysavingpotentialofabuilding.Theviewwasthatthereisalargepotential forlightingdesigntoaffecttheenergyefficiencyandthatgoodlightingdesignwillhavebenefits bothinenergysavingandgoodperformance.Itwasseenthatlightingdesignersarenecessaryand oughttobepaidfortheirjob;lightingisthelast phase during the design and construction, the momentwhenmoneyrunsout. Thesolutionswereseenas: ― Raisingpublicawarenessaboutlightingdesign ― Integratethelightingdesigninthestartofthebuildingdesign ― Theelectricalconsultantandthelightingindustryhaveastrongimpactto makethedecisionmakersunderstand.Within3-5yearsthemarketwill bereadytopayforenergysavinglightingdesigns.

Energyefficiency,environment The experts were asked what actions are the most important in order to improve the energy economics of lighting. They were given three alternativesandthepossibilitytofreely formulate their answer. They were allowed to give more than one answer and therefore all the specified answers were frequently mentioned: “More energy efficient lamps/luminaries” (24 answers), “automation”(22answers)and“lifecycleanalysis”(14answers).Bettermaintenance,intelligent lighting concepts, including daylight utilization, and quantitative explanations for quality improvements were also mentioned. In the question “what things have to be considered on the environmental issues of lighting” there were also three alternatives and a free formulation possibility.Again,thespecifiedanswerswereoftenmentioned:“Thelonglifeoflamps/luminaries” (19answers),“theenergyefficiencyoflamps/luminaries”(24answers),“thesmallenvironmental burdenoflamps/luminaires(intheproduction,useanddisposal/recycling)”(16answers).

Paybacktimeofadditionalcosts

14 12 10 8 6 4 2 0 <3years 3to5years 5to10years >10years

Energyefficient Environmental Figure8-12.Paybacktimeofadditionalcostsofenergyefficientlightingandenvironmentalfriendlytechnology. Thirteen answers saw that the payback time of the additional costs of energy efficient lighting shouldbelessthan3years,whiletenanswerssawthatthepaybacktimeshouldbe3to5years.One respondentexpressedthatthepaybacktimeshouldbelessthan3yearsindomesticlightingand from3to5yearsinindustriallighting.

218 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Theviewwasthatthepaybacktimesofadditionalcostsofenvironment-friendlytechnologycanbe slightlyhigher:therewere10answersforpaybacktimeoflessthan3years,nineanswersfor3to5 years,fiveanswersfor5to10yearsandoneanswerformorethan10years.

Visionoftheenergyefficiencyoflightingina5to10yearperiod ― LEDswillprobablybesignificantforgenerallightingin10years ― Efficacy of lamps will increase, integrated lighting concepts and technologieswillallowrealizingenergysavinglightingconcepts ― Technologyimprovements,directivesandrequirementswillbemade ― Customerswillbeinterestedinenergysavingsbecauseoftheelectricbill ― The lighting design might focus more on additional benefits such as health-relatedaspectsorproductivity.Iftheseeffectscanbeincludedin an overall cost/benefit calculation, it could make way for many innovativetechnologies. ― Thereislimitedpossibilitiesforlightsourcestoimprovebyraisingthe luminousefficacy,butalotofthingscanbedonetoluminaries.Market penetrationdependsnotonlyontheeffectofsavingenergybutalsoon the cost to get this energy cut. This also implies the barriers for new technology,becausemoreoftennewtechnologymeansmorecosts. ― Withinstitutionalintervention,themarketisshiftingandwillshiftmore andmore ― Disappearance of old fluorescent lamps (T12) and electromagnetic ballasts,greatpenetrationofT5andCFLlamps ― Costs will probably decrease; that will improve the market. Better and morecontrolsystems(toolittlenowadays). ― W/m 2willdropdown ― Directiveswillimprovetheefficiency. ― Withthedevelopmentoflightingtechnology,theenergyefficiencywill behigherandhigher,thisisespeciallyforLEDs. ― New lighting products will improve energy efficiency, LEDs, low wattageHIDlamps,andfluorescentlampswithhighluminousefficacy. ― Energy is becoming very expensive and every sector has to give importancetoit. ― Incandescentlampswillbebanned. ― Tobeonthetopofthelistforenergysavingactivitiesinthebuilding process.Todayitisinsulation,changeofwindowsetc,whichtakethe moneyforthelightinginstallation. Barriers: ― Costs,stockingandunadjustedmarketingdirections ― Mainbarrierswillbeinthebudgetforabuilding. ― Oldinstallations:thereisnourgetochangethemandiftheyareworking theyarenotchanged ― WithLEDsthebarriersarethepackingtechnologyandthermalissues. ― LEDluminairesproduceelectronicwaste ― Materials(forinstance,fluorescencepowder)andpackingtechnology ― Newtechnologiesareunderthemonopolyofspecificfirmsandarebeing directedbythem.Thereforenewproductsareveryexpensivewhenthey

219 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

enterthemarket.

Visionoftheenvironmentalissuesina5to10yearperiod ― Mercurycontentreduction ― Government regulations could be the only major factor to improve environmentalaspectsoflighting ― Reductionoftoxicmaterialsinproducts(lamps,luminaires,etc.)andin theproductionprocess. ― Environmentalissuesareusedformarketing. ― Legislation,image,environmentally-friendlysolutions,althoughusageis moreimportantthantechnicalsolutions. ― The application of environmental friendly technology should be promotedbythegovernment. ― Alsonewtechnologycanbeharmfultotheenvironment(e.g.contentof mercury). The light sources are beneficial to the environment in two ways,oneisthebenefitcomingfromthemspendinglessenergy,andthe second is the efficiency of the new technologies, and the increased productlife. ― Materialsrecycling. ― Ecologybecomesabusiness.

Flexibility,changeabilityanddynamics,isitimportantandinwhatapplications?

Automation

Isthechangeabilityofthelightingimportant?

Inwhatkindofpropertythephysicalchangeabilityofthelightingisespeciallyimportant? Thephysicalchangeabilityofthelightingwasfoundespeciallyimportantinofficebuildings(23 answers), clinical health care (19 answers) and educational buildings (19 answers). All the beforehanddefinedbuildingtypeswerementionedbyonlyafewrespondents.Table8-5showsthe survey results on the importance of dynamics of lighting (amount of light, color) in different building types. Dynamics was also found to be important in offices and clinical health care buildings. In residential buildings and shops dynamics was mentioned more than the physical changeabilityoflighting. Table8-5. Inwhatkindofpropertythephysicalchangeabilityanddynamicsofthelightingareespeciallyimportant. Buildingtype Physical Dynamics Changeability Officebuilding 23 22 Healthcare,clinical 19 20 Educationalbuilding 19 16 Healthcare,notclinical 14 14 Residentialbuilding 13 16 Shopbuilding 13 15 Sportsbuilding 12 13 Assemblybuilding 12 12 Accommodationbuilding 12 11 Cateringbuilding 8 9 Penitentiarybuilding 8 8

220 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Whatisyouropinionaboutthefutureofthelightingautomation? Nine answers mentioned that the lighting automation is good and economical investment, ten mentionedthatitisgoodbuttherearebarriersanditisuneconomical,oneconsideredittobegood butuncertainfunctioningisaproblemandtwomadeotherpoints.Onerespondentsawthatbefore automationthereisthe intelligence ofusageandotherssawthatautomationisgoodmostlyfor visualcomfort.

Whatbenefitsdoyouexcepttogainfromtheautomationoflighting Energy savings was clearly the most important factor that respondents expected to gain from automation,Figure8-13.

Energysavings 4% 4% 0% 4% Thequalityandefficiencyof 4% maintenanceisimproving 4% Certaintyofoperationisimproving

Roomsbecomemoretempting

Thequalityoflightingisimproving

Theproductivityisimproving 80% Imageisimproving

Figure8-13.Whatbenefitsdoyouexcepttogainfromtheautomationoflighting?

Lightemittingdiodes(LED)

Newtechnologyanditsintegrationforbuildingservices ― Stillatsmallscaleuseinlightingapplications,butalreadyveryefficient for colored lighting, EXIT signs with LEDs are common, small accent andstep/nightlightingwithLEDsismoreusualtobuildings ― LEDs offer a new trend in lighting as they allow completely different luminaire design. There are still some problems in operating them and theseproblemshavetobesolved(thermalissues,coloretc.) ― Higherandhigherlumensoutputinonepackage.Morestableoperation

WheredoyouseeapplicationsforLEDs? ― LEDscanbeusefulinaccentlightingorinenvironmentsthatrequirelow lightinglevels(e.g.,patientroomsatnighttime), retail (dynamic-color lighting, floodlighting of vertical surfaces, delineation (replacing neon) andseasonallighting ― Indoorlighting,specializedarealighting(smallsizeallowstobeoperated in hard-to-reach areas). They can be dimmed easily and have a long lifetime so that they offer quite a few chances in the overall dynamic lightingfield. ― LEDs are already being used in traffic lighting, architectural lighting, safetylighting ― Atthemomentthereisonlyanichemarketforspecialapplications,but this will change rapidly in the next 5-10 years. LEDs outperform traditionallampswiththeirsuperiorlifetime,theyofferthepossibilityof

221 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

spectral mixing, are free of IR/UV and very robust. Ongoing improvementsinLEDtechnologyindicate,thatinthe near future LED prices are decreasing rapidly, the efficiency is further increasing which opensthewayforLED‘stobethelightsourceofthefuturewithabroad fieldofapplications. ― Outer wall of sky-scrapers, screen of large scale, automotive lighting, flashlights,indicators ― Buildingsurface,backgroundlighting ― Mainlyfordecorativelighting ― General lighting, traffic lighting, vehicles lighting, every lighting application

Waysofillumination? ― Rather than conventional, better and more innovative, as part of decorative elements, wall/ ceiling grid, etc. Cost and innovative technologiesarethebarriers ― Backlighting of monitors, task lighting, ambient lighting, etc., many setupspossible ― Opticalefficiency,directedlighting ― Easytofocusonwhatneedstobeilluminated ― Forsmallsurfaceorarea

Structureofluminaires ― Standalone(moreclassic)orintegratedintotheconstructionelements ― LuminairesholdingLEDscanshrinkinsizeallowinga“lighter”design oftheinterior. ― Smallerluminaires,integratedinfurniture ― Temperatureandglarehastobetakenintoaccount ― The conventional luminaire industry is not well suited for these new techniques, instead of mechanical (spinning, hydroforming etc. of reflectors, mounting, casing) and electrical construction electronic and smallopticalconstructionandmanufacturingisnecessary ― Panel-likeluminaires,linearluminaires ― Thesmallerthebetter ― Shouldreleaseheateasily ― Greatflexibilityindesign,smallerorbiggerluminaires. ― LEDsevolvequickly,thatisadifficultyfortheluminairemanufactures

Lowvoltage ― Quitesuitedforthisapplication ― Iflowvoltagecanbesuppliedeasilythisallowsspecializedsolutionsin fieldswhereelectricalsafetyisextremelyimportant. ― Makeseasiertohidewires,noelectricityhazards,noproblemswiththe temperaturelikewithhalogenlamps ― Lowvoltageismoresafeandconvenient ― Advantage for some applications: Wall, floor, under the hand, under table, in the seat; the very easy utilization with batteries will create a specificsectorforitself.

222 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Newinstallationpractices? ― Correct installation of LEDs will require specialized contracting teams thathavetheirowndesignersandcancontrolthepurchase, installation andcommissioningoftheLEDdesign ― Thiswillbeansweredinthefuturebyapplyingitintherealworld. ― LED-luminaires may produce electronic waste (trend to throw away elementsandluminaires,noreplacementsduetolonglifetime).Wehave to establish industrial standards for LEDs itself, holders, controls etc. (comparable to the ones for common light sources) to encourage sustainableLEDluminairedesign. ― Onlyindetail,doesnothavemanyeffectsonmacroplatform ― Yes,duetothelonglifetime

Integrationinbuildingstructuresandtootherenergysystems ― Requiresalotofcarefulplanningandmayneedspecializedsubtrades ― I do not see any difficulty in integrating LED luminaires in buildings. Ballasts can be designed such that they can be controlled by building managementsystems. ― Integrationtofurniture,OLEDscanbeused,forinstance,aswallpapers ― Lumenmaintenance,costs

Whataretheworstbarriers? ― Costandknowledgeofprocuringtherightequipmentfortheapplication ― Thermalmanagementissues,luminousefficacy,colorrendering ― Usersareslowtoaccommodate,buildinglifecycleislong ― Reliability,lamplife,price ― Glare,price,energyefficiency(atthemoment) ― Industrial standards are not available (holders, control and ballast, platines, etc.). High prices, high risk (not fully developed state at the moment, LEDsinpracticedonotfulfillthepromises), fast developing LEDs. ― Lumensefficiency,packingtechnology,secondopticaldesign ― Heat,thelackofstandardandthefactthattheopticsarenotspecifiedyet. Theconceptshaven’tfoundtheirplaceyet. ― Let’s not say barriers, but disadvantages; it hasn’t reached high power valuesyet,highlyefficientlighthasnotbeenobtainedyet,secondlywe can’tuseitaseasilyasitwouldhavebeeninnormalnetworkvoltage,in additiontothatthere’stheheatprobleminhighpowerLEDs.TheLEDis smallbutforcoolingit,50gramsofaluminumcoolerisusedper1gram ofLED. ― Reliability ― Not possible for the owner to know about the durability of the installation.

Informationandstandardization

What is your level of knowledge on standards, directives, recommendations, energy efficient techniquesanddesign? Fifteenrespondentsansweredthattheirknowledgeishighorgood.Threeanswersmentionedthat

223 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE theirknowledgeiscommonoradequate.

Iseducationneededonenergyefficientlighting/technologies? Sixteenrespondentsansweredyes.

Ispublicactionsneededtopromotenewtechnologies? Sixteenrespondentsansweredyes.Threerespondentssaidthattherealreadyexiststandards;twoof themconsideredthatthestandardsarenotusedenough.

Whoshouldactassourcesforneutralinformationconcerningnewtechnologies? Few respondents said that information is needed from all sources. It was also pointed out that researchinstitutesdonotnecessarilyhavethefundingfortheinformationdelivery. Table8-6. Whoshouldactassourcesforneutralinformationconcerningnewtechnologies? Whoshouldactasinformationsources No.of responses Researchinstitutes 25 AssociationslikeIlluminatingEngineeringSocieties 18 Manufacturersorganizations 10 Privateinfoservices 9 Others:utilities,governments,press,governmental 4 organizationsetc.

Areyoureadytopickupinformation?Fromwhatareasoflightingmoreinformationisneeded? Informationisneededaboutthetotalcostsofthelighting(17answersoutof25).Informationis alsoneededaboutthesystemsandthechoiceoflamptype andluminaires(16 answers).Energy efficiency (15 answers) and choice and use of control equipment in different installations (13 answers)werealsooftenmentioned.Itwasseenthatmoreinformationisneededabouttechniques, environmental issues, lamp lives and illumination design. Information should be provided by differentmeans,themostpopularwasinternet(21answers),seminars(19answers),brochures(18 answers)andCDs(10answers).

18 16 14 12 10 8 6 4 2 0 Design Energy types Systems tothe efficiency Control andlamp oflighting Lamplives Luminaires Totalcosts Techniques equipments Friendliness environment Figure8-14.Fromwhatareasoflightingmoreinformationisneeded.

224 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

8.6.3 Summaryanddiscussion Inthesummarytherespondentsweregivenalistofissuesoflightingandaskedhowimportantthey considered them. They could rate each issue from 1 to 6 (1 being not important and 6 very important).Theywereaskedboththeirownprioritiesandalsowhattheythinkthattheend-user wouldappreciate.Thesamenumbercouldbegivenmorethanoncefordifferentissues.Theresults areshowninFigure8-15. Most of the issues were considered important, energy efficiency being the most important. The averagevaluegiventoenergyefficiencywas5.5.However,therespondentsdidnotthinkthatthe end-uservaluesitasmuch.Theaveragevalueforend-userwas4.3.Quitelargedifferencesbetween the opinions of respondents and what they think the end-user appreciates were also found in positive impact to health (respondent 5.4 versus end-user 4.6), longevity (5.2 vs. 4.1), increase productivity(5.0vs.3.9),environmentallyfriendly(4.7vs.3.3)andtechnicalprogressiveness(3.9 vs.2.8).Therespondentsviewwasthattheend-userappreciatesappearance(5.1),amountoflight isenough(4.8),price(4.8),qualityoflighting(4.7)andenergysavings(4.7).Theissuetrendywas valuedfor3.9byrespondentsand4.0bywhatrespondentsthoughtend-usersappreciate.

respondent end-user

6,0 5,5 5,4 5,2 5,2 5,2 5,0 4,9 4,8 4,7 4,6 4,6 4,3 5,0 4,3 4,3 4,2 4,0 3,9 3,9 3,8 3,5 4,0

3,0

2,0

1,0 4,3 4,6 4,7 4,1 4,7 3,9 4,8 4,1 3,3 4,8 3,9 5,1 4,3 4,3 3,9 4,1 2,8 4,0 3,9 3,8 0,0 al cy alth ity se tivity nality ance riendly Price aintain ability avings uc periods ar tomatic Trendy Manu ficien siveness Longev oughlight nctio Au acttohe En ontrollabilityes Fu Appe sytomsinessofu C Change Energys tenance Ea Ea Energyef sitiveimp Increaseprod Po Environmentallyf Generalqualityoflighting Longmain Technicalprogr Figure8-15.Importanceofdifferentissuesoflighting. Therespondentswerealsoaskediftheythinkthat lightinghas aneffectondifferentaspectsof property.Theycouldvaluethemfrom1(notimportant)to6(veryimportant).Theaveragevalues areshowninTable8-7. Table8-7. Evaluationoflightingeffectondifferentaspectsofproperty. Evaluationfeature Average given Satisfactionoftheusers 5.3 Quality 4.7 Desirabilityasaworkingplace 4.7 Imageofthecompany 4.5 Easinessofrenting/sellingofproperty 3.8

225 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Thesurveyindicatedthatenergyefficiencyoflightinghasbeenincreasingduringthelast5to10 years.Thishashappenedthroughmoreefficientlightsourceslikecompactfluorescentlampsand T5-lampsandalsothroughtheincreaseofelectronics(electronicballasts)andcontrol.Problemsof thecurrenttechnologywereseentobehighpriceandreliability.Ontheotherhand,itwasseenthat themarketisslowandittakestimebeforethenewtechnologycanbeestablishedonthemarket. Furtherimprovementsonenergyefficiencyarestillneeded.Whenaskedhowmanufacturersshould improve their products 14 respondents out of 25 said that they should improve the energy efficiency. Human factors (well-being, health, productivity, visual environment) were considered very important. But the general opinion was that there is not enough knowledge on these and more researchworkisneededtounderstandtheimpactoflightingonhumanfactors. Thesurveyindicatedthatinthefuturenewlightsourcesonthemarket are LEDsanddimmable and/orsmallwattagehighpressuredischargelamps withlongerlifetimes.Itwasalsoseenthat electronics, intelligence, (wireless) dimming, sensors and communication are becoming more commonly used. The view was that the luminaire efficiency (light output ratio) is increasing. Barriers for new products were seen to be the price (long payback time and also the lack of information of the total costs), reliability and the conservativeness of the market. It takes time beforenewproductsareapprovedandontheotherhandsincevolumesarebigittakesalsotimefor themanufacturerstochangevolumes.Themajorityoftherespondentsansweredthatthepayback timefortheadditionalcostsofenergyefficiencyshouldbelessthan5years(85%ofanswers)and moreover37%answeredthatitshouldbelessthan3years.Theattitudefortheadditionalcostsof environmentallyfriendlytechnologywasparallel,76%sayingthatthepaybacktimeshouldbeless than5yearsand36%saidthatitshouldbelessthan3years. The respondents saw that in the future, the energy efficiency will increase through technology (LEDs, CFLs, T5s, luminaires) and also because of the increase of the electricity price. Further causes for improve in energy efficiency were seen the new directives and requirements (for instance,thebanofincandescentlamps).Energysavingswasfoundtobethemostimportantfactor tobegainedfromautomation. TherespondentsexpressedthatLEDsarecomingonthemarket,butatthemomentLEDsareon special applications like traffic lighting, architectural lighting and safety lighting. Thanks to loweringpricesandincreasingefficacyandlonglifetimeLEDswillbethelightsourceofthefuture with a broad field of applications. It was seen that LED luminaires will be smaller, perhaps integratedinthefurnitureorconstructionelements.BarriersforLEDswereseentomainlybehigh price,thermalmanagementissues(needforheatsink)andluminousefficacy.Asbarriers,thelack ofstandardsandglareandthedurabilityoftheinstallationwerealsomentioned.Therespondents viewwasthateducationandalsosociety’sactionsareneededtopromoteenergyefficientlighting; researchinstituteswereseenasthebestsourceofneutralinformation. Accordingtothesurveythereisdemandofenergyefficientproductsinthemarket. Inthenear futurethisdemandwillbeincreasingthroughtheincreaseinpricesofelectricity,theincreasing awarenessofenvironment,anddirectivesandrequirements.However,itwasseenthattheenergy efficiencyoflightingproductshasbeenincreasingforlast5to10yearswithnewlightsources, electronicsandcontrolsystems.Theviewwasthatfulladvantagehasnotbeentakenofthenew productswhicharealreadyinthemarket,aslightingmarketisconservativeandtherenovationrate isslow.

226 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

Thesurveyindicatedthatinformationofthenewtechnologiesshouldbeprovidedtotheendusers, andalsopublicactionsandawarenessareneededtopromoteenergyefficientlightingtechnologies.

References Bartenbach2009.BartenbachLichtlabor,Austria

227 8LIGHTINGDESIGNANDSURVEYONLIGHTINGTODAYANDINTHEFUTURE

228 9COMMISSIONINGOFLIGHTINGSYSTEMS

Chapter9:Commissioningoflightingsystems Topicscovered 9 Commissioningoflightingsystems...... 231 9.1 DefinitionofCommissioning...... 231 9.2 DefinitionoftheCommissioningProcess...... 232 9.3 Thecommissioningplan:Atooltostructurethecommissioningprocess...... 235 9.3.1 Standardmodelofcommissioningplans...... 236 9.3.2 Checklist ...... 236 9.3.3 Matrixforqualitycontrol...... 237 9.4 Howtoexecutethecommissioningplan ...... 237 9.4.1 Functionalperformancetesting(FTP)...... 237 9.4.2 Usingthebuildingcontrolsystemforcommissioning ...... 238 9.4.3 Usingmodelsatthecomponentlevel...... 239 9.5 Applyingcommissioningprocesstothelightingcontrolsystem ...... 240 9.5.1 Objectivesoflightingsystems...... 240 9.5.2 Criteriaforlightingsystemsquality ...... 240 9.5.3 Indicatorstoevaluatetheperformanceoflightingsystem ...... 240 Luminancedistribution ...... 240 Illuminance ...... 241 Glare...... 241 Directionalityoflight...... 241 Coloraspects...... 241 Flicker ...... 241 Maintenancefactor...... 241 Energyconsiderations...... 242 Daylight...... 242 9.6 ExampleofaCommissioningPlanappliedtothelightingsystem...... 242 References...... 244

229 9COMMISSIONINGOFLIGHTINGSYSTEMS

230 9COMMISSIONINGOFLIGHTINGSYSTEMS

9 Commissioningoflightingsystems

9.1 DefinitionofCommissioning The demands of building users regarding the built environment are growing. We all want a comfortableandhealthyindoorenvironmentbutexcessiveuseofnaturalresourcesandpollutionof outdoorenvironmentwedonotacceptanymore.The energy consumptionandtheenergy costs should indeed be kept on a low level. The heating, ventilation and air conditioning (HVAC) industryseekssolutionstofulfilthesehigherrequirements.Manynewproductsandsystemsare developedsuchashighefficiencygenerationsystemsusingrenewableenergysources,lowenergy coolingsystems,naturalventilationsystemsandintegratedcontrolsystems.Weareclearlyleaving thetimeoflowefficiencystandaloneproductsandenteringtheperiodofhighefficiencyintegrated systems. Movingfromsimpleproductstolargesystemsenablesustodevelopmoreefficientandflexible solutions,butleadstoahigherlevelofcomplexity.Complexityincreasesforthebuildingowner, whohastodefinetheOwner'sProjectRequirements(OPR)ingreaterdetail.Italsoincreasesforthe designerwhohastodesignanddefineafullsystemonthebasisofagrowingnumberofattractive components.Complexityincreasesfortheinstallerwhohastoinstalllargesystemswhichareall different, often innovative and have complex control and complex interactions. Complexity increasesfortheuserswhohaveaccesstomoreandmorechoicesfortheoperationofthebuilding. Themanagementofthiscomplexityrequiresnewapproaches,newskillsandnewtools.Mostof thesewerenotavailable20yearsagoandarenotyettaughtatschool.Commissioningisoneofthe newapproachestomanagethecomplexityoftoday'sbuildingandHVACsystems. Commissioning

Commissioning is done for the number of reasons: clarifying building system performance requirements set by the owner, auditing different judgments and actions by the commissioning relatedpartiesinordertorealizetheperformance,writingnecessaryandsufficientdocumentation, and verifying that the system enables proper operation and maintenance through functional performancetesting.Commissioningshouldbeappliedthroughthewholelifecycleofthebuilding. Inthecomingyears,commissioningwillprobablydevelopforthreemainreasons: ― Energyandenvironmentrelatedreasons:Globalwarminghasincreased thepressuretoreduceenergyuseinbuildings. ― Businessrelatedreasons:Manycompaniesaredevelopingnewservices todiversifytheiractivitiesinthebuildingandenergyindustries.Theysee thecommissioningasawaytodevelopnewbusinessforthebenefitof theircustomers. ― Technologicalreasons:Buildingautomationsystemsarenowstandardin newbuildingsandarebeinginstalledinmanyolderones.Thesesystems automatically collect building and plant operating data and offer possibilitiesforinnovativecommissioningservices. The primary obstacles that impede the adoption of commissioning as a routine process for all buildings are clearly lack of awareness, lack of time, and too high costs. Hence, efforts for improvement should consider how new tools, methods and organizations can increase the awareness of commissioning, decrease the cost and demonstrate the benefits obtained by performingcommissioning.

231 9COMMISSIONINGOFLIGHTINGSYSTEMS

9.2 DefinitionoftheCommissioningProcess Commissioningisaquality-orientedprocessforachieving,verifying,anddocumentingwhetherthe performanceofabuilding’ssystemsandassembliesmeetdefinedobjectivesandcriteria. Commissioningistoooftenviewedasataskperformedtocheckoperationalperformanceaftera buildingisconstructedandbeforeitishandedovertothebuildingowner.Abroaderviewwas clearly favoured, which starts at the predesign phase,goesthroughtheconstructionprocess,and continues during operation. This broader view aims at bridging the gaps among four different visions:theexpectationsofthebuildingowner,theprojectofthedesigner,theassembledsystemof thecontractor,andtherunningsystemoftheoperator.Bridgingthesegapswillconsistin: ― clarifying the expectation of the building owner to obtain the owner’s project requirements so that the owner and designer understand each otherandareinagreement ― translating the project of the designer to specifications which can be understoodandrealizedandverifiedbythecontractor ― applyingfunctionalperformancetestingprocedureswhichwillenablethe contractorthebuildingownerandthedesignertoverifythatthesystemis clearlyoperatingasexpected ― producingsystemmanualswhichwillenabletheoperatortotakethebest profit of the ideas of the designers and of the system realized by the contractortofulfillownerrequirements ― producingreportsatregularintervalwhichwillenabletheoperatorand thebuildingownertocheckthattheoperationcontinuestofulfillthese requirements Inthisbroaderview,theCommissioningprocessbeginsatprojectinceptionduringthepredesign phaseandcontinuesforthelifeofthefacilitythroughtheoccupancy andoperationphase.This global view aims at providing a uniform, integrated, and consistent approach for delivering and operatingfacilitiesthatmeettheon-goingrequirementsoftheowner.Thisbroadviewcouldappear tomanyusersasadreamwhichcouldberealizedinafewprojectsbutwhichistoofarfromtheir daytodaypracticetobeapplicabletotheirprojects.Inpractice,onecandifferentiatefourtypesof commissioningwhicharerepresentedinFigure9-1: ― Initial Commissioning (I-Cx) is a systematic process applied to productionofanewbuildingand/oraninstallationofnewsystems. ― Retro-Commissioning(Retro-Cx)isthefirsttimecommissioningwhich is implemented in an existing building in which a documented commissioningprocesswasnotpreviouslyimplemented. ― Re-Commissioning (Re-Cx) is a commissioning process implemented after I-Cx or Retro-Cx when the owner hopes to verify, improve and documenttheperformanceofbuildingsystems. ― On-Going Commissioning (On-Going Cx) is a commissioning process conducted continually for the purposes of maintaining, improving and optimizingtheperformanceofbuildingsystemsafterI-CxorRetro-Cx.

232 9COMMISSIONINGOFLIGHTINGSYSTEMS

InitialCommissioning On-GoingCommissioning

InitialCommissioning Re-Commissioning

MissingInitialCommissioning (ormissingdocumentationonInitialCommissioning ) Retro-Commissioning

Production Operation&Maintenance

Pre-Design Design Elaboration Construction Occupancy&Operation

Preliminary Working Post- Program Planning Elaboration Construction Acceptance OrdinaryOperation design design Acceptance Figure9-1. The4differenttypesofcommissioning. ThebuildingprocessfromdesigntooperationisdescribedinrelationtotheHVACcommissioning activities.

Figure9-2. Differentbuildingprocesses. Pre-DesignPhase Pre-DesignPhaseisthefirstphaseoftheI-Cxprocess,dividedintotwosteps,namely: ― ProgramStep ― PlanningStep ProgramStep TheOwner’sProgram(OP)isestablishedandtheownergeneratesrequestforproposalandsolicits aCx-Authority(CA).Atthisstage,theownercanaskforinsideand/oroutsideprofessionalsfor adviceontechnology,finance,businessandconstruction.

233 9COMMISSIONINGOFLIGHTINGSYSTEMS

PlanningStep TheappointmentoftheCAtypicallydefinesthebeginningoftheplanningstep.TheCAconsults the construction manager, facility manager, financial advisor, operation and maintenance staff, occupant,etc.,toidentifythesystemstargetedforCommissioninganddocuments.Inaddition,the CA will assist the owner and consultants in estimating costs for design, construction, Testing Adjusting & Balancing (TAB) and investigate the necessary regulations related to the Commissioning.Thescopeoftheworkvarieswidely dependingontheprojectsizeandowner's requirementsforCommissioning.Butingeneral,forasuccessfulCxProcess,theCAdevelopsa commissioning plan and with the owner formulates the design requirements. The design requirementinconjunctionwiththeowner’srequirementisusedtogeneratetheOwner’sProject Requirement(OPR).TheOPRallowsadesignprofessionaltoproposeafirmdesign.Consequently, anrequestforproposalisgeneratedandusedtoselectadesignprofessionalfortheproject. DesignPhase Design phase begins with drafting schematic planning documents and ends with completion of designdocumentsandtheirhandovertotheownerandisdividedintotwosteps,namely: ― PreliminaryDesignStep ― WorkingDesignStep PreliminaryDesignStep The preliminary design step begins with schematic planning documents and ends with the submission of the preliminary design documents. The CA verifies that these documents are appropriateandclarifiestheprocedureandscheduleofCommissioning.TheCAcoordinatesthe commissioning plan with the design intent so that the design professional can state the commissioningspecificationinthedesigndocuments. WorkingDesignStep Thefinaldesigndocumentsaredeveloped.Thedesignprofessionalupdatesthedraftdesignintent documentinthepreliminarydesigndocumentsandcompletesthefinaldesigndocuments.TheCA auditsthesedocumentsforcompleteness.Thedesignistheresponsibilityofthedesignprofessional. InconsistencieswiththeOPR,however,shouldbehighlightedtotheownerbytheCA. ElaborationPhase Theelaborationphaseisthetransitionalphasebetweencompletionofdesignandcommencementof construction. In this period, the completion of the construction documents, bid submission, bid assessment and selection of the contractor for the construction is carried out. The CA helps to coordinatethecommissioningrelatedparties. ConstructionPhase Includes construction, testing adjusting & balancing, Functional Performance Testing (FPT) and acceptance,undertheguidanceoftheCAandisdescribedintwosteps: ― ConstructionStep ― AcceptanceStep ConstructionStep Shopdrawingsarecreatedfromthedesigndocuments.Workisinstalledandtestingadjusting& balancingiscarriedout.TheCAconveyschangesofOPRtothecommissioningrelatedpartiesor proposes design changes to ensure performance is achieved. The CA audits performance of the

234 9COMMISSIONINGOFLIGHTINGSYSTEMS

constructionsupervisionandcontrol,andsupervisestheTABworkconfirmingthemaintainability ofbuildingsystemswiththeowner. AcceptanceStep TheCAverifiestheTABwork,thecorrectnessoftheas-builtrecordsanddeterminesfromFPT results whether the operations of the equipment and systems meet the OPR. Deficiencies are addressedbytheappropriateparty.TheCAplansandmanagesthetrainingprogram. Occupancy&OperationPhase The occupancy and operation phase takes place after handover when the building systems are operatingacceptably.SomeseasonalFPTwillstillberequiredwithcertainsystems.Therearetwo steps: ― Post-AcceptanceStep ― OrdinaryOperationStep Post-AcceptanceStep The post-acceptance step applies to building systems in which the performance is seasonally changed and the design requirement demands confirmation of the annual performance (HVAC systems).ThisisthefinalstepoftheI-Cxprocess.TheroleoftheCAinthisstepistoidentifythe seasonal system performance. This might include (for HVAC systems) determining the system performance for the peak-cooling season, the peak heating season, and the intermediate season whencoolingandheatingmodesarebothrequired.FPTisusedinconjunctionwiththeBEMSafter faultsidentifiedintheacceptancestephavebeen rectified. The term of the post-acceptance step mostlyoverlapswiththewarrantytermoftheconstructionandtheseasonalFPTmentionedabove isconsideredtoberequestedintherangeoftheconstruction. OrdinaryOperationStep Intheordinaryoperationstep,theevaluationworkfortheRe-Cxand/orOn-GoingCxtoidentify the unresolved issues, desired changes, weaknesses identified, desirable improvements identified duringCommissioning,warrantyactionitems,etc.,maybeaddressed.TherepeatedRe-Cxcould correctfaultsandtheevolutiontotheOn-GoingCxmaymaintainthebuildingsystemsinoptimal conditionthroughthelifeofthebuilding. 9.3 Thecommissioningplan:Atooltostructurethecommissioningprocess Whateverorganizationapproachischosen,thekeychallengetocommissionabuildingorsystemis tofollowawellmanagedprocess.AcentraldocumentforthatpurposeistheCommissioningPlan whichdefinestheactionstobeperformed. TheCommissioningPlanisthekeytoolthatgivesthedifferentplayersanunderstandingofwhatis meantbycommissioningonaspecificproject,whatamountofeffortandmoneywillberequired andhowitwillbemanaged.TheglobalcontentofthisCommissioningPlanwillbedefinedatthe beginningoftheprojectandwillberefinedallalongtheproject. ThreetypesoftoolswereusedwithintheAnnextosupportthedefinitionandapplicationofthe CommissioningPlan.Thefollowingtablegivesanoverviewofthesethreetypesoftools:

235 9COMMISSIONINGOFLIGHTINGSYSTEMS

Table9-1. Toolsusedincommissioningplans. Tool Description Levelofdetail

StandardModelsof A typical description of commissioning actions during a Medium Commissioningplans project. (SMCxP) To be used as a guideline to define commissioning plan foragivenproject. Checklists Medium level of definition of a commissioning plan is low specifictoagiventypeofHVACsystem. MatrixforQuality Anextensivetoolforthemanagementofthequalityofthe high Control(QMC) wholeconstructionproject. Includescommissioningplanaswellasotherelementsin averystructuredway. 9.3.1 Standardmodelofcommissioningplans Thesestandardmodelsincludetypicallistsoftaskswithadescriptionofthecontentofeachtask. TheycanbeusedasabasistodefinecustomizedCommissioningPlansadaptedtoagivenproject. FivestandardsmodelsofCommissioningPlansaredefined.Theappropriatemodelcanbeselected by a risk evaluation which takes into account building size, HVAC system complexity and the acceptedrisklevel. Buildingsize The risk of malfunctions increases when one moves from small heated buildings to large air conditionedbuildings. HVACsystemcomplexity HVACpackagedunitsdesignedtoperformmultiplefunctionstomeetspecificationswhichhave been selected for a given building. Distributed systems, such has hydronic heating system or centralized air conditioning systems, are connected through air or water networks to constitute uniquesystems.Theriskofpoordesignandinstallationisclearlyhigherwithdistributedsystems. Therefore,theyrequiremoreintensivecommissioning. Theacceptedrisklevel Theacceptedriskleveldependson: ― Thebuildingownerandoperatorstrategy:Whenthe future user of the building is involved in the project from the beginning, the approach chosen to look at future operation of the building is often much more detailed.So,theeffortputincommissioningcanbemuchmoreintensive. ― Criticality of building operation: Laboratories, computer centers, industrial and headquarter buildings are examples of buildings where malfunctionmayhavehigheconomicorimageimpacts.Insuchbuildings the commissioning effort can also be more intensive than in other buildings. 9.3.2 Checklist The minimum version of a Commissioning Plan is a checklist defining the verifications to be performedastheprojectprogressestoensurethatcriticalactionswereeffectivelyperformed.The keyadvantageofthechecklistisitssimplicity.Therewouldbenoneedtouseaspecialsoftwareor forin-depthtrainingoftheusers.Themaindisadvantageisthatitdefineswhattodobutnothowto doitanddoesnotincludeadocumentationoftheresultsobtained.

236 9COMMISSIONINGOFLIGHTINGSYSTEMS

Insimpleprojects,whereanindependentcommissioningauthoritygenerallywillnotbeinvolved, thechecklistenablestheprojectmanagertoapplyaminimumofqualitycontrol.Checkpointsare especiallyimportantwhenproceedingfromoneprojectphasetothenext.Thesechecklistswillbe usedbyeachpartyinvolvedintheproject. 9.3.3 Matrixforqualitycontrol Matrix for Quality Control (MQC) was initially developed in the Netherlands as a tool for the overall quality control of climate control Climate Installations. In the Netherlands, the MQC structurehasbeenelaboratedforheatingsystemsanddomesticventilationsystems.Itsintentionis tocontrolthetotalproductionprocessincludingspecifications,design,construction,hand-overand operation.Itfocusesonavoidingfailuresonallstrategicaspectsandphasesinthisprocess. ThemostimportantcharacteristicofMQCforHVACsystemsisastructurethatfollowsthroughall theprocessphases.Thisenablesplannerstobuildinanumberofstrategicdecisionpointsinthe buildingandsystemprocessandtoassessifasystemmeetsthetargetsandrequirements,asdefined intheprogramphase.Thetotalqualityrequiredisdeterminedbyseveralaspects(notonlytechnical butalsofinancial,organisationalandcommunications). Thisleadstoaso-calledqualitycontrolmatrix.Onthehorizontalaxisofthematrix,thephasesof theprocessarepresented.Ontheverticalaxisofthematrix,qualitycontrolelementsarelisted. 9.4 Howtoexecutethecommissioningplan Thecommissioningplandefinesalistoftaskstoachieve,verifyanddocumenttheperformanceof thebuilding.Usersneedsometoolstobeabletoperformtasksdefinedinthecommissioningplan. Annex40identifiedthreetypesoftoolstoperformthesekindsoftasks.Thesethreetasksarelisted below: ― Functionalperformancetesting(FTP) ― Usingthebuildingcontrolsystemforcommissioning ― Usingmodelsatthecomponentlevel 9.4.1 Functionalperformancetesting(FTP) Many actors around the world have already developed some performance procedures. The main challengestodayconsistsinmakingthebestuseofexistingproceduresadaptedtonationalbuilding industryandcontractstandards,andonlydevelopnewoneswhenrequired. IEAAnnex40(IEA2001)strategyconsistedinspecifyingthecommissioningprocessandthetools actuallyrequiredfortheapplicationofeachcommissioningplan,inadditiontotransferringexisting proceduresfromonecountrytoanotheroneandindevelopingnewrequiredprocedures.Themain informationsourceswerelocalized,amongtheminUS,whereanimportantdatabaseisavailable. ThissourcewasverymuchusedintheframeofIEAAnnex40.Eachcomponenthasawelldefined functioninsidethewholeHVACsystem.Anymalfunctioncancompromisethecorrectbehaviour ofthewholesystem.Themalfunctionmayoccurdueto: ― Designfaults ― Selectionorsizingmistakes ― Manufacturingfaultorinitialdeterioration ― Installationfaults ― Wrongtuning ― Controlfailure

237 9COMMISSIONINGOFLIGHTINGSYSTEMS

― Abnormalconditionsofuse. TheFPTisdevotedtothedetectionofsuchpossiblemalfunctionandtoitsdiagnosis.Thetestcan be active or passive, according to the way of analyzing the component behaviour i.e. with or withoutartificialperturbation.Activetestsaremostlyappliedininitialcommissioning,i.e.atthe endofthebuildingconstructionphase.LaterintheBuildingLifeCycle(BLC),i.e.inre-,retro-and on-goingcommissioning,apassiveapproachisusuallypreferred,inordertopreservehealthand comfort conditions inside all the building occupancy zones. A generic description of a FPT includes: ― Adescriptionofthesystem,subsystemorcomponentconsidered ― Apresentationofthetestingprocedure ― Someadditionalpossibilities(modeluseandpossibilityofautomation FPTcanberealizedonthewholesystem,asubsystem(severalinterconnectedcomponents)oron specificcomponentsthatareconsideredascritical.Theselectionoftheappropriatelevelismadeon thebasisofriskinrelationwiththeacceptancecriteria. The search for malfunctions can either followatop-downorbottom-uproute: Top-down The whole system functional performances are first verified, moving on to subsystems and then ontospecificcomponentsasmalfunctionsarefoundandrequireinvestigation.Thegoalisnotto verifyifacomponentisgoodorbadinitself,buttocheckifit'scorrectlyintegratedinthesystem considered. One problem is the possibility that energy-wasting situations could be missed. For example, a poorly-tunedcontrolmaycauseanairhandlingunittocyclebetweenheatingandcooling.Ifthe zonetemperaturedoesn'tvarytoomuchandstaysveryneartoitssetpoint,theproblemmightnot beapparent.Suchfaultsmaybefoundatthesystemlevelonly,ifthelossesaregreatenoughtobe obviouswhencomparedwithexpectations. Bottom-up Startsbyconfirmingtheperformanceofanelementarycomponentandprogressivelyworkingupto thewholesystem.Thismaybemoreappropriateforinitialcommissioning,followingconstruction. Itallowsasaferidentificationoflocaldefaults,butitmayrequireexcessiveeffort. 9.4.2 Usingthebuildingcontrolsystemforcommissioning Today,microprocessor-basedcontrolsystemsareusedtoautomaticallyoperatemanyofthemajor energysystemsinbuildings.Astechnologycontinuestoevolve,thetrendisformoresystemsto come under the action of automatic control and for disparate systems to be integrated across communication networks. Automatic control systems eliminate the need for dedicated manual operatorsandcanreducecosts.Moderncontrolsystemsalsoallowtheoperationofmultipleenergy systems to be coordinated according to advanced building-level strategies. The proliferation of automation in buildings has led to a situation in which realizable building performance is fundamentally dependent on the control system. An important part of commissioning should thereforebetoensurethatthecontrolsystemisoperatingproperly. Itisusefulatthispointtodefinewhatcomponentsconstitutethebuildingcontrolsystem.First,itis assumedthatthecontrolsystemencompassesbothhardwareandsoftware.Onthehardwareside, thescopeofdefinitionislimitedtothecomponentssuchassensors,actuators,wiring,switches,and (microprocessor-based)controldevices.Theboundaryforthehardwaresideis,therefore,thepoint

238 9COMMISSIONINGOFLIGHTINGSYSTEMS

ofinterfacetotheenergysystemsandthecontrolledenvironment.Scopeonthesoftwaresideis limited to the control algorithms, user interface, and other miscellaneous functionality that is typicallypackagedinmodernsystems.Controlsystemsarebecomingmoremodularand,froma commissioningperspective,modularizationhelpstomovesomeoftheonusesoftestingontothe factoryandcomponentvendor.Avalidexpectationisthereforethatcomponents,whetherhardware or software, have been tested before arriving at a building for installation. The most important aspects then to verify and commission on-site will be those that have been affected by the installation process. For example, checking wiring andpanelconnectionsisveryimportantasis verifying that all on-site software downloads and/or configurations have been successful. Pre- calibrated sensors are reducing the need for wide-scale sensor validation but an important and relatedcommissioningtaskistocheckwhethersensorpointshavebeencorrectlymappedintothe controllogic. Inadditiontocommissioningthecontrolsystemitself,thecontrolsystemcanalsobeusedasatool for carrying out commissioning on the energy systems. A control system can serve as a commissioningtoolbymakinguseofitsabilitytomanipulateenergysystemsthroughinterfaces suchas actuatorsandswitches.Theideaisto carry out tests that involve making changes to a particularsystemthroughthecontrolsystemratherthanbydirectmanipulation.Sensorsconnected tothecontrolsystemallowtheeffectsofchangestobemeasuredandrecorded.Differentlevelsof automation can be applied when using the control system as a commissioning tool. A human operator can perform tests through a user-interface portal or test procedures can be programmed into the control system and be activated by a user. Varying degrees of automation can also be employedintheanalysisoftestresults. 9.4.3 Usingmodelsatthecomponentlevel Thefollowingstepscomprisea usecase forageneralpurpose,component-level,andmodelbased commissioningtoolthatcanbeusedbothforinitialcommissioningandforperformancemonitoring duringroutineoperation: ― For automated functional performance testing, the model is configured usingmanufacturers'performancedataandsystemdesigninformation.In general, the model parameters will be determined by a combination of directcalculationandregression. ― An active test is performed to verify that the performance of the component is acceptably close to the expected performance. This test involvesforcingtheequipmenttooperateataseriesofselectedoperating pointsspecificallychosentoverifyparticularaspectsofperformance(e.g. capacity,leakage). ― The test results are analyzed, preferably in real time, to detect and, if possible,todiagnosefaults. ― If necessary, the test is performed again to confirm that any faults that resultedinunacceptableperformancehavebeenfixed.Oncetheresultsof this test are deemed acceptable, they are taken to define correct (i.e. acceptable)operation. ― Themodelisre-calibratedusingtheacceptabletestresults. ― Thetoolisusedtomonitorperformanceduringon-goingoperation.This will typically be done in passive mode, though active testing could be performed at particular times, e.g. every weekend, after routine maintenance, after system modifications or retrofit, on change of ownership,etc.

239 9COMMISSIONINGOFLIGHTINGSYSTEMS

9.5 Applyingcommissioningprocesstothelightingcontrolsystem Theaimofthecommissioningappliedtothelightingcontrolsystemistoverifyiftheperformance ofthissystemmeetthedefinedperformanceandcriteria.Thefirststepconsistsofcollectingthe performancetargetsofthesystemanddefiningthecriteriatoassesstheseperformance. 9.5.1 Objectivesoflightingsystems Adequate and appropriate lighting should be provided so that people are able to perform visual tasksefficientlyandaccurately.Theilluminationcanbeprovidedbydaylight,artificiallightingora combinationofboth.Thelevelofilluminanceandcomfortrequiredinawiderangeofworkplaces isgovernedbythetypeanddurationofactivity. 9.5.2 Criteriaforlightingsystemsquality Forgoodlightingpractice,itisessentialthatthequalitativeandquantitativeneedsaresatisfiedin additiontotherequiredilluminance.Lightingrequirements are determined by the satisfaction of threebasichumanneeds: ― Visualcomfortwhichenablestheworkerstohaveafeelingofwell-being (inanindirectway)alsocontributingtoahighproductivitylevel ― Visual performance which enables the workers to perform their visual tasks,evenunderdifficultcircumstancesandduringlongerperiodswith comfort. ― Safety Mainparametersdeterminingtheluminousenvironmentare: ― Luminancedistribution ― Illuminance ― Glare ― Directionalityoflight ― Colorrenderingandcolorappearanceofthelight ― Flickerandstroboscopiceffects ― Maintenancefactor ― Energyconsiderations ― Daylight MethodsofcalculationofalltheseparametersareavailableintheEuropeanstandardEN15251. 9.5.3 Indicatorstoevaluatetheperformanceoflightingsystem Previousparagraphdefinesalistofcriteriaforlightingsystem.Someindicatorsarenecessaryto evaluatethesecriteria. Luminancedistribution The luminance distribution in the field of view controls the adaptation level of the eyes which affectstaskvisibility.Awellbalancedadaptationluminanceisneededtoincrease: ― Visualacuity(sharpnessofvision) ― Contrast sensitivity (discrimination of small relative luminance differences) ― Efficiencyoftheocularfunctions(suchasaccommodation,convergence, pupilcontraction,eyemovementsetc.)

240 9COMMISSIONINGOFLIGHTINGSYSTEMS

Theluminancedistributioninthefieldofviewalsoaffectsvisualcomfort.Thefollowingsituations shouldbeavoidedforthereasonsgiven: ― Toohighluminanceswhichmaygiverisetoglare ― Too high luminance contrasts which will cause fatigue because of constantre-adaptationoftheeyes ― Toolowluminancesandtoolowluminancecontrasts which result in a dullandnon-stimulatingworkingenvironment Illuminance Theilluminanceanditsdistributiononthetaskareaandthesurroundingareahaveagreatimpact on how quickly, safely and comfortably a person perceives and carries out the visual task. All valuesofilluminancesspecifiedintheEuropeanstandardEN12464aremaintainedilluminances andwillprovideforvisualcomfortandperformanceneeds. Glare Glareisthesensationproducedbybrightareaswithinthefieldofviewandmaybeexperienced either as discomfort glare or disability glare. Glare caused by reflections in specular surfaces is usuallyknownasveilingreflectionsorreflectedglare.Itisimportanttolimittheglaretoavoid errors, fatigue and accidents. In interior work places, discomfort glare may arise directly from brightluminairesorwindows.Ifdiscomfortglarelimitsaremet,disabilityglareisnotusuallya majorproblem. Directionalityoflight Directionallightingmaybeusedtohighlightobjects,revealtextureandimprovetheappearanceof peoplewithinthespace.Thisisdescribedbythetermmodelling.Directionallightingofavisual taskmayalsoaffectitsvisibility. Coloraspects Thecolorqualitiesofanear-whitelamparecharacterisedbytwoattributes: ― Thecolorappearanceofthelampitself, ― Its color rendering capabilities, which affect the color appearance of objectsandpersonsilluminatedbythelamp. Thesetwoattributesshallbeconsideredseparately Flicker Flicker causes distraction and may give rise to physiological effects such as headaches. Stroboscopiceffectscanleadtodangeroussituationsbychangingtheperceivedmotionofrotating orreciprocatingmachinery.Lightingsystemsshouldbedesignedtoavoidflickerandstroboscopic effects. Maintenancefactor The lighting scheme should be designed with an overall maintenance factor calculated for the selectedlightingequipment,spaceenvironmentand specified maintenance schedule. The recom- mendedilluminancelevelforeachtaskisgivenasmaintainedilluminance.Themaintenancefactor depends on the maintenance characteristics of the lamp and control gear, the luminaire, the environmentandthemaintenanceprogramme.Thedesignershall:

241 9COMMISSIONINGOFLIGHTINGSYSTEMS

― state the maintenance factor and list all assumptions made in the derivationofthevalue ― specifylightingequipmentsuitablefortheapplicationenvironment ― prepareacomprehensivemaintenancescheduletoinclude frequency of lamp replacement, luminaire and room cleaning intervals and cleaning method. Energyconsiderations Alightinginstallationshouldmeetthelightingrequirementsofaparticularspacewithoutwasteof energy. However, it is important not to compromise the visual aspects of a lighting installation simply to reduce energy consumption. This requires the consideration of appropriate lighting systems,equipment,controlsandtheuseofavailabledaylight. Daylight Daylight may provide all or part of the lighting for visual tasks. It varies in level and spectral composition with time and thus provides variability within an interior. Daylight may create a specificmodellingandluminancedistributionduetoitsnearlyhorizontalflowoflightfromside windows.Windowsmayprovidevisualcontactwiththeoutsideenvironment,whichispreferredby mostpeople. Ininteriorswithsidewindows,theamountofavailabledaylightdecreasesrapidlywiththedistance fromthewindow.Supplementarylightingisneededtoensuretherequiredilluminancelevelatthe work place and to balance the luminance distribution within the room. Automatic or manual switchingand/ordimmingmaybeusedtoensureappropriateintegrationbetweenelectriclighting anddaylight.Toreduceglarefromwindows,screeningshouldbeprovidedwhereappropriate. 9.6 ExampleofaCommissioningPlanappliedtothelightingsystem The purpose of the commissioning plan is to provide direction for the commissioning process duringthelifecycleofthebuilding.Itprovidesresolutionforissuessuchasscheduling,rolesand responsibilities,linesofcommunicationandreporting,approvals,andcoordination. Thecommissioningplandefinedateachstepoftheprocessthelistoftaskstoperformtoassessthe performanceofthesystem.Associatedtoolscouldbealsoassociatedtohelpthecommissioning providertoperformtasks.Tasksdefinedinthecommissioningplancouldbesharedintwoparts, namely; organisational part and technical part. The commissioning plan could also provide a general description of the commissioning team in order to identify persons relevant to the commissioningprocess. Theobjectiveistobeabletocontacttherightpersonincaseofmalfunctioningofbuildingsor systems of the building. Each related actors should be identified by his name, address, phone numberande-mailaddress.

242 9COMMISSIONINGOFLIGHTINGSYSTEMS

CxOrganizational Checkthatthelistoftherelevanttotakeintoaccounthasbeendefined. CxTechnical step Checkthattheoccupant’slightingneeds(Lightingrequirementandcalculation&lightingzoneassumptions)havebeendefined. Program Checkthattheenergyperformanceofthelightingsystemhasbeendefined. CxOrganizational Checkthatthelightingsystemcontrolmethodisdefined. Checkthateachroomhasitsowncontrolsystem. Checkthateachlocal,luminairesoftherowclosettothewindowscouldbecontrolledseparately. Checkthatthedesignerspecifiedlightingequipmentaresuitablefortheapplicationenvironment. CxTechnical Checkthattimedelayandsensitivityaredefinedforeachworkspace. Checkthatthesensitivitytochangeindaylightisdefinedforlocalroomconditions. CheckthattherangesofthereflectanceforthemajorinteriorsurfacesareinaccordancewithEN-12464 Checkthatlampswithacolorrenderingindexlowerthan80arenotusedininteriorswherepeopleworkorstaylongerperiods. Checkthatthedesignerstatesthemaintenancefactorandlistsallassumptionsmadeinthederivationofthevalue. Workingdesignstep Checkthatthedesignerpreparesacomprehensivemaintenancescheduletoincludefrequencyoflampreplacement,luminaries androomcleaningintervalsandcleaningmethod. Checkthattheuniformityoftheilluminanceissuperiorat0.7fortheworkplaneand0.5forimmediatesurroundings. Forofficescheckthattheminimumshieldinganglesshallbeappliedforthespecifiedlampluminance. CxOrganizational Checkthattheplansoftheofferanswertheinitialrequirements. Checkthatthehypothesesofcalculationarejustified. Checkthatplanstakeintoaccountthelocationofthecomponentsoftheinstallation. Checkthattheplanstakeintoaccounttheaccessesallowingthemaintenance. Checkthatthelistofthetestsandcontrolsisincludedintheanswertotheoffer. CxTechnical Checkthatthedescriptionoftheheatingsystemiscomplete(design,components,performance): a)Listanddescriptionofthemaincomponents

Elaborationstep b)Locationofthecomponents Checkthattheaccesstothesensorsiseasybutnotsoaccessiblethatunauthorizedpersonnelcaninterferewithit. CheckthatDCelectricalsupplyisusedforincandescentlampsorthatincandescentordischargelampsareofhighfrequencies. Forofficescheckthattheinstalledpowerininteriorto2.2 W/m 2/100luxand2.5 W/m 2/100luxforcorridors. CxOrganizational CxTechnical Checkthatlightingsystemscontroliswellconnected. Checkthatscheduleofthelightingsystemisimplementedintothebuildingenergymanagementsystem. Forsweep-offsystem,checkthatappropriatestartandstoptimesaresettoaccommodateweekdays,weekendsandholidays operation. Fordaylight-linkedsystembesureallfurnishingsandinteriorsurfacematerialsareinstalledbeforecalibration. Constructionstep Formanualdimming,checkthatthedimmerhasbeeninstalledincorrectpositionadjacenttothewallswitchaspardrawings CxOrganizational Provide building maintenance personnel with all necessary documentation and operation instructions to re-commission and maintainthesystem. Checkthatauser’sguidehasbeenwritten. Checktheperiodicityofthemaintenance’sinspection. CxTechnical Checkthatplacementsandorientationofthesensorsarecorrectaccordingtotheplans. Checkthatthesensitivityoftheoccupancysensorisadjusted. Checkthatthetimedelayoftheoccupancysensorisadjustedaccordingtotheroom. Checkthatthescheduleofthelightingsystemmeetstheeffectivefunctioningofthelightingsystem. Acceptancestep Checkthatlocaland/orcentraloverridesarewelltakenintoaccount. Checkthatthelightingsystemiswellcontrolled. Fordimmingsystem,checkburninnewlampsbyoperatingthelampsatfullpowercontinuouslyfor100hours. Fordaylight-linkedsystem,checkthatthelightsensoriscalibratedinordertoobtaindesiredlightlevelattheworksurface. CxOrganizational

tep Informoccupantsaboutthefunctionalityofthecontrolsand,particularly,theoverrides. CxTechnical Post accepta Checkthattheoperationofthelightingsystemmeetstherequirementdefinedinthebookofspecifications.

ces CxOrganizational Checkthattheperformanceoflightingequipmentsisyearlyevaluated. Checkthatthesensorsareyearlycleanedup(everysixmonthsforoutsidesensors). CxTechnical Check thatthe re-calibration of the sensors is done if the environment of the building has changed (construction of the new

Postpost- building,forexample) Inthecaseofmodificationofthezonedestination,checkthatschedulingdefinedinthebuildingenergymanagementsystemstill acceptancestep correspondstothezone. Figure9-3. TasksoftheCommissioningplanforlightingsystems.

243 9COMMISSIONINGOFLIGHTINGSYSTEMS

References IEA,2001.IEAAnnex40-CommissioningofBuildingHVACSystemsforImprovingEnergyPerformance,website http://www.ecbcs.org/annexes/annex40.htm IEA,2004.IEAAnnex31report:Environmentalframework,IEAECBCS2004,24pp. IEA,2000.IEASHCTask21/Annex29report:Designguidelines-Daylightingguidelines,July2000. ANSI/ASHRAE,2002.ANSI/ASRAEStandard135-2001:Adatacommunicationprotocolforbuildingmanagement andcontrolnetworks(BACnetspecification),April2002. DALI, 2004a. Digital Addressable Lighting Interface (DALI) control devices protocol part 1-2004, general requirements,draftversion1.13,29-10-2004,NEMAstandardpublication. DALI,2004b.DigitalAddressableLightingInterface(DALI)controldevicesprotocolpart2-2004,specificcommands forcontroldevices,draft-version1.13,29-10-2004,NEMAstandardpublication. Jenningsetal.,2000.Comparisonofcontroloptionsinprivateofficesinanadvancedlightingcontrolstestbed.Journal oftheIlluminatingEngineeringSociety2000;p39-60. ESource,2004.Designbriefs:Lightingcontrol,Energydesignresources,reportpublishedon2March2004,available at:http://www.energydesignresources.com. TheWattStopper.Lightingcontrolbestpracticeguide:Officebuildings,availableathttp://www.wattstopper.com. New buildings institute, 2003. Advanced lighting guidelines: 2003 edition, New buildings institute Inc, available at http://www.newbuildings.org/lighting.htm. BiermanA,MoranteP,2003.Lightingcontrols-whereweareandwherearewegoing,presentationtoassociationof energy services professionals 14 th national energy service conference and exposition, December 9, 2003, Lighting ResearchCentre/RensselaerPolytechnicInstitute. Peter Morante, 2005. Reducing barriers to the use of high-efficiency lighting systems, technical report, Rensselaer PolytechnicInstitute,2005. Californiaenergycommission,1999.Lightingefficiencytechnologyreport:VolumeI–Californiabaseline,VolumeII – Scenarios, Volume III – Market barriers report, Volume IV – Recommendations report, California energy commission,P400-98-004VI. Mistrick et al., 1999. An analysis of photosensor-controlled dimming systems in a small office, Illuminating engineeringsocietyofNorthAmerica1999annualconferenceproceedings,IESNA,NewYork,pp433-448. Viljanen, T., Halonen, L., Lehtovaara, J., Advanced lighting control technologies for user satisfaction and energy efficiency,ProceedingsofRightLight4,Vol.1.19-21.11.1997. Rubinstein,F.,Treado,S.,Pettler,P.,2003.Standardizingcommunicationbetweenlightingcontroldevices:arolefor IEEEP1451,inproceedingsofIEEEIndustryApplicationsConference,Oct2003,volume2,p805-811. ENOCEAN,2007.Enoceanhomepage,2007,http://www.enocean.de.

244 10 CASESTUDIES

Chapter10:Casestudies Topicscovered 10 Casestudies...... 247 10.1 Introductionandmainresults...... 247 10.2 Casestudy1:Optimizingofdaylightingandartificiallightinginoffices...... 248 10.3 CaseStudy2:OfficesofaFinnishresearchunit ...... 250 10.4 CaseStudy3:RenovationofaGermanbank ...... 260 10.5 Casestudy4:Highlightingqualitytargetswithminimumelectricpowerdensity..... 265 10.6 CaseStudy5:Renovationofaculturalcentre...... 271 10.7 Casestudy6:StureLibraryinStockholmfullylitbyLEDlighting ...... 272 10.8 Casestudy7:TownhallinStockholm ...... 273 10.9 Casestudy8:TurningTorso...... 274 10.10 Casestudy9:ComparisonofLEDandfluorescentlightinginameetingroom ...... 275 10.11 Casestudy10:FactoryinNetherlands...... 279 10.12 Casestudy11:FactoryinItaly...... 282 10.13 Casestudy12:School-lightingrefurbishment...... 285 10.14 Casestudy13:School-brightclassroom...... 289 10.15 Casestudy14:Primaryschool-brightclassroom...... 292 10.16 Casestudy15:PrimaryschoolBeveren-Leie-lightingrefurbishment...... 294 10.17 Casestudy16:HighschoolofStEligius-lightingrefurbishment...... 296 10.18 Casestudy17:PrimarySchoolinRoma(1)...... 298 10.19 Casestudy18:PrimarySchoolinRoma(2)...... 301 10.20 CaseStudy19:EnergysavingpotentialintheUniversity...... 304 10.21 CaseStudy20:Renovationofanauditorium ...... 307 10.22 CaseStudy21:Replacementofmetalhalidelampbyinductionlamp...... 309 10-23 Appendix1.Datalistforcasestudies...... 312

245 10 CASESTUDIES

246 10 CASESTUDIES

10 Casestudies

10.1 Introductionandmainresults

Casestudiesofdifferenttypesoflightingsystemswereconducted.Thestudieswereconductedfora variety of buildings (most of them being office buildings and schools) in different locations around Europe. The main results of the case studies are summarised briefly in the following, Appendix 1 showsthedatalistforthecasestudies. Inofficebuildings,differentcasestudiesshowedthatitispossibletoobtainbothgoodvisualquality and low installed power for lighting. It is possible to reach the normalized power density of 2 W/m 2.100 lx (even 1.5 W/m 2.100 lx in some cases) with the current technology. The studies also indicatedthatthebestperformanceisreachedintheofficeenvironmentwhentheluminariesareshared betweenatleasttwopersons.DevelopmentofLEDtechnologyisgrowingandthecasestudiesshow thatthetechnologyisalreadywellsuitedinthetasklightingapplications. Applicationoflightingcontroldevicesisanotherimportantaspectofimprovingtheenergyefficiency ofthelightingsystem.Itwasfoundthattheuseoflightingcontrolsystemtoswitchthelightsonand off based on occupancy sensors can reduce the lighting energy intensity of office buildings. Additionallytheuseofdimmingandcontrolsensorsfortheintegrationofdaylightandartificiallight canyieldfurtherenergysavings.However,thedesignofthelightingsystemhastobemadecarefully, sothattheusercancontrolandchoosethevisualenvironmentofhis/herchoice.Allowingindividual controloflightingenablesthetechnologytobeacceptedbytheusers,asthelightingneedsofpeople aredifferent.UniformityandGlarehaveeffectonacceptabilityofthelightingsystem.Uniformityof 0.6isfoundtobeacceptableinseveralcasestudies.Occupantsalsogiveimportanceoncontrollingthe luminancesofthelightsourcesinthefieldofviewoftheworkers. Thecasestudiesinfactoriesindicatedthatgenerallightingcanbereducedbyemployingtasklighting and individual control of the task lighting combined with automatic control of general lighting accordingtotheworkinghours.Thiscanyieldtoincreasesinproductivity(duetobetterlighting)and to decreases in the lighting energy consumption. It is also possible to use dimming according to daylightinthefactories.Inonefactorycasethedimmingaccordingtodaylightcouldsaveabout50% oftheenergyusedforlighting.Thestudyshowedthatthenormalizedpowerdensityof2.78W/m 2.100 lxcanbereached. The case studies in schools indicate that it is possible to reach the normalized power density of 2 W/m 2.100 lx with the application of current technology, including the recommended black-board lighting.Refurbishmentoftheoldinstallationswithnewtechnologyisanattractiveoptiontoimprove theenergyefficiencyinschools.Oneofthemajorproblemsrelatedtotheuseofdaylightinschoolsis thesunlightcomingthroughthewindowsandfallingontheworkplanes,blackboardsetc.Designof daylight utilisation system must guarantee a total protection against glare from the sun. Otherwise peoplecanmovetheirdesksorshadeallthedaylightwiththeblinds.

247 10 CASESTUDIES

10.2 Casestudy1:Optimizingofdaylightingandartificiallightinginoffices

Place:Switzerland(Lausanne) Buildingtype:Officebuilding Contact:F.Linhart(LESO,EcolePolytechniqueFédéraledeLausanne)

Placedescription

zenithal collector anidolic element

ceiling

window

Figure10-1.Southernfaçadeofthebuildingandacrosssectionfromthefaçade’ssystem . Amirrorredirectsdaylightfromtheskytothediffuseroomceiling,whichreflectsthelightintothe room.Daylightisguidedtowardstheceilingbyamirror,inordertobeforwardedtothepartsfurther awayfromthewindow.Thesystemincreasesthedaylightenteringtotherearoftheroomandhelpsto reduceglarenearthewindowsection.Moreover,thewindowsarebuiltwithoutsideblinds. 3 m Desk 1 2 m L L 1 2 Desk 2 1 m 4 m 3 m 2 m 1 m Figure10-2.Officeplanwithluminariesposition . Theofficeroomisusedbytwopeople.Workplaneheightis0.8m.

248 10 CASESTUDIES

Luminariesdescription

Figure10-3.Characteristicsoftheluminaires . Luminaires: CeilingmountedluminaireLIPfromREGENT,reflectorwithprismaticdiffusionupon the longitudinal axis, and specular batwing upon the transverse axis (luminaire Light OutputRatio69%). Lamp: SylvaniaT836Wlamp(R a>80,CCT=3000K,luminousflux=3350lm). Ballast: PhilipsHFR136TLD220-240dimmable0V-10V,announcedpowerfactor=0.95 Priceoftheluminaireincatalogue=250€ Thecontrolhasbeenplacedattheentranceoftheoffice;peoplecanoperateitaccordingtotheirneeds. Thelightingpowerdensityis4.5W/m².

Measurements Illuminancemeasurements(artificiallightingonly)ontheworkplaneatmaximumpowerforlighting: Eaverage =235lx Emax =308lx Emin =186lx Uniformity =0.79 Occupant’ssatisfaction Six people have been working in this office over two years. All workers expressed that they were satisfiedwiththeirlightingconditions. Viewsofthesixoffice-workers: − Thelightinmyofficeisgenerallycomfortable:83%agree − Artificiallightinginmyofficeisabletoprovideenoughlight:83%agree − Thefacilitieswhichareinmyoffice(windows,blinds,artificialandday-lightsystems)make me able to get every time a right lighting situation, so I can work in good conditions: 83% agree. − Withonlyartificiallight,noremarkswerementionedaboutatoocoldortoohotfeeling.

249 10 CASESTUDIES

10.3 CaseStudy2:OfficesofaFinnishresearchunit

Place:Finland(Helsinki) Buildingtype:Officebuilding Contact:EinoTetri(HelsinkiUniversityofTechnology,LightingUnit)

Placedescription

G435 G436

G441 G439

G440 G438

G437 Hall

Figure10-4. Photosoftheofficerooms .

250 10 CASESTUDIES

OfficesPlan

18.3W/m²

G441 7.8W/m²

G435

14.1W/m² G440

14.1W/m²

G436 G439

14W/m²

G437 G438

17.3W/m² 16.5W/m²

Figure10-5.OfficePlanwiththeluminariesposition. Theaverageinstalledlightingpowerdensityis13.86W/m².Theceilingheightvariesbetween2.26m and2.94m.Theinstallationheightoftheluminairesis2.26mandheightoftheworkplaneis0.72m. Each office room has daylight availability. The rooms are used between 7 am and 5:30 pm except weekends.Cleaningoftheroomsismadeatnoon.

251 10 CASESTUDIES

Luminariesdescription LuminairetypeN°1

LuminairetypeN°2

252 10 CASESTUDIES

LuminairetypeN°3

LuminairetypeN°4

253 10 CASESTUDIES

LuminairetypeN°5

LuminairetypeN°6

LuminairetypeN°7

Figure10-6.Luminariescharacteristics(photometry,geometry,pictures) .

254 10 CASESTUDIES

Typesofcontrol

Figure10-7.TypeofcontrolinRoomG435.

Figure10-8.TypeofcontrolinRoomsG436andG437 .

Figure10-9.TypeofcontrolinRoomsG438andG441 .

255 10 CASESTUDIES

Measurements Theaverageilluminancesonworkplanesatfullpower Insidetheofficesrooms: Table10-1.Illuminancesonworkplanesintheofficerooms . G435 G436 G437 G438 G439 G440 G441 Eaverage (lx) 588 671 610 728 723 716 806 Uniformity 0.71 0.78 0.64 0.71 0.80 0.69 0.65 IntheHall: Eaverage =293lx,Uniformity=0.40 Inthekitchen: Eaverage =177lx,Uniformity=0.92 Inthetoiletroom: Eaverage =337lx,Uniformity=0.82 Illuminances on the work planes of the three rooms lowered (use of dimming control) by their occupants RoomG436: Eaverage =545lx(80%),Uniformity=0.7 RoomG437: Eaverage =448lx(73%),Uniformity=0.57 RoomG440: Eaverage =586lx(80%),Uniformity=0.77 Measuredluminances: Luminancesinthefieldofvisionforthedifferentpositionsintheofficeroomsreached20000cd/m². TheUGR,dependingonthepositions,variedbetween5.7and19.2 Inthehall,themaximumluminanceinthefieldofvisionwas50000cd/m². Ratios of the average luminances of work planes, walls, ceilings and, floor to desktop screen luminancesaregiveninTable10.2.

256 10 CASESTUDIES

Table10-2. Ratiooftheaverageluminancestodesktopscreenluminances . Room Position Workplanes Walls Ceiling Floor G436 1 0.4 0.9 1.5 0.35 G436 2 1.3 1.84 3.3 0.77 G437 1 0.54 0.65 1.52 0.36 G437 2 1.1 1.6 3 0.72 Exampleofpowerconsumptionintheofficesduringoneday InFigure10-10,roomG435isusercontrolledandroomG437iscontrolledbyoccupancyanddaylight sensors.

Figure10-10Sampleofpowerconsumptionintheofficesduringtheday .

Figure10-11.Profileofthetotalpowerconsumptionofthelocalesduring7days . Relationshipbetweenilluminanceandconsumedpowerintheoffices

257 10 CASESTUDIES

Foralltherooms,theaverageannualenergyconsumptionwas28kWh/m²year,whereastheaveragein Finnishbuildingsis31kWh/m²year. Figure10-12.Relationshipbetweenilluminanceandconsumedpowerintheoffices . Interviews The occupants of the office rooms were interviewed to examine their preferences for the installed lightingsystem.Theoccupantswereallright-handedpeoplewith56%ofthemhavingglasses.About 75%oftheoccupant’sworktimewasspentworkingoncomputerscreens.Theresultoftheinterviewis listedbelow: • 19%ofthepeoplesaytheysufferfromheadacheattheendoftheworkday • 6%oftheoccupantsarenotsatisfiedwiththeirworkspace. • Allappreciatethecolouroftheartificiallight(3000K). • Nobodyisunhappywiththeartificiallightingenvironment. • 56%oftheoccupantsneverchangethesettingsofthelightingcontrolsystemwhereas25%of themchangeitweekly. Room435--LONsystemwithdimmer: • 25%ofuseraskedforimprovementsinlightingforthereading-writingtasks • Nonegativeopinionsaboutcomputerworkorothertasks • Someoccupantswerenotfullysatisfiedwiththelightingcontrolsystem Rooms438-441--DIGIDIMSystem(presencesensors): • Nonegativeopinionforthereading-writingtasks. • Nonegativeopinionforcomputerworkingorothertasks. • 14%oftheoccupantswerenotfullysatisfiedwiththelightingcontrolsystem.

258 10 CASESTUDIES

Rooms436-437--MIMO-LONsystem(presencesensorsanddaylight): • Greatcomfortforthereading-writingtasks • Nonegativeopinionforthescreenworkingorothertasks • 40%oftheoccupantswerenotfullysatisfiedwiththelightingcontrolsystem

259 10 CASESTUDIES

10.4 CaseStudy3:RenovationofaGermanbank

Place:Germany(Berlin) Buildingtype:Officebuilding Contact:W.Pohl(BartenBach,Innsbruck,Austria)

Placedescription OfficebuildingofKfW(KreditanstaltfürWiederaufbau)(2001): Figure10 -13. Viewfromoutsidetothe Figure10 -14. Position/orientation southfaçade . ofthebuilding. The height of the room is 3.4 m and the working desk height is 0.75 m. LON-controlled daylight systemwasusedwithhighspecularmovablelamellasfordaylightutilisationandsunshading.

Figure10 -15. Views frominside(southfacade) .

260 10 CASESTUDIES

Descriptionofthelightingsystems Lightingsystemforgeneralilluminationwithilluminanceof100lx − CompactfluorescentDuluxL55W840,electronicballast,notdimmable − CCT=4000K,Ra=80 − Totalpowerconsumptionincludingballast=62W − LON/individual-controlled

Figure10 -16. Luminairesinstallation .

261 10 CASESTUDIES

Lightingsystemfortasklightingwithworkingplaneilluminanceof500lx − HIT70W/942(Projector-Mirror-system:metalhalidelamps&ceilingmirrors) − electronicballast,notdimmable − CCT=4000K,R a=90 − Totalpowerconsumptionincludingballast=82W − LON/individual-controlled (includingceilingmirrors) Figure10 -17. Luminairesinstallation .

Figure10-18. Luminaireposition .

262 10 CASESTUDIES

Calculations Roomwitharea20m 2: − 2projectorHID70Wlampsand1CFL55Wfluorescentlamp − totalinstalledpower(2*82+62)W=226W − lightingpowerdensity=11.3W/m² Roomwitharea40m 2: − 3projectorHID70Wlamps/2CFL55Wfluorescentlamps − Totalinstalledpower(3*82+2*62)W=370W − lightingpowerdensity=9.2W/m² Luminaireefficacyoflightingsystem: - Projector-mirror-system82W,6000lm*50%=36.6lm/W - CFLFluorescentsystem62W,4800lm*60%=50lm/W

Measurements

Figure10-19.Illuminanceduringasunnydayonworkingplanevs.outsidehorizontalilluminance . Redcurve:outsidehorizontalilluminance(ontheroof) violetcurve:illuminancesontheworkplanenexttothedesk

263 10 CASESTUDIES

Illuminancedistribution: Emean :552lx Emin :373lx Emax :725lx g1=E min /E mean: 0.68 g2=E min /E max: 0.51 UGR:17 Figure10-20.Illuminancedistributiononworkingplane(onlyartificiallight) .

Interviews: Questionnaires(60subjects) Principalresults: - the automatic control of the daylight-lamella-system is deactivated in most cases, almost everyoneprefersanindividual(andconstant)situation - most employees are very satisfied with the light (and thermal) conditions of their working places - artificiallight(bothCFLandHID)isswitchedonbytheemployeesonlywhentheilluminance getslowerthan100lx.

264 10 CASESTUDIES

10.5 Case study 4: High lighting quality targets with minimum electric power density

Place:France(Lyon) Buildingtype:Office Contact:MarcFontoynont(EcoleNationaledesTravauxPublicsdel’Etat)

Introduction Acampaignhasbeenconductedsoastotestefficientlightinginstallationsduringsixmonthsinthe areaofLyon,France.26workplacesweretested,eachofthemwithaspecificlightingscheme.The goal was to identify directions in preferred lighting schemes requiring less electrical power. Users couldadjusttheirlightingconditionsusingdifferentcontrolsystems:dimmer,daylightandoccupancy sensors, ambient/task luminaires. The preferred lighting schemes were carefully recorded through measurements of illuminance distribution, luminance values in the field of view, electric power requiredbythelightinginstallationfortheselectedlightingscheme. Selectedelectricpowerdensitiesandlightingqualityparameterswerecompared.Nocorrelationwas foundbetweenperceivedlightingqualityparametersandelectricpowerdensities,butsomesolutions werefound,withthebestassessmentinqualityandpowerdensitiesbelow10W/m 2. Figure10-21.Oneoftheluminairesinthecasestudy.

265 10 CASESTUDIES

Figure10-22.Exampleofcomputergeneratedimagesofvariouslightingschemesforcubiclestestedtoidentifypreferences amongobservers .

Conditionsoftheexperimentation Thespacesbelongtoanexistingoffice building in Lyon, France (Mat Electrique).Ceilingheightwas2.64m, window frame are 1.25 m in width. Eachworkstationoffersaspecificfloor area15-27m²inindividual,9-13m²if sharedand9m²inopenspace.Surface of desks were around 1.6 m x 0.8 m, and each work station offered storage furniture. Figure10-23. Officebuilding,Lyon,France. Thirdfloorofferedopenandindividualspacesforthetests . Organizationofthecampaign Various lighting installations were tested during a period of four months in real work places in the building.Thetestinvolvestwenty-sixworkplaces,mostofthembeinginanopenspaceareaandsome oftheminindividualorsharedoffices.Alltheworkplacesareequippedwithacomputerandavisual displayterminal. First of all, diagnosis was made for each workplace by interviews and measurements (natural and artificiallighting:illuminances,luminances,shadows,blinds,controlhabits,opticalcharacteristicsof theworker). Then, 26 lighting schemes were proposed, distributed in the following families: recessed ceiling luminaries,direct/indirectsuspended,standalone,deskmounted.Mostofthemwereequippedwitha dimming system (so that the occupants could adjust freely the power to the system) or automatic sensors(occupancy+daylight),orseparatedambient/taskswitch. Occupants were interviewed at various occasions and were asked to evaluate the quality of their luminous environment with respect to the light distribution in their work area, the visual comfort (evaluationofglare),thelightdistributiononsurroundingsurfaces(walls,ceiling). Luminancesweremeasuredfromthetypicallocationoftheeyeandilluminancewasmeasuredonthe surfaces.Theelectricpowerconsumptionoflightingwasmeasured.Theaimwastoidentifytwomajor

266 10 CASESTUDIES generalparameters: − theelectricpowerdensityusedbytheoccupant(W/m 2overtheentireworkarea) − generalperceivedlightingqualityindex Tocalculatethegeneralperceivedlightingqualityindex,commentsoftheoccupantswerereviewed andanalysedinordertoincludetheminageneralsinglescaleofsatisfaction. Theproposedratingobtainedthroughinterviews:soft,satisfactory(4points),lackofuniformity,lack ofbrightness,pooraesthetics(3points),unpleasant,sad(2points),glary,aggressive,tiring(1point). Lighting quality was measured through the parameters: dimming capability, illuminance levels, uniformity on work plane, value of UGR, maximum perceptible luminance (overhead glare), and maximumluminanceofscenewithoutluminanceofluminaire.

Results There was a clear rejection for any directly visible fluorescent lamp (T5 or T8, CFL). It is found howeverthatwhenfluorescentlampswerepartlydimmed,theluminanceofthelampswasacceptable. Itseemsthatthethresholdvalueis7000cd/m 2:fluorescentlampsaboveheadwithluminancesbelow 7000cd/m 2seemtobeacceptable.Therewasalsoaclearpreferenceforsystemshidingtotallythe visibilityofthefluorescentlamps,andindirectlightingsystems. Therewasaclearpreferenceforpowerfultasklightingcontributingalsototheambientlight,whichis abletosupplyupto500lxonthedesk,withagooduniformity(0.6to0.8).Theuniformityonthe deskistheratiooftheminimumilluminance(230to350lx)totheaverageilluminance(around400 lx). Therewasagreatsatisfactioninhavingdimmingsystemswithindividualcontrols.Althoughoccupants didnotusethemoften,theyofferaguarantythattheycouldadjusttheilluminancelevelaccordingto theirneedsandphysicalstate(fatigue,stress,etc.). There was a large variation in the energy efficiency of the lighting solutions. The lowest power densitieswereobtainedwithsuspendeddirect-indirectluminariessharedbytwooccupants(6W/m 2). Lowpowerdensitieswerealsofoundfortask/ambientlightingsolutions(below8W/m 2). Individualtasklampscouldbedesignedwithapowerof25-40W,abletoprovidegoodilluminance uniformity on the work plane. In theseconditions, power densities of about 6W/m 2 are achievable, withgoodvisualconditions.

267 10 CASESTUDIES

Figure10-24.Perceivedvisualqualityasafunctionoftheelectricpowerdensityforlightingfor26lightingschemes .

Mostefficientschemes

Figure10-25.Direct-indirectstandaloneluminaire . Characteristicsofdirect-indirectstandaloneluminaire: − Independencewiththeceilingallowslocatingtheluminaireverypreciselynearthework space − Theusersappreciatedthedimmingoptionassociatedtothedaylighting-occupancysensor − Itcanbesharedwithanotheroccupant − Typically100Wperworkspacerequired,lessthan8W/m 2inopenplanoffice − Typicallightsources2xCFL55Wperoccupant,partlydimmed

268 10 CASESTUDIES

Figure10-26.Direct-indirectsuspendedluminaire . Characteristicsofdirect-indirectsuspendedluminaire: − Allow usage of 1.20 or 1.50 m fluorescent tube but work place cannot move if luminairepositionisfixed − Leadstothelowestpowerdensity:6W/m 2inopenplanoffice − Coulduse2x54Wfluorescentlampsfortwopeople

Figure10-27.Indirectluminaireintegratedinthefurniture. Characteristicsofindirectluminaireintegratedinthefurniture: − Judgedasverycomfortable − Theceilingluminancesaremoderate − Thegeneralfeelingtendstohaveaworkplanelookingdarkerthattherestoftheroom − Requiresonaverageof2x35Wfluorescentlampsperworkplace

Conclusions Insummary,thepossiblespecificationsoflightinginstallationsinofficesperceivedashighqualityare: − Hidelightsourcessothatthemaximumluminanceoftheluminaireinalldirectionsisbelow 7000cd/m 2

269 10 CASESTUDIES

− Reduceuniformityonworkplanetoavaluebetween0.6and0.8toprovideafeelingofcontrast whileavoidingshadows − Allowindividualcontrol(dimming) − Selectequipmentwithgoodopticalperformance − PrefersinglefluorescentlamptoCFLtolowerpowerdensity − Share luminaries between work places: best performance are obtained with one luminaire providinglightfortwoworkplaces

270 10 CASESTUDIES

10.6 CaseStudy5:Renovationofaculturalcentre

Place:Sweden(Stockholm) Buildingtype:Servicesector,library Contact:LarsBylund(BergenSchoolofArchitecture)

Figure10-28.OutsidePhotography Technology:LEDPhilipsK2of3WinluminariesDeltaLux Readingplaces: Replacementofcompactfluorescentlamps(18W)by4LEDof3Weach BenefitsofIlluminanceontheworkplane:+40% Shelvesforbooksconsultation: Replacementoffluorescentlamps(28W)by6LEDof3Weach BenefitsofIlluminance,downtheracks:+100% Hallofthestairs Replacementofeachlow-voltagelamps(20W)byaLEDof3W AllthedescriptiveandtheinformativepostersarelitwiththeLEDtechnology. Figure10-29.Picturesoftheinstallation

271 10 CASESTUDIES

10.7 Casestudy6:StureLibraryinStockholmfullylitbyLEDlighting

Place:Sweden,Stockholm Buildingtype:library Contact:LarsBylund ThelightinginlibrarywasfullyrealisedwithLEDlighting.Totalpowerwas1134WwithLEDs. − lightingpowerdensity5.5W/m 2 − luminaries:Fortimo45WDim830andREBEL3W − CCT=4000K − verticalilluminanceonthebookshelves250to500lx − horizontalilluminancebetween200to700lx

Figure10 -30 . Verticalilluminancesarebetween Figure10-31.LightingwithFortimoluminaire. 250and500lx. Figure10 -32 . Thelinearluminairerealisedwith10x3W RebelLEDs.

272 10 CASESTUDIES

10.8 Casestudy7:TownhallinStockholm

Place:Sweden,Stockholm Buildingtype:administrative Contact:LarsBylund

Figure10-33.TownhallofStockholm. Figure10 -34 .26WCFLreplacedwith18WFortimo LED.

Figure1 0-35 .20Wtungstenhalogenlampsabovethe Figure10 -36 .2x35Wtungstenhalogenlampsreplaced doorsreplacedby2x3WRebelLEDs. by2x3WRebelLEDsgivinglightupanddown.

273 10 CASESTUDIES

10.9 Casestudy8:TurningTorso

Place:Malmö,Stockholm Buildingtype:residential Contact:LarsBylund

Figure10-37. TurningTorso,anapartmentbuildinginMalmö,Sweden . TurningTorsoisa54-storey-highapartmentbuilding.Allthecorridorsconnectingtheapartmentsare withoutwindows.ThelightinginthecorridorsiscompletelybasedonLEDs.BychoosingLEDsasthe lightsource,thepowerwasreducedfromtheinitiallyplannedfluorescentlamplightingat43W/mof corridor length to 10 W/m. This gives 75% reduction in total installed power. Additionally, the maintenancecostswerereducedasaresultofthelongerlifetimeofLEDs,whichareguaranteedfor 50000hours. Theaverageilluminationlevelinthecorridorsis170lx,slightlyhigherthantheplanned150lxforthe fluorescent lighting. The installation was completed in 2004 and consisted of 18 240 LEDs (1,2 W each)fromOsramwithacorrelatedcolourtemperatureof5400K.

274 10 CASESTUDIES

10.10 Casestudy9:ComparisonofLEDandfluorescentlightinginameetingroom

Place:Finland(Espoo) Buildingtype:Officebuilding Contact:J.Viitanen(AaltoUniversitySchoolofScienceandtechnology)

Placedescription Meeting room 271 is located in Otakaari 7 and is part of Aalto University’sLightingunit.Sizeofthemeetingroomis7mx4,7mx 2,7m. Roomcontains6fluorescentluminairesand2LEDluminaires.Bothof these are recessed ceiling luminaires. It is also possible to utilize daylightintheroom,butforthiscasestudydaylightcapabilitieswere removed.

Figure10-38Meetingroom271

Luminaires:

Figure10 -40 PhilipsIndolightTBS300 Figure 10 -39 GreenluxGLP6060- 30 Table10-3.Luminaireinstallationspecifications Philips Greenlux Greenlux Indolight GLP6060-30 GLP6060-30 Luminaire TBS300 (max) (dimpreset4) Numberluminairesintheroom 6 2 2 336x0.2W Sourceoflight 2x28WTL5 LED 336x0.2WLED Dimming[%](0=full power) 0 0 55.5 Electricalpowerofluminaire [W] 64 62.3 27.7 Totalelectricalpowerof luminaires[W] 384 124.6 55.4 Colortemperature[K] 3000 3000 3000 Luminousflux[lm] 5200 3460 1700 ColorrenderingindexRa 80 56 56 Luminousefficacyofluminaire [lm/W] 81.25 55.5 61.4

275 10 CASESTUDIES

Electricalpowerdensity [W/m2] 11.43 3.71 1.65 Averageluminouspowerinthe workingarea[W/100lx] 50.68 43.48 38.08 ThemostnotablethingabouttheluminairespecificationsisthatLEDluminaire’sluminousefficacy increasedwithdimming.FluorescentluminairehadbetterluminousefficacythanLEDs.

Measurements

Illuminance,luminanceandUGRvaluesofthelightinginstallationsweremeasured. Philips Indolight FL luminaires were measured using only full power but Greenlux LED luminaires weremeasuredinadditionusingpresetdimminglevel(dim=55.5%). fluorescentand LEDmeasurementscasesweredifferent,because fluorescentluminairescoveredthe wholemeetingroombutLEDsonlytheworkingarea.Thereforetheresultsarenotfullycomparable. Table10-4.Measuredilluminancelevels Em Emin Emax [lx] [lx] [lx] Emin/Em Emin/Emax WORKINGSPACE PhilipsIndolight 849 740 972 0.87 0.76 GreenluxLED(max) 314 205 398 0.65 0.52 GreenluxLED(dim=55%) 159 105 201 0.66 0.52 RECOMMENDATION (SFS-EN12464-1) 500 >0.7 ADJACENTAREA PhilipsIndolight 542 277 714 0.51 0.39 GreenluxLED(max) 147 87 220 0.59 0.40 GreenluxLED(dim=55%) 80 47 113 0.58 0.42 RECOMMENDATION (SFS-EN12464-1) 300 >0.5 WHOLEAREA PhilipsIndolight 649 277 972 0.43 0.28 GreenluxLED(max) 205 87 398 0.42 0.22 GreenluxLED(dim=55%) 108 47 201 0.44 0.23

Fluorescent luminaires gave much more light than LEDs but this is mainly because of the larger amountofluminairesusedinthefluorescentinstallation.LEDluminairesusedlessW/100lxascanbe seeninTable10-3.

276 10 CASESTUDIES

Figure 10 -41.Luminancedistributionsofthemeasuredroom Table10-5.Measuredluminancelevels Philips Greenlux Indolight Greenlux LED(dim= TBS300 (max) 55%) Surfaceluminancesoftheluminaires average[cd/m2] 9152 3988 1709 max[cd/m2] 15400 5170 2230 min[cd/m2] 998 2782 1269 Luminancesoftheinstallation fromthedoor average[cd/m2] 146 35 18 max[cd/m2] 26309 5270 2728 min[cd/m2] 1.7 1.5 1.5 UGR(recommendation=19) 15.8 19.5 16.7 fromtheendofthetable average[cd/m2] 149 57 31 max[cd/m2] 29249 4936 2840 min[cd/m2] 1.6 1.5 1.5 UGR(recommendation=19) 19.6 18.1 15.1 Ceiling luminance (above the working area) average[cd/m2] 49 20.1 10.1 max[cd/m2] 55 32.1 16.2 min[cd/m2] 25.7 10.9 5.6 Surfaceluminanceofthetable average[cd/m2] 100.8 40.6 23.8 max[cd/m2] 115.9 48.3 28.4 min[cd/m2] 90.4 30.1 17.7

LuminancelevelsofthemeetingroomwerelowerwithLEDlightingthanwithfluorescentlighting. ThiswasmainlyduetosmalleramountofLEDluminairesandalsomuchlesspowerwasusedforthe

277 10 CASESTUDIES

LEDlighting.Electricalpowerdensitywas11.43W/m 2forfluorescentluminairesand3.71W/m 2– 1.65W/m 2fortheLEDs,dependingonthedimminglevel.UGRvaluesofbothinstallationswereat aboutthesamelevel. Conclusions CasestudyshowedthatLEDluminairescanachievesimilarglareresultsthanfluorescentluminaires, although measured LED luminaires had lower luminous efficacy than the measured fluorescent luminaire.

278 10 CASESTUDIES

10.11 Casestudy10:FactoryinNetherlands

Place:Netherlands Buildingtype:Industry,assemblyarea Contact:HenriJuslén(Philips)

Placedescription ThestudyareawasanassemblyareaoftheluminairefactorylocatedintheNetherlands. Figure10-42showsthearea.

Figure10-42.Oneoftheassemblytablesofthestudy . Participantsandworkdescription Atotalof42personswereworkinginthetestarea(averageage42years),69%ofthembeingfemale. The products assembled were different for the different workstations, but the tasks that had to be performed were quite similar for all assembly workstations. The subjects assembled luminaire components,suchastheframe,thegear,andopticalparts.Connectingthewireswasvisuallythemost demanding part of the work. The smallest diameter of white wire was 2mm and the diameter of unisoleted copper end 0.8 mm. White wires were connected to white connector blocks and lamp holdersbyscrewsorjustpushingthewireintothehole.Participantshadlotoffreedomtoperformthe tasksinthewayandordertheyfelttobemostsuitableforthem.Theviewingdistancetothemaintasks wasbelowonemeter.Thereferenceareawaslocatedinthehallnexttothetesthall.Assemblyarea,

279 10 CASESTUDIES workandworkerstrainingandexpertisewerecomparabletosimilaronesinthetesthall.Thereference hallcouldnotbeseenfromthetesthall.Disturbingreflectionsmighthavebeenproducedinbothhalls. Lightcomingfromluminairesmighthavereflectedfromreflectivealuminiummaterialhandledevery nowandthen. Lightingconditions Originally the factory hall was equipped with lighting installation that provided uniform general lighting to the area (2*58 W, 4000 K). Only limited daylight via windows was available. However, daylightdidnotcontributetothegeneralilluminance.Thelightingwasswitchedoffattheendofthe workingday.Thenewlightinginstallationconsistsoftheoldreducedgenerallightinginstallationat ceilinglevelincombinationwithsuspendedlocalisedlighting(low-glareluminaries,2*54W,4000K) abovethemaintaskareas.Thegenerallightingwasgroupedinsuchawaythattimeswitchesswitched itoninthoseareasonlywhereworkwasactuallybeingcarriedout.Twoorthreepersonswereworking atoneworkplace,andtheywereabletoswitchoffthelocalisedlightingfromtheassemblylinewhen they no longer needed it. The task area illuminances in the factory before and after the change are showninTable10-6. Table10-6.Horizontalandverticalilluminances(EhandEv)attheassemblytablesandinthesurroundingarea . Typeof Generallighting Assemblytables installation Eh(lx) Ev(lx) Eh(lx) Ev(lx) Oldinstallation 400–650 100–300 450–600 100-300 Newinstallation 300–380 100–170 800–1300 250-500 Procedure Lightingwaschangedonceandthelightingenergyuse,productivityandabsenteeismweremonitored beforeandafterthechange.Participantswereinformedthatnewlightingwouldbeinstalledandthey knewthattheirproductivitywouldbemeasuredallthetimeasalways. Dependentvariables Energyuse,productivityandabsenteeismweremonitoredbeforeandafterthelightingchange.Results have not been statistically tested because only before-and-after results were observed, many other variablesmighthavehadtheireffect,andsignificancetestingwouldnotmakeresultsanystronger. Results Althoughtheinstalledlightingelectricitypowerwasreducedbyonly7%(from45kWto42kW) , the energy consumption reduced by 39%, from 207 to 127 MWh/year. This reduction in energy consumptionismainlyduetothefactthatthelocalisedlightingwasswitchedononlywhenandwhere itwasneeded,andthereducedgenerallightingwasgroupedperlargerworkingarea,andwasswitched offautomaticallyoutsideworkinghours. Thegroupingofluminairesbeforethechangewasnotfullyinaccordancewiththeworkingareas–the lightingintheareamighthavebeenonbecausetheadjacentworkingareawasoccupied.

280 10 CASESTUDIES

Theproductivitymeasurementsysteminthefactorywaschangedin2003.Forthisreason,thevalues for2003arenotcomparablewiththelatervaluesandwerethusnotused.Table10-7showschangesin bothproductivityandabsenteeism.Theproductivityin2004,priortothelightingchange,hasbeenset asareferencevalue,andchangesaftertheinstallationofthenewlightingareshownaspercentages. Values from the reference hall have been shown in the same way, although there was no lighting change there. The productivity change in the test hall together with the lighting change was a 5.5% increasecomparedtoa1%decreaseinthereferencehall.Absenteeismwasreducedby2.5%inthetest hallandincreasedby0.4%inthereferencehall. Table10-7.Changesintheproductivityandabsenteeismrateinboththetesthallandthereferencehall(NAmeansNot Available) . Timeperiod Productivity Absenteeism Testhall Referencehall Testhall Referencehall Week26-52(2003) NA NA Reference Reference Week01-20(2004) Reference Reference -5.80% -0.60% Week26-52(2004) +5.50% -1% -8.30% -0.20% Themainresultsofthisstudyare(nostatisticaltestsused): − Productivityincreasedintesthallafterthelightingchangeatthesametimethattheproductivity ofthereference(nolightingchange)groupsdecreasedslightly − Absenteeismdecreasedintesthallafterthelightingchangeandinreferencehall(nolighting change)absenteeismslightlyincreased Discussion Thestudyshowedthatgenerallightingcanbereducedbyemployingtasklightingandanimproved lighting control system. This can yield an increase in productivity and decrease in lighting energy consumption. Improving the lighting in industry does not automatically mean using more energy. A strong conclusion regarding productivity changes in this type of before-and-after study should have been avoided.Thisisbecausekeepingallvariablescontrolledispracticallyimpossible.

281 10 CASESTUDIES

10.12 Casestudy11:FactoryinItaly

Place:Italy(PiemonteRegion) Buildingtype:Industry,mechanicworkshop Contact:SimonettaFumagali(ENEAIspra) This is an example extracted from a number of similar projects in Italy. In each project, energy consumptions are measured and related energy savings are directly calculated. In about already completed500analogousinstallations,averageenergysavingshavebeenaround51%.Projectshave beenandareusedwithintheItalianWhiteCertificatesScheme.

Placedescription TheexampleconsistsoflightinginstallationsinamechanicworkshopinPiemonteRegion,whichwas intestingphaseinMarch2008.Theprojectrequirementwastohavethesameilluminanceasbefore theretrofit,butwiththepossibilitytoincreaseilluminancevalues.Forthisreason,theinstalledpower hasbeenincreased(36Wlampsreplacedwith58W). 6m 24.1m 143.6m Figure10-43.Dimensionsofthebuilding.

Luminariesdescription Thelightinginstallationconsistedofregulararrayof360luminariesdividedin6rowsand60columns. Eachluminaireconsistedoftwolinearfluorescentlamps.Luminarieswithelectronicdimmableballasts have been installed with the energy saving module for continuous monitoring of the energy consumption. Lamps − T8linearfluorescentlamps − power:58W − luminousflux:5200lm − CCT:4000K − CRI:85 Ballast − electronic,dimmable(6-100%) Lightingcontrol – photosensor Typeofreflector − diffuser:polycarbonate,complexparabolareflector.LOR>75

282 10 CASESTUDIES

Figure10-44.Theluminaire.

Figure10-45.Insidetheluminaire. Photometryoftheluminaire Figure10 -47 .Luminairecharacteristics: Figure 10 -46. Luminaire photometric characteristics Intensity diagram. (luminances(cd/m²)vsangles).

283 10 CASESTUDIES

Measurements

Average Maximum Minimum Uniformity Emed318.15lx Emax363.90lx Emin183.91lx Emin/Emed=0.58 Emin/Emax=0.51 Emax/Emin=1.98 Figure10-48. Illuminanceonworkplane,withtheluminanceatfullpower(isoluxdiagram). Lightingpowerdensity=8.84W/m 2 Normalizedpowerdensity=W/m²/100lx=2.78W/m 2.100lx

Figure10 -49. Exampleofdimming:dependingonanexternallightcontribution (simulating daylight), power and illuminance from the luminaire are shown. Totalilluminance(externalsourceandluminaire)isalsoshown.

284 10 CASESTUDIES

10.13 Casestudy12:School-lightingrefurbishment

Place:TheNetherlands(Zwijndrecht) Buildingtype:Secondaryschool Contact:TruusdeBruin-Hordijk(FacultyofArchitecture,TechnicalUniversityDelft,The Netherlands)

Placedescription Measurements were done in two classrooms 2.23 and 2.20. Classroom 2.23, which is facing North- West, is experienced as dark by teachers. Another classroom 2.20, which is facing South-East, is experiencedbrightbyteachers.Thejudgementofthelightingexpertisnegativeforclassroom2.23and isneutralforclassroom2.20.Bothclassroomshavegreywallsandmuchfurnitureinit(Figure10-50). Dimensionsoftheclassroomsare:7.2x7.2x3m 3.Thesearenormalstandarddimensionsforprimary andsecondaryclassroomsinTheNetherlands. Figure10-50.Classroom2.20,windowsideandcorridorside .

Luminariesdescription Both classrooms have six high-efficient surface-mounted luminaires with mirror reflector (Philips TCS298), each luminaire with one Philips TL5 HO 49 W/830 lamp (Figure 10-51) with electronic ballast. The illuminance on the work plane is 350 lx at full power. The school has replaced the old lampsandluminairessomeyearsago.Thelampswereplacedintworowsofthreeluminairesparallel tothewindowfaçade.Thelampsweredimmableandhavedaylightsensors.Therewerealsopresence detectorsintheseclassrooms(Figure10-52).Therewasalsoasymmetricboardlighting.

Figure10-51. PhilipsTL5lamp. Figure10 -52 .Newlighting installation.

285 10 CASESTUDIES

Accesstodaylight Thedaylightfactorsweremeasuredon23September2008bya(notcomplete)overcastsky(Figure 10-53). Table10-8and10-9showthedaylightsituationoftheclassroomswithdaylightfactorsmeasuredona regular grid on table height (0.75 m). Table 10-10 shows the daylight factors in the middle on the blackboardandtheouterleftandrightpartoftheblackboard.Classroom2.23hasagreenchalkboard, whereasclassroom2.20hasawhiteboard. Figure10-53. Theskyatthedayofthemeasurements . Table10-8.Thedaylightfactorsonstudenttableheightinclassroom2.23 . blackboard daylightfactor(%) chairteacher 2.2 0.56 0.30 8.9 2.5 0.66 0.29 windowzone 11.6 2.9 0.74 0.29 corridorzone 12.3 2.3 0.63 0.31 Table10-9.Thedaylightfactorsonstudenttableheightinclassroom2.20 . whiteboard daylightfactor(%) chairteacher 2.2 0.77 0.42 8.3 2.4 0.88 0.4 windowzone 8.5 2.7 0.86 0.46 corridorzone 8.8 2.3 0.72 0.34 Thedaylightfactorisdecreasedbelow0.5%onthecorridorsideoftheclassroom. Table10-10.Thedaylightfactors(%)ontheblackboardsinthetwoclassrooms . Boardtype left middle right greenchalkboard2.23 3 1 0.4 whiteboard2.20 2.4 0.82 0.38

286 10 CASESTUDIES

Figuresbelowshowluminancepictures,takenwithaluminancecamerawithafish-eyelens,fromthe back-sideoftheclassrooms.Itshowsthesituationforasittingstudentwitheyelevelon1.2m.The figuresshowthedaylightsituationwithandwithoutelectricallighting. Figure10 -54 .Classroom2.23withoutelectrical Figure10 -55 .Classroom2.23withelectricallighting, lighting,seenfromstudentposition. seenfromstudentposition. Figure10 -56 .Classroom2.20withoutelectrical Figure 10 -57. Classroom 2.20 with electrical lighting, lighting,seenfromstudentposition. seenfromstudentposition.

287 10 CASESTUDIES

Luminanceimagestakenintheviewofteacherstandinginfrontoftheclass: Figure10-46.Figure10 -58 .Classroom2.23withoutClassroom2.23without Figure10Figure10-47.-59 .Classroom2.23withClassroom2.23with electricallighting,seenfromteacher electricallighting,seenfromteacher electricallighting,seenfromteacher position. position. position.position. Figure10-48.Figure10 -60 .Classroom2.20withoutClassroom2.20without Figure10Figure10-49.-61 .Classroom2.20withClassroom2.20with electricallighting,seenfromteacherelectricallighting,seenfromteacher electricallighting,seenfromteacherelectricallighting,seenfromteacher position.position. position.position. The luminance values in the windows of the classroom 2.23 are higher than in the windows of classroom 2.20, because of the presence of trees outside the classroom 2.20. That can explain the differenceinthemeasureddaylightfactors,andsomoreenergysavingsareexpectedduetodaylight sensors. Theluminanceimagesillustratehowtheautomaticdimmingoftheelectriclightingcancompensatean asymmetrical day-light distribution on the work plane (windows zone/corridor zone), and on the blackboard.

288 10 CASESTUDIES

10.14 Casestudy13:School-brightclassroom

Place:TheNetherlands(Zwijndrecht) Buildingtype:Secondaryschool,newbuilding Contact:TruusdeBruin-Hordijk(FacultyofArchitecture,TechnicalUniversityDelft,The Netherlands)

Placedescription The school building of the case study 12 (Chapter 10.13) has a new part, where the classrooms are situatedattheNorth-Eastsideoftheschool.Thestudywasdoneintheclassroom2.07.Teachersand lightingexpertbothexperiencedthisclassroomasbright.Thelightingexpertexperiencedtheambiance asarestfulplaceforbusypupilsbecausetheuniformityoflightingandtheshadowingissoft,asresult ofthereflectionsfromallthewhitewallsandceiling.Thedimensionsoftheclassroomare7.2x7.2x 2.8m 3. Luminariesdescription Theclassroomisnewwithawhiteceilingwithembeddedluminaires(Figure10-62).Sixluminaires, tworowswiththreeluminares,wereplacedparalleltothewindowfacade.Eachluminairecontainstwo OsramT836W/830lamps.

Figure10-62.Photosofclassroom . The illuminance on the work plane is 350 lx at full power. The energy-efficient system of the case study 12 (Chapter 10.13) was not placed in the new classrooms, because there was no longer governmentalsubsidy.Therewasnoblackboardlightingbecauseatthetimeoflightinginstallationthe argumentfornothavingblackboardlightingwasthatwhite-boardsareusednowadays.Theargument isvalid,asweseeinthedifferencesbetweenFigures10-56and10-57ofthecasestudy12,whiteboard hashigherluminances.However,therewasagreenchalkboardintheclassroom2.07. Thelampsweredimmableandthesystemisequippedwithdaylightsensors,butthedaylightsensors were only in the luminaire row of the window zone. The classrooms were also equipped with occupancydetection.

289 10 CASESTUDIES

Tables10-11and10-12showthedaylightfactorsonworkplaneheightandontheblackboard.The differences with the last case study are clear; the corridor zone has higher daylight factors, because thereismorereflectedlightinclassroom2.07. Table10-11.Thedaylightfactorsonstudenttableheightinclassroom2.07. blackboard daylightfactor(%) chairteacher 2.6 1.1 0.90 12.7 3.4 1.5 1.0 windowzone 14.7 4.2 1.6 1.1 corridorzone 11.4 3.6 1.6 0.77 Table10-12.Thedaylightfactorsontheblackboard. Boardtype left middle right blackboard2.07 3,4 1,7 1 Figuresbelowshowtheluminancecontrastsasseenfromstudentandteacher’spointofview,onecase with only daylight and another with electric lighting switched on. The difference between the two situationsofFigure10-65and10-66islow.Theelectricallightinghasalowimpactbecausethelevel ofdaylightishighenough.Therearenodaylightsensorsinthecorridorzone,otherwisethesensors wouldhaveprobablyswitchedoffalltheelectricallighting. Thejudgementofthelightingexpertisthatclassroomhasagooddesign.Itiscomfortableforteacher andstudent,anditisabrightandrestfulplace.Theschoolhasdonemuchforenergyreductionbythe placementofdaylightsensorsandoccupancydetectionandagoodchoiceofmaterialsforwalls,ceiling andfurniture.Furtherenergyreductionmightberealisedbydaylightsensorsinthecorridorzone,too. Figure10 -63 .Classroom2.07without Figure10 -64 .Classroom2.07with electricallighting,seenfromthestudent electricallightingswitchedon,seenfrom position. thestudentposition. Figure 10-63 and 10-64 show the luminances of the room 2.07 without and with electrical lighting switched on, seen from the student position. One luminaire in the middle of the window zone is switchedoffbythedaylightsensor.

290 10 CASESTUDIES

Figure 10 -65 .Classroom2.07withoutelectrical Figure10 -66 .Classroom2.07withelectrical lighting,seenfromtheteacherposition. lightingswitchedon,seenfromtheteacher position. Figures10-65and10-66showtheluminancesoftheroom2.07without andwithelectricallighting switchedon,seenfromtheteacherposition.Thedaylightsensorhasswitchedoffalltheluminariesin thewindowzone.

291 10 CASESTUDIES

10.15 Casestudy14:Primaryschool-brightclassroom

Place:TheNetherlands(Leidschenveen) Buildingtype:Primaryschool Contact:TruusdeBruin-Hordijk(FacultyofArchitecture,TechnicalUniversityDelft,The Netherlands)

Placedescription Measurementsweredoneintwoclassrooms:onefacing north,andtheotherfacingsouth.Bothclassroomshave lower windows for view and upper windows for daylightaccess(Figure10-67).

Figure10-67. Photosofthebuildingandclassrooms. Luminariesdescription There are six surface-mounted luminaires (Figure 10-68),thesameasincasestudy13(Chapter10-14) but here the luminaires are perpendicular to the windowfaçade.Onlythetwoluminairesnearestthe window façade have daylight sensors. There is no blackboardlighting. Figure10-68.Luminaire .

292 10 CASESTUDIES

Measurements Table 10-13 shows the daylight situation in the North classroom on 24 December 2003. It was a cloudy,rainyday.Thedaylightfactorsataregulargridatthetaskfieldoftheclassroomandata0.5m edgearoundthetaskfieldareshowninthetable. Table10-13.Thedaylightfactorsatworkplaneheight. a b c d e f 1 2.58 3.10 2.62 1.97 2.82 1.70 2 3.97 3.80 3.86 3.25 3.39 2.22 3 1.64 1.89 1.93 1.76 1.73 1.48 4 0.98 1.12 1.15 1.07 0.92 0.70 5 0.81 0.80 0.86 0.80 0.76 0.68 6 0.67 0.82 0.80 0.88 0.90 0.76 As the façade is composed by lower windows and upper windows, the daylight factors are quite uniformonthetaskfield,withaminimumofabout0.7(brightwallsandceiling).Figures10-69and 10-70showtheluminancemeasurements,donewithaspotluminancemeter,inaNorthandaSouth classroom. Sun shine reaching the blackboard and resulting high contrasts and shadows can be noticed in the Figure10-70.Astheluminairesareperpendiculartothefaçade,thefluorescentlampsarelesshidden bythelouversforapupilslookingattheblackboard.

Figure 10 -69 . Luminance measurementsinnorth Figure10 -70 .Luminancemeasurementsinsouth classroom. classroom.

Interviews The electric lighting is switched on the whole day in winterand about 3-4 hours a day in summer. Teachersexperiencedthenorthclassroomasdarkanddull.

293 10 CASESTUDIES

10.16 Casestudy15:PrimaryschoolBeveren-Leie-lightingrefurbishment

Place:Belgium(Waregem) Buildingtype:School Contact:A.Deneyer(BelgianBuildingResearchInstitute) Placedescription Thereare300pupilsinthisprimaryschool.Theaim of the refurbishment was to improve the performance of the lighting installation. At first, a test room has been refurbished, and then six other classesfollowedthesameway. Before refurbishment, classrooms were equipped with linear fluorescent opalescent luminaires with poor CRI, that were driven with electromagnetic ballasts.Therewasnospeciallightingfixtureforthe blackboard.

Figure10-71.Pictureofthetestroombeforerefurbishment.

Figure10-72.Photoofthetestroomafterrefurbishment.

294 10 CASESTUDIES

Daylightentersfromonesideoftheclassroomwhichisshadedwith“californianscreens”.Theeight oldluminaireswerereplacedbysixnewluminaries.Anextrathreenewluminaireswereaddedsoasto littheblackboard. Luminairedescription − aluminiumhighefficiencylouvers − T5fluorescentlampsof54W − electronicballast&CRI>80 Blackboardluminaire: − asymmetricaloptic − T5fluorescentlampsof35W − estimatedpowerdensity:10W/m² Figure10-73.Luminaire. Measurements Oldinstallations − averageilluminanceontheworkplane:230lx − normalizedlightingpowerdensity:6.6W/m 2.100lx Newinstallations − averageilluminanceontheworkplaneatfullpower:502lx − normalizedlightingpowerdensity:2W/m².100lx Increaseinilluminancelevelsontheworkplane:100% Totalreductioninlightingenergyconsumption:33% Forthesevenclassrooms: − totalinvestment:10001.25€ − estimatedbenefitsfromenergyconsumption:569.46€/year − estimatedbenefitsfrommaintenance:174.71€/year − timetoretrofit:13.4years Occupantsatisfaction Teacherswereamazedthattheycouldusetheoverallsurfaceoftheblackboard,asitislitproperly.

295 10 CASESTUDIES

10.17 Casestudy16:HighschoolofStEligius-lightingrefurbishment

Place:Belgium(Anverse) Buildingtype:School Contact:A.Deneyer(BelgianBuildingResearchInstitute) Placedescription InthehighschoolofSaintEligius,studentscanstudyuntil theyare18yearsold. The school had 25 years old lighting fixtures. The old lighting system had T12 fluorescent tubes (38mm) with electromagneticballastsandopalescentopticdiffuser. In order to reduce the lighting energy consumption and to improvethecolourrenderingofthelightingitwasdecidedto changetheluminairesin2007.

Figure10 -74 .Photoofclassroombefore Figure10 -75 .Photoofclassroomafter refurbishment. refurbishment. Theheightoftheclassroomwas3.5m.Thenumbersofluminaireswerekeptthesameandthenew luminarieswereinstalledinthesameplaceasoldinstallations.Hence,therewasnoneedtochangethe wiring.Refurbishmentwasdonein17classrooms,onecorridorandthestairsofthebuilding.

296 10 CASESTUDIES

Luminairedescription − T5fluorescentlampof28Wpowerperluminaire − electronicballast&CRI>80 − highefficiencyaluminiumlouvers − estimatedlightingpowerdensity:8W/m² Figure10-76.Luminaire. Measurements Oldinstallations − averageilluminanceontheworkplane:330lx − normalizedlightingpowerdensity:7.7W/m 2.100lx Newinstallations − averageilluminanceontheworkplaneatfullpower:404lx − normalizedlightingpowerdensity:2W/m².100lx Increaseinilluminancelevelsontheworkplane:22% Totalreductioninlightingenergyconsumption:74% Forthe17classrooms − totalinvestment:32308€ − estimatedbenefits/energyconsumption:2041.68€/year − estimatedbenefits/maintenance:242.62€/year − timeRetrofit:14.1years

297 10 CASESTUDIES

10.18 Casestudy17:PrimarySchoolinRoma(1)

Place:Italy(Roma) Buildingtype:school(PrimarySchool) Contact:FabioBisegna(UniversitàdiRoma”LaSapienza”)

Placedescription TheschoolissituatedinRome,intheSouth-Easternpartofthecity.Measurementshavebeendonein onlyoneclassroomthatisfacingSouth-East.Theclassroomhasaparticularshape(itismoreorlessa squarebutwithoutacorner).Thedimensionsofthemainsidesare7.05mx7.33m,theceilingheight is 3.25 m and the workplane height is 0.72 m.The classroom has a white ceiling and light cream- colouredwalls.Furniturewaspresentwhenthemeasurementswerecarriedout.

Figure10-77.Classroom:windowside. Figure10 -78.Classroom:corridorside.

Luminariesdescription − lamptype:fluorescentlamp − CRI:between80and90 − CCT:4000K − lightingcontrol:manualon/off − reflector-diffuser:translucent acrylicopalglass − totalluminousefficacy (includingballastandluminaire) atfullpower:75lm/W − brand:Durlum Figure10-79. Photometryoftheluminaire .

298 10 CASESTUDIES

Measurements Therearefoursurface-mountedluminariesineachroom.EachluminaireiscomposedbytwoT836W fluorescentlampsandatranslucentacrylicopalglass.Lampsarenotdimmable.Luminairesareplaced in two rows of two luminaires parallel to the window façade. There are not additional lamps to illuminate the blackboard zone. Estimated installed lighting power density is 7.6 W/m 2. Illuminance measurementsweredonefora gridofpointstracedintheclassroom.Theaverageilluminance with artificiallightingatfullpowerwasmeasuredtobe284.6lxwithuniformity0.7.

Figure10 -80 .Illuminancesontheworkplanedueto Figure10 -81 .Illuminancevaluesonthework daylight: measured on 21th December at 12 am planeatfullpower(artificiallight). under overcast sky conditions (external illuminance 5000lx).

Studyonoccupantsatisfaction Numberofusers: 20pupilsand1teacher Lengthofthetestperiod(seasonconcerned): winter Realschedules: from8:15amto4:15pm typeofwork: readingonblackboard,payingattentiontotheteacher,writing,reading,drawing,looking to the paper (student tasks), writing on blackboard, talking to students, paying attention to working students,preparinglessons(teachertasks) Studyresults Positiveornegativejudgementbyusersconcerningtheirworkingarea: pupilswerecomplainingabout sunduringthemidhoursoftheday Globalpositiveornegativejudgementbyusersconcerningtheartificiallighting: positive

299 10 CASESTUDIES

Control quality of both artificial and daylight: artificial lighting system in the classroom distributes light uniformly, doesnot cause glare and respects the regulations values, windows provide sufficient naturallightinganddaylightfactorvalueisrespectedaswell. Visualcomfort,lightandspace,warm/cool: pupilswerecomplainingaboutthesuninthemidhoursof theday,complainsaboutoverheatinginsummer,enoughlightintheclassroom

300 10 CASESTUDIES

10.19 Casestudy18:PrimarySchoolinRoma(2)

Place:Italy(Roma) Buildingtype:school(PrimarySchool) Contact:FabioBisegna(UniversitàdiRoma”LaSapienza”)

Placedescription The school is located in Rome, in the South-Eastern part of the city. One classroom, facing South- West,hasbeenmeasured.Theclassroomhasawhiteceilingandlightyellowwalls.Themeasurements weretakenwithfurnitureinsidetheclassroom.Theclassroomhasmoreorless asquareshapewith dimensionsof6.10mx6.60mandceilingheight3.15m.

Figure10 -82 .Classroom:corridorside. Figure10 -83 .Classroom:windowside.

Luminariesdescription − lamptype:fluorescentlamp − CRI:between80and90 − CCT:4000K − lightingcontrol:manualon/off − reflector-diffuser:aluminium paraboliclouvre − brand:Regiolux Figure10-84. Photometryoftheluminaire.

301 10 CASESTUDIES

Figure10-85.Luminaires.

Measurements Therearefoursurface-mountedluminaries.EachluminaireiscomposedbytwoT836Wfluorescent lamps. Light distribution of the luminaire is directed by aluminium parabolic louvers and its matt anodizing is for representative illumination requirements. Lamps have only manual on/off lighting controlsystem. Luminaireswereplacedintworowsoftwoluminaireseach, paralleltothewindow façade. The average illuminance on the work plane is 350 lx at full power. There is no additional blackboardlighting.Theinstalledlightingpowerdensityis8.54W/m 2.Pointsofmeasurementwere arrangedcross-shapedwitheachrowplacedinthemiddleoftheclassroom.Theaverageilluminance withartificiallightingatfullpowerwasmeasuredtobe350lxwithuniformity0.8.

Figure10 -86 . Illuminance on the work Figure 10 -87 . Illuminance values on the plane due to daylight: measured on 18th workplaneatfullpower(artificiallight). November at 12 am under sunny sky conditions(externalilluminance48000lx).

302 10 CASESTUDIES

Studyonoccupantsatisfaction Numberofusers: 23pupilsand1teacher Lengthofthetestperiod(seasonconcerned): winter Realschedules: from8:15amto4:15pm Type of work: reading on blackboard, paying attention to the teacher, writing, reading, drawing, looking to the paper (student tasks), writing on blackboard, talking to students, paying attention to workingstudents,preparinglessons(teachertasks) Studyresultsanddiscussion Positiveornegativejudgmentbyusersconcerningtheirworkingarea: kidswerecomplainingabout suninthecentralhoursofthedayandhadtomovetheirdesks Globalpositiveornegativejudgmentbyauserconcerningtheartificiallighting: positive Visualcomfort,lightandspace,warm/cool: kidscomplainingaboutthesuninthecentralhoursofthe day,overheatinginsummer,sufficientlightintheclassroom Artificiallightingsystemdistributeslightuniformly,doesnotcauseglareandrespectstheregulations values. However, much more for energy reduction could be done by providing the artificial system withdaylightsensorsandpresencedetection.Thematerialsandcolorsofwallsandceilingandtheir reflectancecoefficientsareidealtoreduceelectricityconsumptionbyprovidingagooddistributionof lightandagreateramountofreflectivelight.Windowsprovidesufficientnaturallightinganddaylight value is respected as well. A further improvement could be reached by the placement of daylight systemsbutcouldsolvesomeproblemssuchasoverheatinginsummerandglareinthemidhoursof theday.

303 10 CASESTUDIES

10.20 CaseStudy19:EnergysavingpotentialintheUniversity

Place:Poland Buildingtype:ServiceSector,school Contact:ZbigniewMantorski(WASKOS.A.,Gliwice,Poland)

Placedescription The site of the study is a five storey building of the Faculty of Electrical Engineering, Silesian UniversityofTechnology.Thebuildingwasbuiltin1963.

Figure10 -88 .Southeastern Figure10-89.Auditorium. Figure10-90.Classroom. façade.

Luminairesdescription

Figure10.91 Luminairesplacement(halfofthe3rdfloor).

304 10 CASESTUDIES

Table10-14.Installedlamps Typesofsources Number InstalledPower[W] Fluorescentlamps 1029 39470 CompactFluorescents 54 1193 Incandescentlamps(GLS) 126 19800 Halogenlamps 32 2630 Incandescentlampswithreflectors 3 130 Dischargelamps(Mercury,Sodium) 8 1910 Totalinstalledpower:65193W Minimumlightingpowerdensity:2.33 W/m²incorridors Maximumpowerdensity:22W/m 2insomeroomswithincandescentlamps

Figure10-92.Picturesofluminaires. Measurements: The building is used between 8:30 am. and 6 pm. to 8 pm., except in the weekends. Some of the lighting in the corridors remains switched on all the time for security reasons. The total energy consumptionofthebuildingis99.4MWhperyear,ofwhichlightingrepresents37%. Table10-15.Energyconsumption. Typeofsource Energyconsumption %ofthetotal [MWh/year] consumption FluorescentLamps 22.66 60.5 SodiumandMercuryLamps 7.28 19.44 IncandescentLamps(GLS) 7.51 20.05 Theresultsofthephotometricmeasurementsinauditorium: − Emean=350lx − Uniformity=0.58 Theilluminanceinthepedagogicroomswasfoundtobelowerthanthestandardlevels.Theuniformity ratioinmostroomswasbetween0.5and0.7.

305 10 CASESTUDIES

Figure10-93.Sampleofilluminancemeasurements(Auditorium). Table10-16.Potentialdecreasesinlightingenergyconsumptionwithdifferentactions. Actions PotentialBenefits

Replacementofincandescentlampsby 6.44MWh/year compactfluorescentlamps ReplacementofoldT12fluorescentlamps 1.44MWh/year bynewT8lamps ReplacementofoutdoorSodiumand 3.93MWh/year Mercurylampsbynewmoreefficientones The potential decrease in lighting energy consumption (without occupancy and dimming control) is 11.81MWhperyear(31.5%ofthecurrentelectricenergyconsumptionforlighting).

306 10 CASESTUDIES

10.21 CaseStudy20:Renovationofanauditorium

Place:Finland(Helsinki) Buildingtype:Auditorium,academic Contact:EinoTetri(UniversityofTechnology,Helsinki,LightingUnit)

Descriptionoftheinitialcondition

Figure10-94. Picturebeforetheretrofit. Luminaries: − A40yearsoldinstallationwith87luminaries − Eachluminairewith2T12lampsof40Weach(CRI=63). − Possibilityofdimming.

Descriptionofthenewconfiguration Luminaries: − Theoldluminarieschangedby69newones − Eachluminairewith2T5lampsof49Weach(CRI>80) − Ballast:DALI − In each luminaire: one lamp with CCT = 4200 K, the otherwithCCT=17000K Figure10-95. Pictureaftertheretrofit.

307 10 CASESTUDIES

Measurements Table10-17. Measurementresults. Average Average UGR Total LOR CCT CRI Illuminance Luminance power (lx) (cd/m²) (W) (K) Before 428 45 14 10571 0.39 4000 63 After 974 103 21 7383 0.74 4200 >80 17000 Luminaires were replaced with new T5-lamp luminaires with electronic ballasts. The old luminaries wereveryinefficient(LOR39%)comparedtothenewluminaries(LOR74%).T5lampsoperatewith electronicballasts,thusdecreasingthepowerlossesofballastandalsoimprovingtheefficiencyofthe gasdischarge. The installed power is reduced significantly while the average illuminance is doubled. The energy savingswere27%whencomparedtooldsystematfullpower.Lampsaredimmedmostofthetime withpre-setscenes.Forinstancetherearepresetscenesforlecture,lecturewithvideo,exam,etc.One week measurement indicated 55% energy savings, in comparing the measurement values with the energyconsumptionoftheoldsystematfullpower.

308 10 CASESTUDIES

10.22 CaseStudy21:Replacementofmetalhalidelampbyinductionlamp

Place:Korea Buildingtype:Gymnasium Contact:YmingChen(ShanghaiHongyuanLighting&ElectricEquipmentCo.Ltd)

Placedescription

Surfacearea:800m 2

Figure10-96.Shapeofthebuilding.

After

Befor e

Figure 10 -97 . Picture of the room before andafterthereplacement.

309 10 CASESTUDIES

Luminairesdescription

Figure10-98.Luminairesdescription. Table10-18.Comparisonbetweenthetwosources(MetalHalide&InductionLamp). Lamp Voltage Power Luminous Efficacy Tc CRI Lifetime (V) (W) flux(lm) (lm/W) (K) (h) MH 220 400 34000 85 4300 65 12000 IL 220 200 19600 98 4100 80 60000 MH=MetalHalideIL=InductionLamp

310 10 CASESTUDIES

Measurements Table10-19.Comparisonbetweenthetwofacilities. Items Oldsystem Newsystem Lightsource&power MHL400W LVD200W Lampefficacy 85lm/W 98lm/W CRI 67 83 Unitfixturepower 440W 210.7W Fixturenumber 68 66 Averagegroundilluminance 420lx 580lx Lifetime 12000h 60000h Totalpowerconsumption 29.92kW 13.9kW ForMetalHalideLamp: − lightingpowerdensity=37.4W/m 2 − normalizedlightingpowerdensity=8.9W/m 2.100lx ForInductionLamp: − lightingpowerdensity=17.37W/m 2 − normalizedlightingpowerdensity=3W/m 2.100lx In addition to the improvement in luminous efficacy of lamp, we can notice the large improvement broughtbytheopticefficiency.

311 10 CASESTUDIES

10-23 Appendix1.Datalistforcasestudies.

Minimumrequired Moreifpossible -Placedescription Site:country,city,buildingtype Characterizationoftheaccesstodaylight Map,ceiling&workplaneheight Possibletroublescausedbydaylight Luminairespositions Schedulesofusers(includingcleaners) Photography W/m²installed -Luminairesdescription - Lamptype,RCI,CT Photometryoftheluminaire Conception Ballast Geometryoftheluminaire Lightingcontrol PhotographyoftheluminaireONandOFF Typeofreflector-diffuser Catalogprice Global efficiency of one luminaire at full power(lm/W)announced Brand -Measures - Illuminancesontheworkplanefullpower Wattatfullpower(withawattmeter),cos ϕ Average,Maximum,Minimum,Uniformity Ifdimmable:graphlxvsWatt Illuminancesandstatisticsontheworkplane Ratiobetweensurfaces(horizontal&vertical) ifnotatfullpower ofluminancesorilluminances Glareindicator(maxluminance,UGR…) Materialsphotometry,kWh/(m².year) -Interviews Global positive or negative judgment by a Number of users, length of the test period, Results userconcerningisworkingarea seasonsconcerned Global positive or negative judgment by a Real schedules, glasses, known eyes userconcerningtheartificiallighting difficulties,typeofwork(screen?…) Typeoftheprecedentlightingdesign Controlqualityofbothartificialanddaylight Visualcomfort,lightandspace,warm/cool Designoftheluminaire Pointofviewofthemaintenance

312 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

Chapter11:Technicalpotentialforenergyefficientlightingand savings Topicscovered 11 Technicalpotentialforenergyefficientlightingandsavings...... 315 11.1 Lightconsumptionin2005 ...... 315 11.2 Estimatedelectriclightconsumptionin2015/2030...... 318 11.3 Estimatedelectricenergyconsumptionforlightingin2005/2015/2030...... 320 11.4 Conclusions...... 322 References...... 323

313 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

314 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

11 Technicalpotentialforenergyefficientlightingandsavings

11.1 Lightconsumptionin2005 TheestimatedglobalelectriclightconsumptioniscalculatedasquantityoflightQ,whichisthe luminousfluxintegratedoverdurationoftime.Theunitofquantityoflightislumen-hour,lmh.The luminous flux is produced by different lamp types. Since light cannot be stored, the light consumption and production are always equal; the light produced by lamps is immediately consumedbytheusers. Theaverageshareofelectriclightconsumptionperpersoncanbeexpressedastheratiobetween lightconsumptionandtotalpopulationinaparticularyear. Q Qp= (11-1) PP where QpLightconsumptionperpersonMlmh/person,a QLightconsumption,Plmh/a Pp Populationoftheworld,billion The electric energy consumption for lighting can be expressed as the ratio between the average consumptionoflightperpersonandluminousefficacyofaparticularlamp.

QP EP= η (11-2) where EP Electricenergyconsumptionperperson,MWh/person,a Qp Lightconsumptionperperson,Mlmh/person,a η Lampluminousefficacy,lm/W TheelectricenergyconsumptionperpersoncanalsobeexpressedinkWh/person,a(inthatcasethe resultantamountmustbemultipliedby1000).Table11-1showselectricenergyconsumptionfor residentiallightingcalculatedfordifferentlamptypes.Thecalculationisbasedonestimatedlight consumptions.Thepopulationoftheworldwas6.7billionin2005.(IEA2006) Table11-1. Estimatedelectriclightconsumptionfordifferentlamptypesforresidentiallightingandcalculatedlight andenergyconsumptionsperperson.(IEA2006) Lamptype Luminous Light Lightconsumptionper Energyconsumption efficacy consumption person perperson

η[lm/W] Q[Plmh] QP[Mlmh/person,a] EP[kWh/person,a] Incandescent 12 8.5 1.3 105.7 Tungstenhalogen 20 1.3 0.2 9.7 CFL 45 1.9 0.3 6.3 LFL 66 8.2 1.2 18.5 Total 19.9 3.0 140.3 Intheresidentialsector,theamountoflightproducedbyincandescentlampsisapproximatelyequal to that by fluorescent lamps. However, the annual electric energy consumption per person of incandescentlampsisapproximatelysixtimesmore thanthatoffluorescentlamps.In2005,the shares of halogen and CFL lamps in both the light consumption and energy consumption were relatively low. The total annual light consumption in residential sector was approximately 3.0

315 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

Mlmh/person,aandtheelectricenergyconsumptionwas140kWh/person,a. High intensity discharge lamps are dominant in the outdoor lighting sector. The total light consumptioninoutdoorlightingin2005wasestimatedtobe2.3Mlmh/person,aandtheelectric energyconsumptionwascorrespondingly46.6kWh/person,a(Table11-2). Table11-2. Estimatedelectricenergyconsumptionforoutdoorlighting. (IEA2006) Lamptype Luminous Light Lightconsumptionper Energyconsumption efficacy consumption person perperson

η[lm/W] Q[Plmh] QP[Mlmh/person,a] EP[kWh/person,a] HID 50 15.6 2.3 46.6 Total 15.6 2.3 46.6 In the industrial sector, fluorescent lamps and HID lamps were dominant and resulted in total estimated light consumption of 5.7 Mlmh/person,a and in electric energy consumption of 96.9 kWh/person,a(Table11-3). Table11-3. Estimatedelectricenergyconsumptionforindustriallighting. (IEA2006) Lamptype Luminous Light Lightconsumptionper Energyconsumption efficacy consumption person perperson

η[lm/W] Q[Plmh] QP[Mlmh/person,a] EP[kWh/person,a] LFL 66 23.7 3.5 53.6 HID 50 14.5 2.2 43.3 Total 38.2 5.7 96.9 In the commercial sector, fluorescent lamps represent the largest share of electric light consumption, and also electric energy consumption. However, although incandescent lamps representasmallshareoflightconsumption,theirelectricenergyconsumptionwasalmost50%of thatofthefluorescentlamps. Table11-4. Estimatedelectricenergyconsumptionforcommerciallighting.(IEA2006) Lamptype Luminous Light Lightconsumptionper Energyconsumption efficacy consumption person perperson

η[lm/W] Q[Plmh] QP[Mlmh/person,a] EP[kWh/person,a] Incandescent 12 3.9 0.6 48.5 Tungstenhalogen 20 1.3 0.2 9.7 CFL 45 3.9 0.6 12.9 LFL 66 44.1 6.6 99.7 HID 50 6.2 0.9 18.5 Total 59.4 8.9 189.4 Comparedtotheothersectors,thecommercialsectoraccountedforthehighestshareofbothlight consumptionandelectricenergyconsumption,Table11-5.

316 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

Table11-5. Estimatedtotalelectricenergyconsumption. (IEA2006) Lighting Light Lightconsumptionper Energyconsumption sector consumption person perperson

Q[Plmh] QP[Mlmh/person,a] EP[kWh/person,a] Residential 19.9 3.0 140.3 Outdoor 15.6 2.3 46.6 Industrial 38.2 5.7 96.9 Commercial 59.4 8.9 189.4 Total 133.1 19.9 473.1 InFigure11-1,withreferencetothetablespresentedabove,theshareoflightconsumptionineach sectorforthedifferentlamptypesisrepresented.

10

9

8

7 GLS 6 Tungstenhalogen 5 CFL

4 LFL

Mlmh/person,a HID 3

2

1

0 Residential Outdoor Industrial Commercial Figure11-1. Totalworldwidelightconsumptionindifferentsectorsbylamptypein2005 . (IEA2006) In Figure 11-2, with reference to the tables presented before, the proportion of electric energy consumptionofthedifferentlamptypesforeachsectorisrepresented.Thehighshareofenergy consumptionoftheincandescentlamps,duetotheirlowluminousefficacy,isverydistinctive.

317 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

200.0 180.0 160.0

140.0 GLS 120.0 Tungstenhalogen 100.0 CFL 80.0 LFL kWh/person,a 60.0 HID 40.0 20.0 0.0 Residential Outdoor Industrial Commercial Figure11-2. Estimatedelectricenergyconsumptionindifferentsectorsbylamptypein2005.(IEA2006) In Figure 11-3, the share of electric light consumption in 2005 through different lamp types, irrespectiveofsector,issummarizedandrepresented.

12.0 11.3

10.0 8.0 5.4 6.0

4.0

Mlmh/person,a 1.9 2.0 0.9 0.4 0.0 0.0 GLS Tungsten CFL LFL HID LED halogen Figure11-3. Electriclightconsumptionthroughdifferentlamptypesin2005.(IEA2006) The largest share of light consumption, 11.3 Mlmh/person,a, is produced by linear fluorescent lamps (LFL) followed by HID lamps with 5.4 Mlmh/person,a. Incandescent lamps have a comparablylowershareofthelightconsumption. 11.2 Estimatedelectriclightconsumptionin2015/2030 TheprognosisinthefollowingisbasedontheworkoftheIEAECBCSAnnex45.Figure11-4 representsanestimationofthedevelopmentoftheglobalelectriclightconsumptionin2015and 2030comparedtothesituationin2005.Generally,incomparisonto2005,anincreaseinthelight consumptionofapproximately25%istobeexpectedby2015.Itisestimated,however,thatdueto improvedfacilityutilizationfactor(lightoutput ratiomultipliedbyroomutilance,LORxU)of 20% and decreased mean operating time (factor of 0.8,duetoimproveddaylightutilizationand control systems), this will be compensated, Table 11-6. The increase in utilization factor will decreasetheneedforlightproductionsincelightiswastedlessintheluminaireandlightisalso

318 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS directedmoreefficientlytothetaskarea.Despitetheincreasedlightdemand(increasedby25%in 2015comparedto2005),thetotallightproducedbylampsisreduced. Thisisduetoincreased efficiencyofluminairesandroomandlightingdesign,andalsoduetoincreaseduseofdaylightand lightingcontrolsystems. Table11-6.Comparisonofdifferentfactorsin2015and2030,comparedto2005. 2015 2030 Increaseintotallightconsumption 25% 55% Facilityutilizationimprovement 20% 25% Operatingtimefactor 0.80 0.70 Resultingtotallightconsumption 0.80 0.81 Thetotallightconsumption,forinstancein2015,is100%x1.25x0.8x0.8=80%comparedto 2005.Atthesametime,itisexpectedthattherewillbeaclearreductionintheuseofincandescent lampsduetolegislation(stepbystepabolitionofincandescentlamps), anincreaseintheuseof CFLsandLEDlamps,andareplacementofT12andT8lampsbyT5lamps.Itisestimatedthatby 2030,incandescentlampswillaccountonlyforaverysmallshareofthelampsinuse.LEDswill representalargeshareofthemarketandtheirsharewillincreasesubstantially,asshownalsoin Figure11-4. Comparedto2005,itisestimatedthattherewillbeanadditionallightdemand(lightconsumption byenduser)of55%in2030.Duetoimprovedfacilityutilizationfactorof25%anddecreasedmean operatingtime(factorof0.7,duetoimproveddaylightutilizationandcontrol),theoverallelectric lightconsumptionwillthereforebeapproximatelythesameasin2015.Partoftheelectriclight consumptionisreplacedbydaylight.

12.0

10.0

8.0

6.0

4.0 Mlmh/peson,a

2.0

0.0 Tungsten GLS CFL LFL HID LED halogen 2005 1.9 0.4 0.9 11.3 5.4 0.0 2015 0.4 0.4 2.1 8.5 4.0 0.3 2030 0.1 0.4 2.1 7.2 3.0 3.0 Figure11-4. Estimatedelectriclightconsumptionthroughdifferentlamptypesin2005,2015and2030. Figure11-5showsasummarizedrepresentationoftheelectriclightconsumptionthroughdifferent lamptypesin2005togetherwiththeexpecteddevelopmentfor2015and2030.Partoftheincrease inlightconsumptioniscoveredbytheincreasesuseofdaylightandlightingcontrolsystems.Other partoftheincreaseinlightconsumptioniscoveredbytheimprovedfacilityutilizationfactor.Due

319 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS tothisthelightproductionofthelampscanbedecreaseandatthesametimetheend-userwillget thesameamountoflightonthetaskarea.

35.0

30.0

25.0

20.0

15.0 Mlmh/person,a 10.0

5.0

0.0 2005 2015 2030

Facilityutilization 4.1 5.3 Daylight+control 5.0 9.2 LED 0.0 0.3 3.0 HID 5.4 4.0 3.0 LFL 11.3 8.5 7.2 CFL 0.9 2.1 2.1 Tungstenhalogen 0.4 0.4 0.4 GLS 1.9 0.4 0.1 Figure11-5. Developmentofelectriclightconsumptionthroughdifferentlamptypes[Mlmh/person,a]from 2005to2030.The facilityutilization and daylight+control indicatethesharesoflightconsumptioncoveredby improvedfacilityutilizationandthroughtheuseofdaylightandcontrolsystems. 11.3 Estimatedelectricenergyconsumptionforlightingin2005/2015/2030 Ifweusethefollowingplausibleassumptions(Table11-7)ofthelampluminousefficacies(lm/W), we can calculate the electric energy consumption (kWh/person,a) from the electric light consumption(Mlmh/person,a).Theluminousefficaciesareaveragevaluesofallthelampsonthe market.ThecaseLED2forecastsfastdevelopmentoftheluminousefficacyofLEDsandalsotheir quickbreakthroughonthemarket.SincetheaverageluminousefficacyofLED2is160lm/W,the maximumshouldbemuchhigher.AccordingtoNavigant(2009)thewhiteLEDpackageluminous efficacytargetsin2015are200lm/Winlaboratory, and 188 lm/W commercially. The practical achievable maximum package luminous efficacies are about 220 lm/W depending on the CCT. (Navigant2009)

320 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

Table11-7. Expectedlampluminousefficaciesinyear2005,2015and2030. LED2estimatesafastdevelopmentoftheluminousefficacyofLEDsandquickbreakthroughonthemarket. Luminous Incandescent Tungsten CFL LFL HID LED LED2 efficacy halogen [lm/W] 2005 12 20 45 66 50 60 60 2015 12 25 50 86 65 80 100 2030 12 30 55 90 80 120 160 In Figure11-6,withreferenceto Figure11-4andTable 11-7, the proportion of electric energy consumption of the different lamp types in 2005, 2015 and 2030, irrespective of sector, is summarized. A significant reduction in electric energy consumption by incandescent lamps in 2015 is to be expectedduetolegislativeactions.Also,theenergyconsumptionoffluorescentlampsreduces,as theluminousefficacyoflampsinusewillincreaseduetoreplacementofobsoletetechnology.As the share of halogen lamps remains relatively unchanged, but their luminous efficacy slightly increases,theirenergyconsumptionwillslightlydecrease.ThisissimilarwiththeHIDlamps.The shareofCFLsinlightconsumptionwillincreaseandatthesametimetheirluminousefficacywill increase,resultinginoveralllowertotalenergyconsumption. Furthermore,in2030,therewillbeafurtherreductionintheuseofincandescentlampsduetothe almostcompletereplacementbyhalogenlampsandCFLs.TheuseoffluorescentlampsandHID lampswillreduceduetoreplacementofobsoletetechnology.LEDswillpenetratefurtherintothe marketandwillhaveacorrespondingshareofthemarket.

200

150

100

50 kWH/person,a 0 Tungsten GLS CFL LFL HID LED halogen 2005 154 19 19 172 108 0 2015 33 16 42 99 62 4 2030 8 13 38 80 38 25 Figure11-6. Statusofelectricenergyconsumptionoflightingthroughdifferentlamptypesin2005/2015/2030. Figure 11-7 shows the reduction of electric energy consumption in 2015 and 2030 compared to 2005. The reduction is based on the replacement of inefficient lamps and also on the increased luminousefficacyofalllamptypes(Table11-7).Thetotalannuallightconsumptionistakenfrom Figure11-5. Thescenariosfor2015Band2030Barebasedonthe assumptionofLEDstakingoverthelamp

321 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS marketfasterthaninscenarios2015and2030.Comparedtoscenario2015,scenario2015Bisbased ontheassumptions:incandescentlamps25%,CFLs50%andLFLs75%ofthelightconsumption of scenario 2015. The light consumption remains the same and the gap is filled by LEDs. The luminousefficacyofLEDsinscenario2015Bis100lm/W. Inscenario2030Bincandescentandhalogenlampsarepracticallyvanishedfromthemarket,CFLs produceonlyonequarterandLFLandHIDlampshalfofthelightconsumptionshownonFigure 11-5. Instead, a major part of the light consumption is produced by LEDs. Incandescent and tungstenhalogenlampsandcertainCFLs(screwcaplampbase)canbereplacedbyLED-lampsat shorttime,butLFLandHIDlampsareusedindedicatedluminairesandtheannualrenovationrate ofoldinstallationsisonly3to5%.Comparedtoscenario2030,thelightconsumptionremainsthe sameinscenario2030B,buttheelectricenergyconsumptionreducessincetheaverageluminous efficacyoftheLEDsinusein2030wouldbe160lm/W(Table11-7).

500 LED

400 HID

300 LFL

200 CFL kWh/person,a 100 Tungsten halogen 0 GLS 2005 2015 2015B 2030 2030B Figure11-7.Scenariosofelectricenergyconsumptionforlightingin2005,2015and2030bydifferentlamp types.Thescenarios2015Band2030BarebasedinincreaseduseofLEDs. 11.4 Conclusions

Theforecastoftheelectricenergyconsumptionforlightingisbasedontheassumptions − increasinglightconsumptionof25%(2015)and55%(2030)byenduser − increasingefficienciesoftheinstallationsof20%(2015),and25%(2030)(lightoutputratio ofluminairesandroomutilance) − reducedoperatingtimefactorsof0,80(2015),and0,70(2030)bydaylightutilisationand controls − phasingoutincandescent(mostlyuntil2015),T12(2015)andT8(2030)lamps,replacedby CFL,LFLT5andLEDlamps. − in scenarios 2015B and 2030B LEDs will take over the lamp market quickly and their luminousefficacyisdevelopingfast. Basedontheseassumptionswecanexpectadecreaseinelectricalenergyconsumptionforlighting downtolessthanahalforeventoonethirdoftheconsumptionin2005(seeFigure11-7).These assumptionsandalsotheforecastoflampefficacies (Table 11-7) are rather conservative for the industrialisedcountries(scenarios2015and2030).Theremainingunknownisthedevelopmentin China,IndiaandAfrica,thatwilldefineifthepredictedenergysavingsbecomereality.

322 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

References IEA2006.InternationalEnergyAgency.Light’sLabour’sLost.IEAPublications,France.360p. Navigant Consulting, Radcliffe Advisors and SSLS, I.,2009./Multi-YearProgramPlanFY’09-FY’15 -Solid-State LightingResearchandDevelopment./U.S.DepartmentofEnergy.193p.

323 11TECHNICALPOTENTIALFORENERGYEFFICIENTLIGHTINGANDSAVINGS

324 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

Chapter12:Proposalstoupgraderecommendationsandcodes Topicscovered 12 Proposalstoupgradelightingstandardsandrecommendations ...... 327 12.1 Adifficulttrade-offbetweenenergyconservationandsatisfactionofhumanneeds.. 327 12.2 Theoriginsoflightingstandardsandrecommendations ...... 327 12.3 Challengesfornewlightingstandardsandrecommendations...... 328

325 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

326 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

12 Proposalstoupgradelightingstandardsandrecommendations

12.1 Adifficulttrade-offbetweenenergyconservationandsatisfactionofhumanneeds The growing concern of energy performance in buildings leads to the search for a “reasonable” optimumininstalledlightingpower.Becauseofthisgatheringofrobustevidenceoffundamental minimumrequirementsinlightingisneeded.Onone hand,visualrequirementsrelatedtovisual acuityleadtoratherhighilluminancelevels(500lxtoread),andevenhigherifweconsiderthe populationabove60yearsofage.Ontheotherhand,generalambientlightingismorerelatedto balance of luminances, absence of glare, an minimum illuminances for displacement or filing documents(minimumilluminancearound100-200lx).

12.2 Theoriginsoflightingstandardsandrecommendations Theevolutionofstandardshas,atlarge,followedthedevelopmentoflightingtechnologies,costof lightingandtheincreasedscientificunderstandingofvision.Thelightingrecommendationshave dealt with the optimum visual performance, appropriate light distribution, glare reduction, color rendering, in relation to the available technology. Targets for the above mentioned values were defined at performance levels, achievable at reasonable costs of equipment and energy. In the secondhalfofthe20 th century,theavailabilityofpowerfulandinexpensivelightsourcessuchas tubulartriphosphorfluorescentlampsledtoanincrease in the recommended illuminance levels. Later, the development of VDU workstations led to increased demands for glare control and avoidanceoflightreflectionfromthescreens. Attheendofthe20 th century,severalresearchresultssuggestedamoreglobalapproachforinterior lightingdesign.Forexample: ― Moreconcernwasgiventothesatisfactionofoccupantsoverlongterm, andtheirgeneralratingoftheindoorenvironment. ― Relationofhumanstolightwasaddressedinthephysiologicalside,with thediscoveryofanovellightreceptorintheeye,relatedtothenon-visual effectsoflight,andmanagingourcircadianrhythms. ― Severalstudiesidentifiedthepotentialforenergy conservation through higher use of daylight, and development of energy efficient lighting designandcontrolstrategies. ― Thecontributionofelectriclightingtotheoverallenergyuseofbuildings wasidentified,alongwithitsimpactonrequirementsonairconditioning, coolingandheating. ― Newtechnologieswereproposed,leadingtoapotential increase in the performance of light sources, luminaires and systems. A great leap forwardwastakenbythelightingindustryinlayingthefoundationfor developments of new light sources like high pressure sodium lamps, metalhalidelamps,improvedphosphorusforfluorescentlamps,etc. ― A better understanding of the environmental impacts of lighting components led to the progressive development of pollutant reduction andincreasedactivitiesforrecycling. ― Thedevelopmentinthesolid-statelightingtechnologyhasbroughtnew lightsources(LEDs)inthemarketatbreakneckspeed.Bytoday,LEDs areaviableoptionalsoforgenerallightingandsoonitwillbecompleting inenergy-efficiencywiththetraditionallightsources.

327 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

12.3 Challengesfornewlightingstandardsandrecommendations Thedifferencebetweenthelightingstandardsandrecommendationsindifferentcountrieshasbeen attributedtotheeconomicalcontextandthegeographicalzoneofthecountry.Thedifferencesare relatedtothelivingstandard,technologicalandeconomicalcapacityandalsototheinfluenceof specific research or institutional organizations. A major future development of lighting recommendationsisthattheyshouldaddressmanyother topics beyond the visual specifications associatedtothesatisfactionofspecificactivities.Recentresearchresultssuggestthatthefollowing considerationsaretobeincludedinfutureindoorlightingrecommendations: ― Minimumilluminanceonworkplaneinofficelighting.Avalueof500lx isproposedbyCENNormEN12464-1(item3.2and3.4).Thecurrent recommendationsconcernmainlythelevelofilluminancesonthedesk area, but it should be remembered that what people perceive are luminances,i.e.lightreflectedfromthesurfaces.Thus,itshouldbekept in mind that the required minimum illuminance is also related to the valuesoftheluminancesinthevisualfield.Therefore,discussionsabout the 500 lx minimum value should integrate a more luminance based approach.Also,theindividualandage-relateddifferencesintherequired lightlevelsshouldbeconsidered,forexample aged workers may need morelightthan20-yearoldworkers. ― Sincereadingandwritingisperformedonasmallpartofthedesk,and since a computer screen is now the standard of a workplace, it is suggested that the recommended illuminance of 500 lx should be achievedonlyonthereadingandwritingareaofthedesk(seeFigure12- 1).ThisisbeingdiscussedwithinCENTC169WG2. Forreadingandwriting Luminousflux400lm Figure12-1. Possibledistributionofilluminancesonworkplaneforoptimalvisualperformanceandenergyefficiency. ― The rest of the work plane would then require a lower illuminance. Recommendationssuggestnottogotoavaluelessthanabouttwothird ofthevaluesonthetask(EN12464-1proposes300lxforworkplaces). Discussionsaboutminimumilluminancevaluesfortherestoftheroom

328 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

for(notreading)wouldbeuseful. ― Uniformity of illuminance. According to CEN Norm EN 12464-1 minimum threshold of 0.7 is required on the task, and 0.5 for the immediatesurroundings.Notmuchissaidfortherestoftheroom.Tests performed on observers demonstrate that they respond positively to variouskindof modulation oftheilluminancedistribution.Variationsof illuminancesinspaces,inratioof1to2or1to3appearappropriate,as long as they are correctly managed. Discussions on the evolution of recommendationsrequireevidenceoftheacceptablelimitsonthisaspect. ― Indoorlightingdesignisbasedlargelyonprovidingmoreorlessuniform levelsofilluminancesintheroom,whiletheperceptionoftheluminous environment is related mainly to light reflected from surfaces i.e. luminances. Thusinnovativelightingdesignmethodscouldbeintroduced whichgiveahighprioritytothequalityoftheluminousenvironmentas oureyesperceiveit. Thepossibleobstaclesandconstraintsthataresetby the current regulations for horizontal illumination levels should be identified, and ways for designing and implementing more innovative lightingsolutionsshouldbesought.Figure12-2presentsthreedifferent lighting installations. Configuration 1 is without task lighting and configurations 2 and 3 with task lighting. The daylight contribution is differentindifferentcases.Table12-1presentstheinstallationsindetail. Boththeelectricallightingdesign(general/tasklighting)andtheuseof daylighthaveamajorimpactonlightingqualityandenergy-efficiency. Configuration1Configuration2Configuration3 Figure12-2. Threedifferentpossibleconfigurationsforlightingwithverticalthesameilluminanceontask(500lx)but variousilluminancesintheroom(200,300and500lx).Minimumilluminanceis100lxinallcases. ― Glarecontrol.Recommendationsincludespecificationsonglarecontrol, butnotonoverheadglare.Luminaireswithhighluminancelightsources suchasCFL,T5orspotlamps(halogen,LEDs)havebeenfoundtobe uncomfortableifthesourcesarevisible,evenifthey are located above the head of the observers (Figure 12-3) recommendations need to be updatedtoproposemorerestrictionsofluminancesandhigheranglesof observation.

329 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

LUMINAIRE Figure12-3. Overheadglareissues:discomfortglareoccursevenwhentheluminaireisjustabovetheoccupantor,if luminaireluminanceishigh(above14000cd/m 2).SuchcanbethecasewithunshadedCFLs,LEDs,halogensandT5 fluorescentlamps. ― Reductionofthesizeoflightsources(compactHIDlamps,LEDs)may leadtoincreasedriskofglare.Standardsandrecommendationsshouldbe adaptedaccordingly. ― Luminance distribution. Balance of luminances in the field of view is expressed in the recommendations in order to reduce fatigue and eye stress.Recentfindingssuggestthatluminancesofverticalsurfacesfacing theoccupantsalsoplayaroleinvisualstimulationandalertness(seeCIE Div3TCwork:LuminanceBasedLightingDesign). ― ThequalityoflightspectraisrequiredwithaminimumColorRendering IndexCRIof80.Thelightsourcestypicallyusedinofficelightinghave goodCRI. TheCIEgeneralCRIhasitslimitations.Theshortcomingsof theCRImaybecomeevidentwhenappliedtoLEDlightsourcesdueto theirpeakedspectra.TheCIE(CIE2007)recommendsthedevelopment ofanewcolorrenderingindex(orasetofnewcolorrenderingindices), whichshouldbeapplicabletoalltypesoflightsourcesincludingwhite LEDs ― Daylighting is suggested, but lighting recommendations do not specify recommended values of daylight factors or other parameters. This is a field where practical metrics could be developed, and mentioned in recommendations. ― Glare from windows is not addressed, and there could be recommendationsforsunshadingsystemstopreventglare.

330 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

Table12-1. ComparisonoftheenergyperformancesofthethreelightingconfigurationsinFigure12-2. Feature Configuration1 Configuration2 Configuration3

Powerdensityofceilingluminaire 11W/m 2 4.4W/m 2 6.6W/m 2 Powerdensityoftaskfocusedlighting 1.7W/m 2 1.7W/m 2

Roomarea 12m 2 12m 2 12m 2 Annualburninghoursofceilingluminaire 2000h 2000h 2000h Annualburninghoursoftaskfocusedlighting 1600h 1600h Energyconsumptionwithoutdaylight 264kWh/a 138kWh/a 191kWh/a Energyconsumptionwithdaylight(30%) 185kWh/a Energyconsumptionwithdaylight(70%) 41kWh/a Energyconsumptionwithdaylight(50%) 95kWh/a Energydensitywithoutdaylight 22kWh/m 2.a 11.5kWh/m 2.a 15.9kWh/m 2.a

Energydensitywithdaylight 15.4kWh/m 2.a 3.41kWh/m 2.a 7.91kWh/m 2.a

331 12PROPOSALSTOUPGRADESTANDARDSANDRECOMMENDATIONS

332 13 SUMMARYANDCONCLUSIONS

13 Summaryandconclusions

Lighting is a large and rapidly growing source of energy demand and greenhouse gas emissions.Atthesametimethesavingspotentialoflightingenergyishighevenwiththe currenttechnology,andtherearenewenergyefficientlightingtechnologiescomingonthe market. Currently,morethan33billionlampsoperateworldwide,consumingmorethan2650TWh ofenergyannually,whichis19%ofglobalelectricityconsumption.Thetotallighting-related carbondioxide(CO 2)emissionswereestimatedtobe1900milliontonsin2005,whichwas about7%ofthetotalglobalCO 2emissionsfromtheconsumptionandflaringoffossilfuels. The global electricity consumption for lighting is distributed approximately 28% to the residentialsector,48%totheservicesector,16%totheindustrialsector,and8%tostreet and other lighting. In the industrialized countries, national electricity consumption for lightingrangesfrom5%to15%,ontheotherhand,indevelopingcountriesthevaluecanbe evenhigherthan80%ofthetotalelectricityusage. Morethanonequarteroftheworld’spopulationisstillwithoutaccesstoelectricnetworks andusesfuel-basedlightingtofulfilitslightingneeds.Thefuel-basedlightsourcesinclude candles,oillamps,kerosenelamps,biogaslamps,propanelamps,andresin-soakedtwigs. Whileelectrificationisincreasinginthedevelopingcountries,itismoreandmoreimportant to adopt energy efficient light sources and lighting systems both in the developing and industrialised countries. Solid-state lighting combined with renewable energy sources has already reached some remote villages in developing countries, where it brings affordable, safe,healthy,andenergyefficientlightingtothepeople. Theamountofconsumptionoflightintheworldhasconstantlybeenincreasing.Theamount of global consumption of light in 2005 was 134.7 petalumen hours (Plmh). The average annual per capita light consumption of people with access to electricity is 27.6 Mlmh, whereasthepeoplewithoutaccesstoelectricityuseonly50klmh. Any attempt to develop an energy efficient lighting strategy should, as the first priority, guaranteethatthequalityoftheluminousenvironmentisashighaspossible.Theresults presentedinthisGuidebookdemonstratethatthisisachievable,evenwithhighsavingsin electricity consumption. Through professional lighting design energy efficient and high quality lighting can be reached. Better lighting quality does not necessarily mean higher consumptionofenergy.Whileitisimportanttoprovideadequatelightlevelsforensuring optimizedvisualperformance,therearealwayslightlevelsabovewhichafurtherincreasein thelightleveldoesnotimproveperformance. Theincreasedpossibilitiestocontrolboththeintensityandspectrumoflightsourcesshould allow the creation of more appropriate and comfortable luminous environments. Also, the useoflightingcontrolsystems,basedonpresencedetectionandtheintegrationofelectrical lightwithdaylight,canleadtosubstantialenergysavings.NewtechnologiessuchasLEDs offer high flexibility in the control of light spectra and intensities, which enhance their attractivenessbesidestheirgrowingluminousefficacy. Itisimportanttosearchfortechnologicallightingsolutionswhichmeethumanneedswith thelowestimpactontheenvironmentduringtheirlifecycle.Theenvironmentalimpactsof lightingincludeproduction,operationanddisposaloflampsandrelatedmaterials.Thetotal lightingenergyuseddepends,inadditiontotheused lighting equipment (lamps, ballasts, drivers,luminaires,controldevices),alsoonthelightingdesignandtheroomcharacteristics.

333 13 SUMMARYANDCONCLUSIONS

Thereareseveralcharacteristicsthatneedtobeconsideredwhenchoosingthelamp.These includee.g.luminousefficacy(lm/W),lamplife(h),spectrumandothercolorcharacteristics (CRI,CCT),dimmingcharacteristicsandtheeffectsofambientcircumstancesonthelamp performance.Concerningalllamptypes,thebestlamp,ifcoupledwithpoororincompatible luminaire,ballastordriver,losesmostofitsadvantages. It is foreseen that LEDs will revolutionize the lighting practices and market in the near future. The benefits of LEDs are their long lifetime, color-mixing possibilities, spectrum, designflexibilityandsmallsize,easycontrol,anddimming.ForLEDshugetechnological development is expected to continue. According to US DOE, the maximum luminous efficacyofphosphorconvertedcool-whiteLEDsisexpectedbearound200lm/Wby2015, whiletheluminousefficacyofwarmwhiteLEDsisexpectedtobeabove140lm/W.The givenvaluesareforhigh-powerLEDswith1mm 2chipsizeata350mAdrivecurrentat 25°C ambient temperature without driver losses. The special features of LEDs provide luminairemanufacturerstodevelopnewtypeofluminairesanddesignerstoadopttotally newlightingpractices.Thekeysuccessfactorforthebroadpenetrationofgenerallighting marketbyLEDsisalightsourcewithhighsystemefficacy and high quality at moderate prices.OnebarriertothebroadpenetrationofthemarketbyLEDapplicationsisthelackof industrialstandards. Currently, there is a global trend to phase out inefficient light sources from the market through legislation and voluntary measures. Two EU regulations for lighting equipment entered into force in April 2009 and they will result in gradual phasing out of e.g. incandescent, mercury and certain inefficient fluorescent and HID lamps from the EU market. Similar legislative actions are carried around the world: Australia has banned the importationofincandescentlampsfromFebruary2009,andUSAhasenactedtheEnergy IndependenceandSecurityActof2007thatphasesoutincandescentlampsin2012-2014. Alsoothercountriesandregionshavebanned,areontheirwaytoban,orareconsideringto baninefficientlightsources. Innovativeandefficientlightingtechnologyisalreadyavailableonthemarket;veryoften, however, the current installations are dominated by inefficient technology that does not utilizecontrolsystems,sensors,orefficientlightsources.Today,70%ofthelightingenergy isconsumedbyinefficientlamps.Lowretrofittingratesinthebuildingsector(andthusalso in lighting installations) are the main barrier to the market penetration of adequate and modernlightingtechnologies.Itisestimatedthat90%ofallbuildingsaremorethan20years old, and 70-80% are older than 30 years. In order to increase the knowledge and use of energyefficientlighting,itisessentialtoincreasedisseminationandeducation,aswellasto getnewstandardsandlegislation. Energyefficientlightingalsoincludesconsiderationsofthecontroloflightandtheuseof daylight. A sustainable lighting solution includes an intelligent concept, hight quality and energy efficient lighting equipment suitable for the application, and proper controls and maintenance.Furtherenergysavingscanbeachievedwithsmartlightingcontrolstrategies. Today,themostcommonformofcontrol(thestandard wall switch) is being replaced by automaticcomponentswhicharebasedonoccupancyordaylightharvesting.Examplesof thistechnologyareoccupancysensorswhichturnthelightsoffwhentheareaisunoccupied, time-basedcontrolsandthedimmerplusphotocellcombination.Thesecanleadtoenergy savingsthatvaryfrom10%withasimpleclocktomorethan60%withatotalintegrated solution(occupancyplusdaylightplusHVAC). Foreconomicevaluationofdifferentlightingsolutions,alifecyclecostanalysishastobe made. Usually, only the initial (investment) costs are taken into account. People are not awareofthevariablecosts,whichincludeenergycosts,lampreplacementcosts,cleaning 334 13 SUMMARYANDCONCLUSIONS andreparationcosts.Incommercialbuildingsveryoftenthevariablecostsarepaidbyothers who rent the flat, and the initial (investment) costs are usually paid by the investor who makesthesystemdecisions.Theenergycostsofalightinginstallationduringthewholelife cycleareveryoftenthelargestpartofthewholelifecyclecosts.Itisessentialthatinfuture lightingdesignpractice,maintenanceschedulesandlifecyclecostswillbecomeasnaturalas e.g.illuminancecalculationsalreadyare. Theaimofanoptimumlightingdesignistoachievecertainappearancesand,atthesame time,tofulfillthefundamentalphysiologicalandpsychologicalvisualrequirementsandto ultimatelyputthewholethingintoeffectinan energy efficient manner. LEDs allow for completely new designs and architectures for lighting solutions, thus opening a new and widefieldofcreativityforalllightingprofessionals.Atthesametime,someoldrulesand standardsforagoodlightingdesignarenomoreapplicabletoLEDs(e.g.glareassessment, colorrendering,lightdistribution,etc.). The expert survey conducted during 2006-2007 within the Annex 45 work indicated that among the lighting community there is a lack of knowledge of the characteristics and performanceofnewlightingtechnologies.Anothermajortopicthatwasraisedwasthelack ofawarenessofthetotallife-cyclecosts.Thesurveyalsoindicatedresistancetotheadoption ofnewtechnology. Commissioning is done for the number of different reasons: clarifying building system performancerequirementssetbytheowner,auditingdifferentjudgmentsandactionsbythe commissioning related parties in order to realize the performance, writing necessary and sufficient documentation, and verifying that the system enables proper operation and maintenance through functional performance testing. Commissioning should be applied through the whole life cycle of the building. The Guidebook presents an example of commissioningprocessappliedtoalightingcontrolsystem. Case studies of different types of lighting systems were conducted within the Annex 45 work. The studies were conducted for twenty buildings, most of which were offices and schools.Inofficebuildingsdifferentcasestudiesshowedthatitispossibletoobtainboth goodvisualqualityandlowinstalledpowerforlighting.Inofficesandschoolsitispossible to reach the normalized power density of 2 W/m 2,100 lx (even 1.5 W/m 2,100lx in some officecases)withthecurrenttechnology.Itwasfoundthattheuseoflightingcontrolsystem toswitchthelightsonandoffbasedonoccupancysensorscanreducethelightingenergy intensityofofficebuildings.Additionally,theuseofdimmingandcontrolsensorsforthe integration of daylight and artificial light can yield to further energy savings. The case studies show examples of LEDs in task, general and corridor lighting. The LED lighting requiresanewapproachtolightingdesign.ThecasestudiesshowthatLEDscanbeusedin therenovationoflightingincommercialbuildings. In2005theincandescentlampsdominatethelightingenergyconsumptionintheresidential sector.Thetotalannuallightconsumptioninresidentialsectorisonly3Mlmh/personand theelectricenergyconsumptionisashighas140kWh/person.Inthecommercialsectorthe annuallightconsumptionisalmostthreetimeshigher(8.9Mlmh/person),whiletheenergy consumptionisonly35%higherthanintheresidentialsector.Thisisduetotheuseofmore efficientlightingtechnologyinthecommercialsector.Comparedto2005,itisestimatedthat therewillbeanadditionallightdemand(lightconsumptionbyenduser)of25%by2015, and of 55% by 2030. This will, however, be compensated by facility utilization factor (improvedluminairelightoutputratioandroomutilance)anddecreasedmeanoperatingtime (improveddaylightutilizationandcontrolsystems).

335 13 SUMMARYANDCONCLUSIONS

It is expected that the share of different light sources producing the total electrical light outputwillchangeinthefuture.Thisisduetothedevelopmentoflightsourceluminous efficacies,legislativemeasurestophaseoutinefficientlightsourcesinmanycountries,and the penetration of the lighting market by LEDs. In the Annex 45 work forecasts for the lighting energy consumption were made. On the basic of the most optimistic scenario, according to which LEDs will take over the lamp markets quickly and their luminous efficacyisdevelopingfast,thelightingenergyconsumptionin2015isreducedtohalf,and in2030toonethird,ofthevaluesin2005.Theremainingunknownisthedevelopmentsin China, India and Africa, which will define whether the predicted energy savings become reality. Theevolutionofstandardshas,atlarge,followedthedevelopmentoflightingtechnologies, cost of lighting and the increased scientific understanding of vision. The recommended valuesofilluminanceshavefollowedthedevelopmentoflightsources.Forinstance,inthe second half of the 20 th century the evolution of fluorescent lamps led to increases in the recommended illuminance levels. The difference between the lighting standards and recommendationsindifferentcountrieshasbeenattributedtotheeconomicalcontextandthe geographical zone of the country. The current indoor lighting design is based largely on providingmoreorlessuniformlevelsofilluminancesintheroom,whiletheperceptionof theluminousenvironmentisrelatedmainlytolightreflectedfromsurfacesi.e.luminances. Thusinnovativelightingdesignmethodscouldbeintroducedwhichgiveahighpriorityto thequalityoftheluminousenvironmentasoureyesperceiveit.Boththeelectricallighting designandtheuseofdaylighthaveamajorimpactonlightingqualityandenergyefficiency. The present lighting recommendations do not specify recommended values of daylight factors or other daylight parameters. This is a field where practical metrics could be developed and mentioned in the recommendations. Reduction of the size of light sources (compact HID lamps, LEDs) may lead to increased risk of glare. Standards and recommendations should be adapted accordingly. One parameter to assess the quality of lightingisthecolorrenderingindexCRI.ThecurrentCRIisnotsuitabletoLEDsdueto theirpeakedspectra.TheCIErecommendsthedevelopmentofanewcolorrenderingindex (orasetofnewcolorrenderingindices),whichshouldbeapplicabletoalltypesoflight sourcesincludingwhiteLEDs.Amajorfuturedevelopmentoflightingrecommendationsis thatbeyondthevisualrequirementstheyshouldaddressalsothenon-visualeffectsoflight. There is a significant potential to improve energy efficiency of old and new lighting installations already with the existing technology. The energy efficiency of lighting installationscanbeimprovedwiththefollowingmeasures: – thechoiceoflamps.IncandescentlampsshouldbereplacedbyCFLs,infraredcoated tungsten halogen lamps or LEDs, mercury lamps by high-pressure sodium lamps, metalhalidelampsorLEDs,andferromagneticballastsbyelectronicballasts; – usageofcontrollableelectronicballastswithlowlosses; – thelightingdesign.Useofefficientluminairesandlocalizedtasklighting: – thecontroloflightwithmanualdimming,presencesensorsanddimmingaccordingto daylight; – theusageofdaylight; – theuseofhigh-efficiencyLED-basedlightingsystems. TheAnnex45suggeststhatclearinternationalinitiatives(bytheIEA,EU,CIE,IEC,CEN andotherlegislativebodies)aretakento: – upgradestandardsandrecommendations – integratevaluesoflightingenergydensity(kWh/m 2,a)intobuildingenergycodes; – monitorandregulatethequalityofinnovativelightsources – pursue research into fundamental human requirements for lighting (visual and non- 336 13 SUMMARYANDCONCLUSIONS

visualeffectsoflight) – stimulatetherenovationofinefficientoldlightinginstallationsbytargetedmeasures Theintroductionofmoreenergyefficientlightingproductsandprocedurescan,atthesame timeprovidebetterlivingandworkingenvironments,andalsocontributeinacost-effective mannertotheglobalreductionofenergyconsumptionandgreenhousegasemissions.

337 13 SUMMARYANDCONCLUSIONS

338 14 PARTICIPANTSANDCORRESPONDINGMEMBERS

14 Participantsandcorrespondingmembers

Australia PolitechnicodiTorino QueenslandUniversityofTechnology *AnnaPellegrino *SteveCoyne *ValentinaSerra Austria Japan BartenbachLichtLaborGmbH NationalInstituteforLandandInfrastructure *WilfriedPohl Management ZumtobelLighting *YasuhiroMiki *PeterDehoff TokaiUniversity *ToshieIwata Belgium BelgianBuildingResearchInstitute TheNetherlands *ArnaudDeneyer PhilipsLightingControls UniversitéCatholiquedeLouvain DelftUniversityofTechnology *MagaliBodart *TruusdeBruin-Hordijk *ReginaBokel Canada *M.vanderVoorden UniversityofBritishColumbia *LorneWhitehead Norway *MicheleMossman NTNUandSINTEF *AlexanderRosemann *BarbaraMatusiak *ToreKolås China BASBergenSchoolofArchitecture FudanUniversity *LarsBylund *DahuaChen *EdwardYuan Poland *YumingChen WASKOS.A. ShanghaiHongyuanLighting&ElectricEquipmentCo *ZbigniewMantorski *AiqunWang Russia Finland RussianLightingResearchInstitute(Svetotehnika) AaltoUniversity *JulianAizenberg *LiisaHalonen Singapore *EinoTetri NationalUniversityofSingapore *PramodBhusal *LeeSiewEang France Sweden EcoleNationaledesTravauxPublicsdel'État(ENTPE) SchoolofEngineering,Jönköping *MarcFontoynont *NilsSvendenius CSTB WSPLjusdesign *MireilleJandon *PeterPertola *NicolasCouillaud *ChristopheMartinsons Switzerland IngéluxConsultants SolarEnergyandBuildingPhysicsLab,EPFL *LaurentEscaffre *Jean-LouisScartezzini LumenArt *NicolasMorel *SusanneHarchaoui *DavidLindelöf ADEME *FriedrichLinhart *HerveLefebvre UniversityofAppliedSciencesofWesternSwitzerland VeoliaEnvironnement *GillesCourret *AhmadHusaunndee Turkey Germany IstanbulTechnicalUniversity TechnischeUniversitätBerlin *DilekEnarum *HeinrichKaase UnitedKingdom Italy Helvar UniversitàdiRoma“LaSapienza” *TrevorForrest *FabioBisegna USA ENEAIspra LawrenceBerkeleyNationalLaboratory *SimonettaFumagalli *StephenSelkowitz

339 14 PARTICIPANTSANDCORRESPONDINGMEMBERS

340 15 GLOSSARY

15 Glossary adaptation: theprocessbywhichthestateofthevisualsystemismodifiedbypreviousandpresent exposuretostimulithatmayhavevariousluminances,spectraldistributionsandangularsubtanses. ballast: device connected between the supply and one or more discharge lamps which serves mainlytolimitthecurrentofthelamp(s)totherequiredvalue. brightness: attributeofavisualsensationaccordingtowhichanareaappearstoemitmoreorless light. Britishthermalunit(Btu): unitofenergyequivalentto1055joules. bulb: transparentortranslucentgas-tightenvelopeenclosingtheluminouselement(s). colour rendering: effectofalightsourceonthecolour appearance of objects by conscious or subconsciouscomparisonwiththeircolourappearanceunderareferencelightsource. colourrenderingindex: measureofthedegreetowhichthepsychophysicalcolourofanobject illuminatedbythetestlightsourceconformstothatofthesameobjectilluminatedbythereference lightsource,suitableallowancehavingbeenmadeforthestateofthechromaticadaptation. colour temperature: temperature of a Planckian radiator whose radiation has the same chromaticityasthatofagivenstimulus;unit:K. compact fluorescent lamp (CFL): afluorescentlampwithbenttubestoreducethesize of the lamp. contrast: assessment of the difference in appearance of two or more parts of a field seen simultaneously or successively (hence: brightness contrast, luminance contrast, colour contrast, simultaneouscontrast,successivecontrast,etc.). correlatedcolourtemperature: thetemperatureofthePlanckianradiatorwhoseperceivedcolour mostcloselyresemblesthatofagivenstimulusatthesamebrightnessandunderspecifiedviewing conditions;unit:K. daylight factor: ratio of the illuminance at a point on a given plane due to the light received directlyorindirectlyfromaskyofassumedorknownluminancedistribution,totheilluminanceon a horizontal plane due to an unobstructed hemisphere of this sky, excluding the contribution of directsunlighttobothilluminances. directlighting: lightingbymeansofluminaireshavingadistributionofluminousintensitysuch thatthefractionoftheemittedluminousfluxdirectlyreachingtheworkingplane,assumedtobe unbounded,is90%to100%. disabilityglare: glarethatimpairsthevisionofobjectswithoutnecessarilycausingdiscomfort. discharge lamp: lamp in which the light is produced, directly or indirectly, by an electric dischargethroughagas,ametalvapouroramixtureofseveralgasesandvapours. discomfort glare: glare that causes discomfort without necessarily impairing the vision of the objects. ecologicalfootprint: ameasureofhowmuchbiologicallyproductivelandandwateranindividual, populationoractivityrequirestoproducealltheresourcesitconsumesandtoabsorbthewasteit generates using prevailing technology and resource management practices; measured in global hectares.

341 15 GLOSSARY electroluminescence: luminescencecausedbytheactionofanelectricfieldinagasorinasolid material. emission: releaseofradiantenergy. flicker: impressionofunsteadinessofvisualsensationinducedbyalightstimuluswhoseluminance orspectraldistributionfluctuateswithtime. fluorescence: photoluminescence in which the emitted optical radiation results from direct transitions from the photo-excited energy level to a lower level, these transitions taking place generallywithin10nanosecondsaftertheexcitation. fluorescentlamp: adischargelampofthelowpressuremercurytypeinwhichmostofthelightis emitted by one or several layers of phosphors excited by the ultraviolet radiation from the discharge. general lighting: substantially uniform lighting of an area without provision for special local requirements. generallightingservice(GLS)lamp: alwaysusedtorefertoastandardincandescentlight-bulb. glare: conditionofvisioninwhichthereisdiscomfortorareductionintheabilitytoseedetailsor objects,causedbyanunsuitabledistributionorrangeofluminance,ortoextremecontrasts. greenhousegases: gasesintheatmospherethatcontributetothegreenhouseeffectbyabsorbing infraredradiationproducedbysolarwarmingoftheEarth'ssurface. high intensity discharge lamp: an electric discharge lamp in which the light-producing arc is stabilizedbywalltemperatureandthearchasabulbwallloadinginexcessof3wattspersquare centimetre. highpressuresodiumlamp: ahighintensitydischargelampinwhichthelightisproducedmainly byradiationfromsodiumvapouroperatingasapartialpressureoftheorderof10kilopascals. illuminance: quotientoftheluminousfluxincidentonanelementofthesurfacecontainingthe point,bytheareaofthatelement;unit:lx. incandescence: emissionofopticalradiationbytheprocessofthermalradiation. incandescent lamp: lamp in which light is produced by means of an element heated to incandescencebythepassageofanelectriccurrent. indirectlighting: lightingbymeansofluminaireshavingadistributionofluminousintensitysuch thatthefractionoftheemittedluminousfluxdirectlyreachingtheworkingplane,assumedtobe unbounded,is0to10%. infraredradiation: opticalradiationforwhichthewavelengthsarelongerthanthoseforvisible radiation. lamp: sourcemadeinordertoproduceanopticalradiation,usuallyvisible. LEDdriver: adevicetopowerandcontrolalight-emittingdiode. lifecycle: consecutiveandinterlinkedstagesofaproductsystem,fromrawmaterialacquisitionor generationofnaturalresourcestofinaldisposal. lightemittingdiode(LED): solidstatedeviceembodyingap-njunction,emittingopticalradiation whenexcitedbyanelectriccurrent. lighttrespass: asituationthatoccurswhenlightfromasourceisemittedintoareaswherethelight isunwanted.

342 15 GLOSSARY lightingpowerdensity: ameasurementoftheamountofelectricpowerrequiredtoilluminatean area. Light power density is equal to the electrical power used to produce light in a given area dividedbythefloorareaservedbythatlight;measuredinwattspersquaremetre. linearfluorescentlamp(LFL): astraightfluorescentlamp. low pressure sodium lamp: adischargelampinwhichthelightisproducedby radiation from sodiumvapouroperatingatapartialpressureof0.1to1.5pascal. lumen(lm): SIunitofluminousflux;luminousfluxemittedinunitsolidanglebyauniformpoint sourcehavingaluminousintensityof1candela. luminaire: apparatuswhichdistributes,filtersortransformsthelighttransmittedfromoneormore lamps and which includes, except the lamps themselves, all the parts necessary for fixing and protecting the lamps and, where necessary, circuit auxiliaries together with the means for connectingthemtotheelectricsupply. lightoutputratioofaluminaire(LOR): ratioofthetotalfluxoftheluminaire,measuredunder specified practical conditions with its own lamps and equipment, to the sum of the individual luminousfluxesofthesamelampswhenoperatedoutsidetheluminairewiththesameequipment, underspecifiedconditions. luminance: theluminousfluxemittedinagivendirectiondividedbytheproductoftheprojected area of the source element perpendicular to the direction and the solid angle containing that direction;unit:cd.m -2. luminousefficacyofasource: quotientoftheluminousfluxemittedbythepowerconsumedby thesource;unit:lm/W. luminous environment: lighting considered in relation to its physiological and psychological effects. luminous flux: quantity derived from radiant flux by evaluating the radiation according to its actionupontheCIEstandardphotometricobserver;unit:lm. luminous intensity: the quotient of the luminous flux leaving the source and propagated in the elementofsolidanglecontainingthegivendirectionbythesolidangle;unit:cd. lux (lx): SIunitofilluminance;illuminanceproducedona surface of area 1 square meter by a luminousfluxof1lumenuniformlydistributedoverthatsurface. megalumen-hour(Mlmh): 1x10 6lumen-hours;aquantityoflight. mercuryvapourlamp: atypeofhigh-intensitydischargelampthatcontainsmercuryvapour. metal halide lamp: ahighintensitydischarge lampinwhichthemajor portion of the light is producedfromamixtureofametallicvapourandtheproductsofthedissociationofhalides. normalizedpowerdensityoflightinginstallation:lightingpowerdensitydividedbythemean maintainedilluminanceonthereferenceplane;unit:W/(m 2.100lx) organiclightemittingdiode(OLED): asemiconductordevicemadefromanorganiccompound andwhichemitslightwhenacurrentispassedthroughit. overheadglare: aformofglarecausedbyexcessivebrightnessdirectlyabovetheuser. petalumen-hour(Plmh):1x10 15 lumen-hours;aquantityoflight. Photobiology: branch of biology which deals with the effects of optical irradiation on living systems. Planckianradiator: idealthermalradiatorthatabsorbscompletelyallincidentradiation,whatever

343 15 GLOSSARY thewavelength,thedirectionofincidenceorthepolarization.Thisradiatorhas,foranywavelength andanydirection,themaximumspectralconcentrationofradianceforathermalradiatorinthermal equilibriumatagiventemperature. powerfactor: theratiooftotalrealpowerinwattstotheapparentpower(root-mean-squarevolt amperes). primaryenergy: theenergyembodiedinnaturalresources(egcoal,crudeoil,uranium,etc.)prior toundergoinganyhuman-madeconversionsortransformations. quantityoflight: timeintegraloftheluminousfluxoveragivenduration;unit:lumen-hour(lm.h). radiation: emissionortransferofenergyintheformofelectromagneticwaveswiththeassociated photons. reflectance: ratio of the reflected radiant or luminous flux to the incident flux in the given conditions. reflector: device used to alter the spatial distribution of the luminous flux from a source and dependingessentiallyonthephenomenonofthereflection. source-lumen: lumensemittedbyalightsource. spectrum: displayorspecificationofthemonochromaticcomponentsoftheradiationconsidered. starter: a starting device, usually for fluorescent lamps, which provides for the necessary pre- heatingoftheelectrodesand,in combinationwith theseriesimpedanceoftheballast, causesa surgeinthevoltageappliedtothelamp. stroboscopic effect: apparent change of motion and/or appearance of a moving object when the objectisilluminatedbyalightofvaryingintensity. task lighting: lighting directed to a specific surface or area thatprovidesilluminationforvisual tasks. tungstenhalogenlamp: gas-filledlampcontaininghalogensorhalogencompounds,thefilament beingoftungsten. ultravioletradiation: opticalradiationforwhichthewavelengthsareshorterthanthoseforvisible radiation. utilance (U): ratio of the luminous flux received by the reference surface to the sum of the individualtotalfluxesoftheluminariesoftheinstallation. veiling reflections: specular reflections that appear on the object viewed and that partially or whollyobscurethedetailsbyreducingcontrast. visualcomfort: subjectiveconditionofvisualwell-beinginducedbythevisualenvironment. visual comfort probability (VCP): theratingofalightingsystemexpressedasapercentage of peoplewho,whenviewingfromaspecifiedlocationandinaspecifieddirection,willbeexpectedto finditacceptableintermsofdiscomfortglare. visualperformance: performanceofthevisualsystemasmeasuredforinstancebythespeedand accuracywithwhichavisualtaskisperformed. visualtask: visualelementsoftheworkbeingdone.

344 16ABBREVIATIONS

16 Abbreviations

AADL AsociaciónArgentinadeLuminotecnia(ArgentineLighting Association) AC alternatingcurrent ACGIH AmericanConferenceofGovernmentalIndustrialHygienists ADC analogue-to-digitalconverter AlInGaP aluminiumgalliumindiumphosphide ANSI AmericanNationalStandardsInstitute ASHRAE AmericanSocietyofHeating,RefrigerationandAir-Conditioning Engineers ASIC application-specificintegratedcircuit BEMS buildingandenergymanagementsystem BLH bluelighthazard BMS buildingmanagementsystem BTU Britishthermalunit CCM continuous-currentmode CCT correlatedcolourtemperature CELMA FederationofNationalManufacturersAssociationsforLuminariesand CEN ElectrotechnicalComponentsforLuminariesintheEuropeanUnion ComitéEuropéendeNormalisation(EuropeanCommitteefor Standardization) CFL compactfluorescentlamp CICS constantilluminancecontrolstrategy CIE CommissionInternationaledel'Eclairage(InternationalCommissionon Illumination) CO 2 carbondioxide CRI colourrenderingindex DAC digital-to-analogueconverter DALI digitaladdressablelightinginterface DC directcurrent DCM discontinuousconductionmode DHCS daylightharvestingcontrolstrategy DLP digitallightingprocessing EC EuropeanCommission ECBCS EnergyConservationinBuildingsandCommunitySystems EEI energyefficiencyindex EEPROM electricallyerasableprogrammableread-onlymemory ELC EuropeanLampCompaniesFederation EMC electromagneticcompatibility EMI electromagneticinterference EPBD EnergyPerformanceofBuildingsDirective(EuropeanUnion) EU EuropeanUnion EuP energy-usingproducts FTP functionalperformancetesting GaAsP galliumarsenicphosphide GLS generalservicelamp HfN hafnium-nitrite

345 16ABBREVIATIONS

HID high-intensitydischarge HPS high-pressuresodium HVAC heating,ventilationandair-conditioning IAEEL InternationalAssociationforEnergy-EfficientLighting IC integratedcircuit ICNIRP InternationalCommissiononNon-IonizingRadiationProtection IEA InternationalEnergyAgency IEC InternationalElectrotechnicalCommission IECC InternationalEnergyConservationCode IEEE InstituteofElectricalandElectronicsEngineers IES IlluminatingEngineeringSociety IESNA IlluminatingEngineeringSocietyofNorthAmerica IP internetprotocol ipRGC intrinsicallyphotoreceptiveretinalganglioncells IR infrared ISO InternationalOrganizationforStandardization LCA LifeCycleAnalysis LCC LifeCycleCost LCCA LifeCycleCostAnalysis LCD liquidcrystaldisplay LEP lightemittingpolymer LED lightemittingdiode LEED LeadershipinEnergyandEnvironmentalDesign(UnitedStates) LENI LightingEnergyNumericIndicator LFL linearfluorescentlamp LMS lightingmanagementsystem LOR luminaireoutputratio LPD lightingpowerdensity LPS linearpowersupply MEEUP methodologystudyforecodesignoftheenergy-usingproducts MF maintenancefactor MHL metal-halidelamp Mlmh megalumen-hours Mtoe milliontonnesofoilequivalent NIF non-imageforming NPD normalizedpowerdensity OECD OrganisationforEconomicCo-operationandDevelopment OLED organiclightemittingdiode PCA polycrystallinesinteredalumina PCB printedcircuitboard PF powerfactor PLC powerlinecommunication Plmh petalumen-hours POCS predictedoccupancycontrolstrategy PWM pulsewidthmodulation RAM random-accessmemory RFI radiofrequencyinterference ROCS realoccupancycontrolstrategy RoHS restrictionofhazardoussubstances ROM read-onlymemory

346 16ABBREVIATIONS

RUF roomutilizationfactor RVP relativevisualperformance SCR silicon-controlledrectifiers SEPIC single-endedprimaryinductanceconverter SMPC switchedmodepowerconverter SMPS switchedmodepowersupply SPD spectralpowerdistribution THD i totalharmonicdistortion TLV thresholdlimitvalue UGR unifiedglarerating UK UnitedKingdom US UnitedStates USART universalserialasynchronousreceiver-transmitter UV ultraviolet VAV variableairvolume VCP visualcomfortprobability VDSF ventilateddoubleskinfacades VDT visualdisplayterminal WEEE WasteElectricalandElectronicEquipment

347 16ABBREVIATIONS

348 APPENDIX A

AppendixA:Summaryoflightingrecommendations CHINA-GB50034-2004Standardforlightingdesignofbuildings NEEDS& EXPECTATIONS REQUIREMENTS PARAMETERS Human,societal, environmental A.INDIVIDUALNEEDS Level1 Level2 Illuminance(horizontal) 500lx 300lx Taskarea Drawing 500lx VISUAL Illuminance(horizontal),computer PERFORMANCE Meetingroom 300lx Reception 300lx Corridors 100lx 50lx Archives 200lx Illuminancesofimmediate 300lx 200lx surroundings Illuminance(vert)onscreens Luminanceratioontaskarea 1:3nearworkplace Ceilingluminance Minimumshieldingangle: 10° →1-20kcd/m 2 15° →20-50kcd/m 2 20° →50-500kcd/m 2 30° → ≥500kcd/m 2 Maximumluminancesfrom Maximumrequiredluminances luminariesoverhead 1000cd/m 2 Wallluminances Lessthan10:3:1 Maximumluminancefromwindow VISUALCOMFORT Surfacereflectance ρceiling 0.6-0.9, ρwalls 0.3-0.8 ρworkingplanes 0.2-0.6, ρfloor 0.1-0.5 Flicker-Free Uniformitytask >0.7 Contrastrenderingfactor >0.5 Uniformitysurroundings >0.5 Discomfortglare UGR ≤19 Reflectedglare Topreventandreduceglareandveiling Veilingreflections reflections:Donotinstallluminariesinareas whichcanappearinterferences.Don’tusematerial whichincreaseglare.Setmaximumvalueforthe illuminance. COLOUR Colourrenderingoflight(CRI) >80 APPEARANCE ColourtemperatureoflightCCT 3300K<CCT<5300K Useofsaturatedcolours ColourVariations Contacttotheoutside Usedaylightasmuchaspossible Lightmodelling Daylightconsideration Useofdaylightallowsdimmingandswitching on/offlamps. WELL-BEING Considerationsaboutdaylightsystem. Lightingdesign ChoosetheCCToflampsaccordingtothe characteristicsoftheplace. Aestheticsofspace Aestheticsoflightingequipment NONVISUAL Spectraldistribution EFFECTS Dailydoses Frequency

A-1 APPENDIX A

UVamount IRamount B.SOCIETYNEEDS Cost,budget Productivity Ifitispossible,useautomaticlightingcontrol Reductionofcomplaints systembasedonavailibilityofdaylight. Moreindividualcontrol Maintenance Alltherepairsandsafetychecksshouldbe performedbyprofessionals. Asystemshouldbesetupforcleaningthe luminariesandthelampsaccordingtothestandard requirements.Allthecleaningworkshouldfollow thissystem. Theusedluminariesshouldbechangedbynew oneswhentheymeettheirexpectedlifetime. Whenreplacingtheoldluminarieswithnewones, makesurethattheyhavesimilarlightoutputasthe originaldesign. Periodiccheckupandtestsshouldbeperformed fortheluminaries. Lamptype Fluorescentlamp Shouldnotuseincandescentlampsexceptfor reasonsdescribedinthisstandarde.g.dimming, immediateopen,oftenturnon/off,emergency lamps.Inthiscase,thepowershouldbelessthan 100W. Considerationsaccordingtotheenvironmental particularity(humidity,hightemperature…) Security Itisbettertousebatteryforemergencysign. Thebatteryshouldbelocatedbesidetheplacefor repair. Feelingofsafety Theilluminanceofemergencylightingshouldnot belowerthan5%ofnormallighting. Theilluminanceofescapelighting>0.5lx LightingManagement Occupancysensors Insomebuildingsaccordingtotherequirement, lightshouldautomaticallycontrolitself,e.g. elevatorcorridorsshoulddimlightautomatically duringevening. C.ENVIRONMENTALNEEDS Useofdaylight Usedaylightasmuchaspossible.Refertothe standardGB/T50033aboutdaylighting. Efficiencyforpeakload Efficientluminariesshouldbechosen. Efficiencyforfluorescentceilingluminaries:60% Lightingcontrol Ifpossible,automaticlightingcontrolsystem basedonavailibilityofdaylight. Paragraphaboutlightingcontrolinpublic buildings,gymnasium,cinema,hoteland residentialareas. Lightingforcorridors,stairsandhallsshouldbe controlledinoneplaceandautomatically. Controlsingroupsaccordingtodaylightandthe usageofbuildings. Othersconsiderations. Mercury/Harmonics Donotusemercuryvaporlampsinnormalindoor areas. Lampextinction Useoffluorescentlamp,daylight,electronics ballasts. Assessmentforenergysavings ElectricalPowerdensity Level1:18W/m 2

A-2 APPENDIX A

Level2:11W/m 2 Currentvalue&targetvaluefordifferentoffices (Normaloffice:11W/m 2and9W/m 2) EnergyConsumption Whentheamountofusedelectricityisbeing evaluated,“peruser”shouldbeusedastheunit. e.g.45kW/user. SomepointsintheChineselightingcodes: 1. Therequirementsofelectricalpowerdensityforofficelighting,commerciallighting,hotellighting, hospitallighting,schoollightingandindustrylightingaremandatory,whileotheritemsare recommended. 2. Intherequirementsofelectricalpowerdensity,therearetwovaluesforeachplace,oneisthe mandatoryvalueatthismoment,andtheothervalueisthetargetvalueinthefuture.Forexample,the mandatoryvalueforofficelightlevel1(500lx)is18W/m 2,andthetargetvalueis15W/m 2.The mandatoryvalueforofficelightlevel2(300lx)is11W/m 2,andthetargetvalueis9W/m 2. 3. InofficelightingwithVDTs,theluminanceonthesurfaceofluminaireatanglesof>65°to perpendicularbisectorislimited.Forscreenwithgoodquality(classI,II),thevalueshouldbelower than1000cd/m 2.Forscreenwithbadquality(classIII),thevalueshouldbelowerthan200cd/m 2. 4. Thelightingcodeshavefollowingproposeditemsfordaylighting: − Theautomaticlightingcontrolsystembasedonthechangeofoutdoor’slightingcondition,if possible. − Daylightingshouldbeusedinindoorlightingbysomelighttubeorreflectedinstallation,if possible. − Thesolarenergyshouldbeused,ifpossible.

A-3 APPENDIX A

JAPAN-TheJapanesecodeJIES-008(1999) NEEDS& EXPECTATIONS REQUIREMENTS PARAMETERS (Human,societal, environmental) A.INDIVIDUALNEEDS Illuminance(horizontal) 750lx<x<1500lx Taskarea VISUAL Illuminanceverticalontaskarea >150lx PERFORMANCE Illuminance(horizontal),computer 500lx drawing >750lx Illuminancesofimmediate 200lx surroundings Illuminance(vertical)onscreens Luminanceratioontaskarea 1:5 Ceilingluminance Maximumluminancesfromluminaries overhead Maximumwallluminnances Maximumluminancefromwindow Surfacereflectance Flicker-free Uniformitytask >0.6 VISUALCOMFORT Uniformitysurroundings rangeofqualityclassofdiscomfortglareD2, Discomfortglare D3 discomfortglareforVDT D1,D2 luminancelimitationofVglareclassification Reflectedglare luminaireV2<200cd/m 2 Veilingreflections V3<2000cd/m 2 G2,V2(blockhorizontallineofsighttothe Luminaires lamp)limitglare ColourrenderingoflightCRI 80<CRI<90 COLOUR ColourtemperatureoflightCCT CCT>3300K APPEARANCE Useofsaturatedcolours Colourvariations Contacttotheoutside Lightmodelling Directionallighting WELL-BEING Biophiliahypothesis Aestheticsofspace Aestheticsoflightingequipment Daylightcontrol blinds NONVISUAL Spectraldistribution EFFECTS Daylightfactor 1.5%<x<2% Dailydoses Frequency UVamount IRamount B.SOCIETYNEEDS Cost,budget Productivity,Reductionofcomplaints Moreindividualcontrol Maintenance Security Feelingofsafety

A-4 APPENDIX A

C.ENVIRONMENTALNEEDS Efficiencyforpeakload Luminousefficacy Mercury/Harmonics Reductionofresources Lampextinction ElectricalPowerdensity EnergyConsumption

A-5 APPENDIX A

EuropeancodeEN12464-1;offices NEEDS& EXPECTATIONS REQUIREMENTS PARAMETERS (Human,societal, environmental) A.INDIVIDUALNEEDS Illuminance(horizontal)taskarea >500lx Drawing >750lx Illuminance(horizontal),computer >500lx VISUAL Illuminancesofimmediate PERFORMANCE Ambientlighting>300lx surroundings Archives 200lx Illuminance(vertical)onscreens <200lx 1:3nearworkplace Luminanceratioontaskarea 1:10forothersurfaces thereareminimumshieldinganglesaccordingto Shielding thelightlevel Ceilingluminance Maximumluminancesfromluminaries Luminancesofroomsurfaces,40:1. overhead Anglesfromluminariesand“highvalue” Wallluminnances Lessthan10:3:1 Maximumluminancefromwindow VISUALCOMFORT ρ :0.6-0.9 ρ :0.3-0.8 Surfacereflectance ceiling walls ρworkingplanes :0.2-0.6 ρfloor :0.1-0.5 avoidflicker&stroboscopiceffectsbylighting Flicker-free system Uniformitytask >0.7 Uniformitysurroundings >0.5 Discomfortglare UGR ≤19 Reflectedglare mustbepreventedorreduced Veilingreflections ColourrenderingoflightCRI >80 COLOUR ColourtemperatureoflightCCT 3000K<CCT<5000K APPEARANCE Useofsaturatedcolours Colourvariations Contacttotheoutside Windownexttoworkplace,withgoodshading Daylightfactor Daylightconsideration useofavailabledaylight Lightmodelling nottoodirectional,nottoodiffuse WELL-BEING Directionallighting onvisualtask Biophiliahypothesis Aestheticsofspace Aestheticsoflightingequipment NONVISUAL Spectraldistribution EFFECTS Dailydoses Frequency UVamount/IRamount B.SOCIETYNEEDS Cost,budget Productivity/Reductionofcomplaints Moreindividualcontrol Maintenancefactormustbecalculated, Maintenance amaintenancescheduledmustbeprepared Safetylevel(min1lxemergencylighting),EN Security 1834 Feelingofsafety Lightingmanagement

A-6 APPENDIX A

C.ENVIRONMENTALNEEDS Lightingcontrol automaticormanualswitchingand/ordimming Efficiencyforpeakload Luminousefficacy Mercury/Harmonics Reductionofresources/Lamp extinction Electricalpowerdensity nowasteofenergy,reduceenergytothemax EnergyConsumption withappropriatelightingtechnology 1)inthedefinitionsitissaidthatlightingistoensure: − -visualcomfort − -visualperformance − -safety 2)InofficelightingwithVDTs,theluminanceonthesurfaceofluminaireattheangleof>65°toperpendicular bisectorislimited.Forscreenwithgoodquality(classI,II),thevalueshouldbelowerthan1000cd/m 2.For screenwithlowquality(classIII),thevalueshouldbelowerthan200cd/m 2.

A-7 APPENDIX A

BRAZIL-CIES008/E-2001 NEEDS& EXPECTATIONS REQUIREMENTS PARAMETERS (Human,societal, environmental) A.INDIVIDUALNEEDS Illuminance(horizontal) 500lx Taskarea,conferenceroom Illuminance(horizontal),computer VISUAL Illuminancesofimmediatesurroundings 300lx PERFORMANCE Drawing 750lx Archives 200lx Illuminance(vertical)onscreens Luminanceratioontaskarea Ceilingluminance Maximumluminancesfromluminaries <1000cd/m 2 overhead Maximumwallluminnances Maximumluminancefromwindow ρceiling :0.6-0.9 ρ :0.3-0.8 VISUALCOMFORT Surfacereflectance walls ρworkingplanes :0.3-0.6 ρfloor :0.1-0.5 useDCelectricalsupplyoroperatinglampsat Flicker-free highfrequency(30kHz) Uniformitytask 0.7 Uniformitysurroundings 0.5 Discomfortglare UGR<19 Reflectedglare/Veilingreflections mustbepreventedorreduced ColourrenderingoflightCRI >80 COLOUR ColourtemperatureoflightCCT APPEARANCE Useofsaturatedcolours Colourvariations Daylightfactor >1%within3mfromthewindow windowisrequiredtoprovidepartorall Contacttotheoutside lighting nottoodirectional Lightmodelling nottoodiffuse WELL-BEING Directionallighting Biophiliahypothesis Aestheticsofspace Aestheticsoflightingequipment NONVISUAL Spectraldistribution EFFECTS Dailydoses Frequency UVamount IRamount B.SOCIETYNEEDS Cost,budget Productivity,Reductionofcomplaints Moreindividualcontrol Maintenancefactor <0.7 Security Feelingofsafety LightingManagement C.ENVIRONMENTALNEEDS

A-8 APPENDIX A

Efficiencyforpeakload Luminousefficacy Mercury/Harmonics Reductionofresources Lampextinction Electricalpowerdensity Energyconsumption 1)Inthedefinitionsitissaidthatlightingistoensure: − -visualcomfort − -visualperformance − -safety 2) In the office lighting with VDT, the luminance on the surface of luminaire at the angle of > 65° to perpendicularbisectorislimited.Forscreenwithgoodquality(classI,II),thevalueshouldbelowerthan1000 cd/m 2.Forscreenwithlowquality(classIII),thevalueshouldbelowerthan200cd/m 2.

A-9 APPENDIX A

RUSSIA-SNiP23-05-95DaylightandArtificialLighting NEEDS& EXPECTATIONS REQUIREMENTS (Human,societal, PARAMETERS environmental) A.INDIVIDUALNEEDS Withgenerallighting300lx Illuminance(horizontal)taskarea Withsupplementedlighting: supplementary400lx&general200lx Withgenerallighting500lx Drawing Withsupplementedlighting: supplementary600lx&general400lx VISUALPERFORMANCE Withgenerallighting400lx Illuminance(horizontal),computer Withsupplementedlighting: supplementary500lx&general300lx Conferenceroom 300lx Reception,lounge,lobbies 150lx Archives Withsupplementedlighting75lx maincorridors75lx Corridors othercorridors50lx Illuminance(vertical)onscreens 200lx Maximumpermissibleluminanceofthework Maximumluminancesfrom planearegivenaccordingtoareaofwork luminariesoverhead surface:≤500cd/m 2forarea ≥0,1m 2 Wallluminances Luminairedistribution Maximumluminancefromwindow Optimumsizerangefortaskdetail ρceiling :0.7-0.8 ρwalls :0.4-0.5 Surfacereflectance ρworkingplanes :0.25-0.4 ρfurniture :0.25-0.4 ρfloor :0.25-0.4 VISUALCOMFORT Inroomswhereastroboscopiceffectcan Flicker-free occur,adjacentlampsmustbeconnectedto threephasesofthesupplyvoltageor suppliedwithelectronicballasts. Uniformitytask Uniformityratio(maximumilluminanceto minimum) Fluorescentlamp ≤1,3 Otherlightsources ≤1,5 Overtaskarea ≤1,5or2 Contrastrenderingfactor Discomfortglare Reflectedglare Supplementarylighting:luminaireswith Veilingreflections opaquereflectors,luminouselementnotin thefieldofvisionofworkers. COLOURAPPEARANCE ColorrenderingoflightCRI CRI=55(offices,workrooms,designing anddraftingrooms) CRI=85(artisticoffices,serviceoffices) ColortemperatureoflightCCT 3500K-5000K Useofsaturatedcolors Colorvariations WELL-BEING Contacttotheoutside Roomswithoutdaylightarepermittedonly inspecificones(example:locatedin basementfloorsofbuildings). Psychologicaleffects

A-10 APPENDIX A

Lightmodeling Supplementarylightingispermittedto achievetheoptimumspatialplanning arrangements. Daylightconsideration Daylightisdividedintoside,topand combination(side&top)lighting. Considerationaboutthecalculationofthe daylightfactoraccordingtothevisualtask categoriesandthetypeofroom. Daylightfactor Daylightingwithsidelighting: DF(office)=1% DF(Designoffice)=1.5% DF(conferencehall)=0.7% DF(computerroom)=1.2% Combineddaylight-artificiallightingwith sidelighting:DF(office)=0.6% DF(Designoffice)=0.9% DF(conferencehall)=0.4% DF(computerroom)=0.7% NONVISUALEFFECTS Spectraldistribution Dailydoses Frequency UVamount IRamount B.SOCIETYNEEDS Cost,Budget Productivity Increasetherecommendedilluminancein Reductionofcomplaints roomswheremorethan50%ofworkersare Moreindividualcontrol olderthan40years. Maintenance Fluorescentlamp,whitecolor,Metalhalide Lamptype lamp Dischargelamps&Incandescentlamps Emergencylightingconsistsofsafetyand evacuationlighting, Evacuationlightingshallprovide illuminationonthefloorofmainpassages andonstairsteps. Security Luminairesforsafetylightingmaybeused forevacuationlighting. Lightingdeviceforemergencylightingmay beusedwiththenormallightingsystemor normallyoff(switchedonautomatically) Minimumilluminanceforevacuation lighting: rooms0.5lx/Outdoors:0.2lx Uniformityofevacuationlighting ≤40:1 emergencylighting Feelingofsafety (ratioofmaximumtominimumilluminance onthecenterlineofevacuationpassages) Minimumilluminanceforsafetylighting: 0.5lx Atalevelof0.5mfromtheground. LightingManagement C.ENVIRONMENTALNEEDS Useofdaylight:withtoplighting,withside lighting,withcombinedtop-sidelighting. Useofdaylight Useofcombinationofdaylight-artificial lighting. Efficiencyforpeakload Useofefficientdischargelamps.

A-11 APPENDIX A

Supplementarylightingshallbeequipped Lightingcontrol withdimming. Luminanceefficacy ≥55lm/W Fluorescentlamp:Ra ≥80 →>65lm/W Ra≥60 →>75lm/W Luminousefficacy Metalhalidelamp: Ra≥80 →>75lm/W Ra≥60 →>90lm/W Mercury/Harmonics Reductionofresources Lampextinction Electricalpowerdensity Maximumallowedpowerdensity(W/m 2) accordingtotheilluminanceonworksurface androomindex(Kr) Energyconsumption

A-12 APPENDIX A

AUSTRALIA–AS1680.1-2006,AS1680.2.2-1994,AS1680.2.0-1990 NEEDS& EXPECTATIONS PARAMETERS REQUIREMENTS (Human,societal, environmental) A.INDIVIDUALNEEDS Illuminance(horizontal)task 320lx area Drawing 600lx Illuminance(horizontal), 320lx computer Conferenceroom 240lx Reception,lounge,lobbies 160lx VISUALPERFORMANCE Visualtasknearthreshold Notlessthanthemaintainedilluminance Illuminancesofimmediate recommendedforthetask. surroundings Notlessthan240lxforcombinedsystem (local&generallighting)ortaskilluminances>600lx Corridors 40lx Good,simple:240lx Illuminance(vertical)on Averagedetail:320lx screens Poor,finedetail:600lx 2:1betweentaskandbackground Luminanceratioontaskarea <3:1 Visualcomfortprobability Withluminousceiling,average<0.5kcd/m 2 Forindirectlightingsystems: Ceilingluminance Averageluminance<0.5kcd/m 2 Maxluminance<1.5kcd/m 2 Upwardlight-outputratioatleast0,3. 55° →6kcd/m 2 Maximumluminancesfrom 65° →3kcd/m 2 luminariesoverhead 75° →2kcd/m 2 85° →2kcd/m 2 Illuminanceforthebackground/environment: Wallluminances office&computerroom:160lx draftingoffice:240lx Luminairedistribution Maximum3:1 Maximumluminancefrom VISUALCOMFORT window ρceiling >0.8 ρwalls 0.3-0.7 Surfacereflectance ρworkingplanes 0.2-0.5 ρfurniture 0.2-0.5 ρfloor <0.4 Toavoidflickerandstroboscopiceffectsbylighting Flicker-free system.Forincandescentlamps,oscillationsare small;fordischargelamps,oscillationscanbemore marked.Dependonsensitivity,amplitude Uniformitytask ≥07(overthetaskarea) contrastrenderingfactor Definition.FurtherdetailsinCIE19.21. Discomfortglare UGR ≤19 Reflectedglare Luminairesadjustableinpositionandorientation Veilingreflections Fixedoradjustabletasklighting Medium-heightpartitionscreens(1.5mto1.8m abovefloor) COLOURAPPEARANCE ColorrenderingoflightCRI 80 ≤CRI<90

A-13 APPENDIX A

Colortemperatureoflight Warm<3300K CCT Intermediate3300K ≤5300K Useofsaturatedcolors Fordecorativeeffect Colorvariations Uniformcolorappearance Compatiblewiththelightsources WELL-BEING Contacttotheoutside Peopleprefertoworkwithdaylight Ergonomics(modifywork Rearrangingoftheworkstationsinordertoreduce environmenttocorrespondto discomfortglare. humancapabilitiesand limitations) Psychologicaleffects Diffusereflectionfromthescreen,conspicuous reflectionsindark,high-glossdesktopscangive risetodistractionandannoyance.Indirectlighting canresultinanunstimulatingenvironmentfor work. Lightmodeling Acombinationofdiffuseanddirectionallight Daylightconsideration Useavailabledaylight.CIEmodelsforlighting designofdaylightingsystems. Daylightfactor Directionallighting Highlydirectionallightingprovidesunevengeneral illumination,sharpdeepshadowsandharsh modeling. Luminousceilingsshouldnotbeinstalledin interiorswherescreens-basedtaskisusedunless spacehasaroomindexof2orless. Biophiliahypothesis Lightingdesign Lightingdesignprocedure:flowchart,descriptionof lightingdesignstages.Establishdesignobjectives (safety,identifyingvisualtasks,creatingappearance andatmosphere)anddesignconstraints(costs, environmentalconsideration,…)tohaveasafeand healthyenvironment.,choiceofsurfacefinishes,use ofdayligt. Aestheticsofspace Thesenseofspaceandofformcanbeinfluenced byappropriatelightingdesign. Norealconsiderationsaboutaesthetics. Aestheticsoflighting Unityinlightingequipment:usingofluminaires equipment havingarelatedshapeorbyharmonyoflayout. Specialinteriordesignconsiderationstointegrate thelightingequipment. NONVISUALEFFECTS Spectraldistribution Dailydoses Frequency UVamount IRamount B.SOCIETYNEEDS Economicanalysisincludescosts,depreciation, Budget,cost taxation,inflation,operatingcosts,andcapital. Productivity Locallightingforindividualcontrol. Reductionofcomplaints Flexibilityistheprimerequirement. Moreindividualcontrol Maintenance Maintenanceofelectricandlightingsystem(tosave costsandenergyandprolonglifeofthesystem). Lamptype Emergencylighting Security Safetylightingsystemcanbeincorporatedintoany otherlightingsystem.Emergencyevacuation lightingsystemisusefulifthenormallighting systemisfailing. Colorforidentificationandsafety.Coloredpatch

A-14 APPENDIX A

onthewallhavetobeatleast2mabovethefloor. Emergencylighting Feelingofsafety Tofacilitatetherecognitionofhazardsingeneral andinrelationtospecificphysicaltasks. Illuminatingsafetywarningsignandsafepathways withinspace. Lightingmanagement Manualmethods,automaticcontrol,computer- basedcontrol. C.ENVIRONMENTAL Theelectriclightingservestosupplementdaylight. Useofdaylight Combinedelectriclightinganddaylightingsystems. Energysavingsfromreductioninelectricalload: choiceoflamps,controlgear,luminaires, Efficiencyforpeakload arrangementofluminaires,highreflectance finishes. Automaticormanualswitchingand/ordimming maybeused. (Manualswitch,remoteswitches,timeswitches, Lightingcontrol PIRmotionsensorandphotocells).Dimmerscanbe controlledmanuallyorautomatically. Electroniccontrolgearwillgivesuperior performancewithdischargelamps. Luminousefficacy Mercury Useofdaylight,energyconservation,controlof Reductionofresources internalandexternalheatgainsorlosses Harmonics Lampextinction Electricalpowerdensity Windowsandrooflightshaveasignificantimpact onthenetannualenergyconsumption.Designand effectivemanagementofwindows,increasing EnergyConsumption windowareas(findtheoptimumwindowarea), controlofsolargain,newandmoreefficient fenestrationsystemscanreducetheenergy consumption.

A-15 APPENDIX A

Nepal-J.B.Gupta,Electricalinstallationestimationandcosting,NewDelhi,1995,7 th edition NEEDS& EXPECTATIONS REQUIREMENTS (Human,societal, PARAMETERS environmental) A.INDIVIDUALNEEDS VISUALPERFORMANCE Illuminance(horizontal) Generallightingorientedtowardstheworking taskarea surface Drawing Shadowlesslight Illuminance(horizontal), computer Conferenceroom Reception,lounge,lobbies 100lx Visualtasknearthreshold Illuminancesofimmediate 300lx surroundings Corridors Archives Illuminance(vert)onscreens VISUALCOMFORT Luminanceratioontaskarea <3:1 Luminancereflectedinthe screen (forelevationanglesof65ºor more) Visualcomfortprobability Ceilingluminance Maximumluminancesfrom Largefloorarea:luminariesmountedclosetothe luminariesoverhead ceiling(directlight) Wallluminnances Luminairedistribution

Maximumluminancefrom window Optimumsizerangefortask detail Surfacereflectance

A-16 APPENDIX A

USA-ANSI/IESNARP-1-04,AmericanNationalStandardPracticeforOfficeLighting NEEDS& EXPECTATIONS PARAMETERS REQUIREMENTS (Human,societal, environmental) A.INDIVIDUALNEEDS VISUALPERFORMANCE Illuminance(horizontal) Highcontrastandsimpletask100lx taskarea Highcontrastandlargevisualtargetsize300lx Lowcontrastandlargevisualtargetsizeorhigh contrastandsmallvisualtargetsize500lx Lowcontrastandsmalltargetsize1000lx Drawing Horizontal1000lx Vertical500lx Illuminance(horizontal), 300lx computer vertical50lx Conferenceroom Meeting:horizontal300lx,vertical50lx Video:horizontal500lx,vertical300lx Reception,lounge,lobbies Horizontal100lx Vertical30lx Visualtasknearthreshold 3000-10000lx Illuminancesofimmediate surroundings Corridors 50lx Archives Illuminance(vert)onscreens VISUALCOMFORT Luminanceratioontaskarea Betweentaskandimmediatesurrounding3:1 Betweentaskandremote1:10 Luminancereflectedinthe screen(forelevationanglesof 65ºormore) Visualcomfortprobability VCP>70% OpenplanofficeVCP>80 Ceilingluminance WithoutVDTscreen: Lceiling(maximum) <10xL task WithVDTscreen: 2 Lceiling(maximum) <850cd/m Maximumluminancesfrom Respectanglesandintensitylimitstopreventfrom luminariesoverhead glare 55º:300cd,65º:220cd,75º:135cd,85º:45cd Wallluminances Luminairedistribution Ceilingluminanceratio: maximum=8:1,Best=2:1,good=4:1 Maximumluminancefrom window Optimumsizerangefortask Readingatdesk:10-12point detail Surfacereflectance ρceiling 0.8 ρwalls 0.5-0.7 ρfloor 0.2-0.4 ρfurniture 0.25-0.45 ρpartitions 0.4-0.7 surfacespecularitymustbeconsidered

A-17

APPENDIX B

AppendixB:Questionnaireoflightingsystemcontrol

ThisquestionnairehasbeenestablishedbytheAIEannex45inorder:

• ToidentifytheneedsoftheBuildinguser • Toidentifytheparametersofthelightingcontrolschemesandsystems.

Thiswillhelpthemanufacturerordesignertopredictthestrategiesoflightingcontrol.

Identification

Buildingcoordinates

Buildingname Address(street) Number City ZIP Country State

Buildingtype

Offices  Hospitals  Educationalbuildings  Manufacturingfactory  Hotels,barsandrestaurants  Wholesaleandretailservice  Sportingareas  Other 

Contactperson

Coordinates:

Name Address(street) Number City ZIP Country State Telephone Fax E-mail

Function: Buildingenergymanager  Buildingdesigner(architect,engineeringteam…)  Buildinguser  Maintenanceteam  Other 

B-1 APPENDIX B

Lightingdesigncontrol

Themostimportantbarriertousinglightingcontrolsystemsis:

Therearenobarriers  Uncertainfunctioning  Tooexpensive  No(ornotenough)energysaved  Noteconomicallyjustifiable  Other(pleasespecify)  ……………………………………………………………………………………………. …………………………………………………………………………………………….

Lightingcontrolisawayto: (scale1to5,1notimportant,5veryimportant)

Saveenergy  Performmaintenanceonluminaires  Adaptthelightingconditionstothetask  Beinformedonthestatusoftheluminaires  Improvetheimageofthebuilding  Improvetheproductivityofemployees  Improvethewell-beingofthebuildingusers  Install(expensive)uselesssystems  Renderthebuildinganditsenvironmentdynamic  Other(pleasespecify)  ……………………………………………………………………………………………. …………………………………………………………………………………………….

Lightingcontrolhastobedesignedby: (scale1to5,1notimportant,5veryimportant)

Thearchitect  Thebuildingmanager  Thebuildingowner/user  Theengineeringteam  Thelightingmanufacturer  Other(pleasedescribe)  ……………………………………………………………………………………………. …………………………………………………………………………………………….

Lightingcontrolisexpensive:

Yes  Yes,butwithajustifiablepaybacktime  No  Noidea  Itdependsonthesystem 

B-2 APPENDIX B

Lightingcontrolhastobefunctionof: (scale1to5,1notimportant,5veryimportant)

Absence  Presence  Clockcontrol  Colourcontrol  Daylight  Occupant’sdemand  Other(pleasedescribe)  ……………………………………………………………………………………………. …………………………………………………………………………………………….

Lightingcontrolisbestacontrol (scale1to5,1notimportant,5veryimportant)

Forthewholebuilding  Bybuildingwing/buildingorientation  Byfloor  Byroom  Byworkzone  Byworkplace  Other(pleasedescribe)  ……………………………………………………………………………………………. …………………………………………………………………………………………….

Lightingcontrolshouldn’tbeonlyon/off,itshouldhappeninagradationalway(i.e. continuousdimmingordimminginoneormorediscretesteps)

Yes  No  Noidea 

Lightingcontrolhastobeflexibleandmodular:

Yes  No  Noidea 

Itisimportanttomaintainthelightingsystem,inordertoattainateverymomentthe desiredlightinglevel

Yes,maintenanceshouldbeperformedataregularbasis(followingafixedscheme)  Yes,maintenanceisimportantbutpunctualinterventions(lampchanging,…)willdo  No,maintenanceisnotimportant  Noidea 

B-3 APPENDIX B

Backgroundofthelightingcontroldesignquestionnaire

Aims

The aim of this document is to describe the technical background of the questionnaire. Answers in the questionnaire may be very useful to help the lighting control designer to understandtheneedsofthebuildinguser.

Explanations

Theidentificationoftheuseshelpsthedesignertounderstandthewayhehastodesignthe installation:inabasicschool,anOn/Offsystemcoupledwithdaylightdimmingmaysatisfy but in certain offices, it could be necessary to go one step further by integrating more advancedtechniques.

The identification of the person who answered the questionnaire may be very useful to understand its needs.The building energy manager will be more interested by the energy consumptionandtheenergysavings.

Askingtheperceptionofthepeopleonthebarriersoflightingcontrolmaygiveinformation about the type and quality of lighting control system that can be applied (basic On/Off switchingsystem,advanceddaylightdimmingsystem,…).

Identifying the best person for the designing of the lighting control system delivers informationontheperceptionofthebuildingcontrolsystem.

Choosing an architect as lighting designer may indicate that the correspondent wants to generate an added value to the building as e.g. a dynamic object. Or that he wants the buildingtohavedifferentpossibleaspectsduringdaytimeandnighttime.

Askingaboutthetypeofcontrolgivesinformationonthetechniquesthatwillbeusedforthe installationofthesensors.i.e.thecablingofacentralclockcontrolwillnotbethesameas theoneofalocaldaylightdimmingsystem.

Askingforthesizeofthezonecontrolledbyasensororinputdeviceisveryimportant.

Daylightdimmingmaybeveryinterestingincaseoflocalzoningbutitmaynotbeacceptable incaseofcontrolbyfloororbybuildingwing.Aclockcontrolisbestusedincaseoffloor control(including,ofcourse,possibilityofderogation).

Identifyingthewaythatthefluxcanbevaried,givesinformationonthewaythecontrolbythe sensorshastohappen:Switchingordimming(stepbysteporcontinuous)

Thequestionsmaybelinkedandstructuredaccordingtothefigurebelow.

B-4 APPENDIX B

Figure B-1. Commissioning process.

The question on flexibility and modularity of the lighting system may be considered as information about the future affectations of the building. For some buildings (i.e. rented offices)lightstructurewallsaredisplacedandspacesarereorganizedregularly.Achangeof thelightingcontrolsystemthanhastobepossibleandhastobeaseasyaspossible.

Thequestiononmaintenancewantstoidentifywhetherthecorrespondentisawareofthe needofaregularmaintenanceschemeinordertoassureadesiredlightlevelorconsiders punctualinterventions(e.g.changingofbrokenlamps)tobeenough.Inthelattercase,he shouldbeinformedonpossiblelightcomfortproblemsinthefuture.

B-5 APPENDIX C

AppendixC:Publishedarticles

Tetri&Halonen .Guidebookonenergyefficientelectriclightingforbuildings.11 th European LightingConference.LuxEuropa9-11September2009,Turkey.pp.761-768.

Pohl .Energyefficientelectriclighting.11 th EuropeanLightingConference.LuxEuropa9-11 September2009,Turkey.pp.785-792.

Halonen,Tetri: Needsandchallengesforenergyefficientlightingindevelopedand developingcountries.Light&Engineering,Vol.17,No.1,pp.5-10,2009. Halonen,Tetri: LightingEfficiencyandLEDLightingApplicationsinIndustrializedand DevelopingCountries.The5thInternationalConferenceILUMINAT2009,Sustainable Lighting.Cluj-Napoca,Romania,20February2009 Halonen :EfficientLightingforthe21stCentury.BalkanLight2008.Ljubljana,October7- 9,2008,p.39-44.Invitedpaper. InternationalWorkshoponVisualQualityandenergyefficiencyinindoorlighting:todayfor tomorrow,Rome,Italy,presentationsbyAnnexparticipants. o Aizenberg: Integralapproachtodesignbuildingengineeringsystemsdesign:Lighting,heating, air-conditioningasaneffectivewaytoenergysaving o Bisegna&Gori: Genericalgorithmsforlightingdesignoptimization. o Chen&Wang&Li: Astand-alonesolarlightingsystemforelectrodelessfluorescentlamp o Dehoff: ELI and LENI – Tools for the evaluation and presentation of human aspects and energyefficiencyinlighting o Halonen: Lighting Energy Usage and Lighting Efficiency in Industrialized and Developing Countries–IEAECBCSAnnex45 o Kaase: Optimizedilluminationimprovingenergyefficiencyandqualityoflight o Pohl: Energyefficientlightingsolutions–trendsandchances o Tetri: UsabilityofLEDsforGeneralLighting Tetri&Pohl: Conceptsandtechniquesforenergyefficientlightingsolutions.Fifth InternationalConference,ImprovingEnergyEfficiencyinCommercialBuildings(IEECB’08) J.Aizenberg, Integralapproachtodesignbuildingengineeringsystems:(lighting,heating,air- conditioning)-asaneffectivewaytoEnergySaving , FifthInternationalConference, ImprovingEnergyEfficiencyinCommercialBuildings(IEECB’08) FontoynontM. ,Long-termeconomicalassessmentoflightingsystems,Lightandengineering, 2007. Tetri,E.,HalonenL. Futuretrendsofenergyefficientlighting.Proceedingsofthe26th sessionoftheCIE,Beijing,China,4-11July2007.pp.45-48. HalonenL.,TetriE.Lighting-EnergyConsumptionandEnergyEfficiency.Proceedingsof the4thInternationalconferenceIluminat,Cluj-Napoca,Romania,31May-1June2007. TetriE.Energiatehokkaatvalaistusratkaisut(Energyefficientlightingsolutions). Projektiuutiset5/2007,pp.66-69. BhusalP.,TetriE.,HalonenL. QualityandEfficiencyofofficelighting.Proceedingsofthe

C-1 APPENDIX C

4thEuropeanConferenceonEnergyPerformanceandIndoorClimateinBuildingandthe 27thInternationalConferenceAIVC,Lyon,France,20-22November2006,pp.535-540. Halonen L., Tetri E. 2006. IEA ECBCS Annex 45 - Energy efficient electric lighting for buildings.Lightingofworkplaces:proceedings.FifteenthInternationalSymposiumLighting Engineering2006,Bled,Slovenia.LightingEngineeringSocietyofSlovenia.pp.5-10. Truus Debruin. 2006. Dayligt and electric light in School buildings, Dutch Journal of BuildingPhysics. MatorskiZ. Influenceofnewlightingtechnologiesintoelectricalnetworksandinstallations. EURO-SINEElectricalnetworksandInstallationsinEULegislationActs.SEP–Association of Polish Electrical Engineers. Silesian University ofTechnologyandSilesianChamberof CivilEngineers.Ustron,Poland.pp.125-134. MantorskiZ. ,SitkoA.2006.Digitaldtatransmissionusinglowvoltagepowerline.Silesian UniversityoftechnologyScientficBulletinElektryka,no198,pp.85-98. Mantorski Z. Energy efficient ligting in buildings – Annex 45. XIV National Lighting Conference,Lightingtechniques2005.pp.73-74. MerzwinskiS .Efficientenergyconsumption.InformationonSilesianuniversityoftechnology participationinieaprogrammes.zzyciaPolitechnikislaskiej,March2007No6(170),pp.26- 29.

C-2