Hydrothermal Crystal Growth of Oxides for Optical Applications Colin Mcmillen Clemson University, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: a Review
materials Review Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review Guijun Yang and Soo-Jin Park * Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-32-876-7234 Received: 5 March 2019; Accepted: 9 April 2019; Published: 11 April 2019 Abstract: With the continuous development and progress of materials science, increasingly more attention has been paid to the new technology of powder synthesis and material preparation. The hydrothermal method is a promising liquid phase preparation technology that has developed rapidly during recent years. It is widely used in many fields, such as the piezoelectric, ferroelectric, ceramic powder, and oxide film fields. The hydrothermal method has resulted in many new methods during the long-term research process, such as adding other force fields to the hydrothermal condition reaction system. These force fields mainly include direct current, electric, magnetic (autoclaves composed of non-ferroelectric materials), and microwave fields. Among them, the microwave hydrothermal method, as an extension of the hydrothermal reaction, cleverly uses the microwave temperature to compensate for the lack of temperature in the hydrothermal method, allowing better practical application. This paper reviews the development of the hydrothermal and microwave hydrothermal methods, introduces their reaction mechanisms, and focuses on the practical application of the two methods. Keywords: hydrothermal method; microwave hydrothermal method; functional materials; application 1. Introduction During the process of continuous development of materials science, the research and development of new processes for material preparation and synthesis has always been an important part. For a long time, researchers have been searching for a material synthesis method with limited pollution, easy operation, excellent product performance, and low production cost [1–3]. -
Observation of Quadrupole Helix Chirality and Its Domain Structure in Dyfe3(BO3)4
ARTICLES PUBLISHED ONLINE: 6 APRIL 2014 | DOI: 10.1038/NMAT3942 Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4 T. Usui1, Y. Tanaka2, H. Nakajima1, M. Taguchi2, A. Chainani2, M. Oura2, S. Shin2, N. Katayama3, H. Sawa3, Y. Wakabayashi1 and T. Kimura1* Resonant X-ray diraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking eects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4f electric quadrupole orientations and its domain structure in DyFe3(BO3)4, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality. t is well known that chirality often plays a critical role in various detect not only crystallographic helix handedness but also the disciplines, such as biology, organic chemistry and particle chirality ascribed to the periodic motif of multipole moments, such Iphysics1,2. In contrast, chirality in solid-state physics, which as magnetic dipoles and electric quadrupoles12–14. In the case of is largely concerned with crystals possessing periodic arrays of magnetic dipoles, the handedness of a `helical magnetic structure' atoms, has attracted less attention. -
The 3 Hours-Hydrothermal Synthesis of High Surface Area Superparamagnetic Fe3o4 Core-Shell Nanoparticles (Esty Octiana Sari)
The 3 Hours-Hydrothermal Synthesis of High Surface Area Superparamagnetic Fe3O4 Core-Shell Nanoparticles (Esty Octiana Sari) THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPERPARAMAGNETIC Fe3O4 CORE-SHELL NANOPARTICLES Esty Octiana Sari,Ahmad Fadli andAmunAmri Department of Chemical Engineering Riau University Jl. HR Subrantas KM 12,5 Panam, Pekanbaru 28293, Riau E-mail: [email protected] Received: 2 May 2017 Revised: 27 September 2017 Accepted: 4 October 2017 ABSTRACT THE 3 HOURS-HYDROTHERMAL SYNTHESIS OF HIGH SURFACE AREA SUPERPARAMAGNETIC Fe3O4 CORE-SHELL NANOPARTICLES. The monodisperse core-shell Fe3O4 nanoparticles have been successfully synthesized by short times (3 hours) hydrothermal method at 220 oC from FeCl3, citrate, urea and PEG.The as-synthesized samples have been characterized using X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Bruneur-Emmet-Teller (BET) surface area analyzer, and Vibrating Sample Magnetometer (VSM). The XRD result shows the as-synthesized products are pure Fe3O4. The TEM image shows the magnetite nanoparticles have monodisperse core-shell shape. The BET result shows the magnetite nanoparticles have 650.757 m2/g surface area. The hysteresis curve shows the magnetite nanoparticles exhibit super paramagnetic properties. This simple method obtained 60 nm core-shell Fe3O4 particles with super paramagnetic, high surface area as well as hydrophilic properties. Those properties are promising for various biomedical application. The advantages of simple and short times methods with high quality of product make this method very promising to be applied. Keywords: Core-shell, Hydrothermal method, Superparamagnetic, Nanoparticles ABSTRAK 3 JAM-SINTETIS HIDROTERMALNANOPARTIKELCORE-SHELLSUPERPARAMAGNETIK Fe3O4 DENGAN LUAS PERMUKAAN TINGGI. Nanopartikel monodispersi Fe3O4 berbentuk core-shell o telah berhasil disintesis dengan metode hidrothermal waktu singkat (3 jam) pada suhu 220 C dari FeCl3, sitrat, urea dan PEG. -
C:\Documents and Settings\Alan Smithee\My Documents\Japan-Law Twin Quartz.Wpd
Rdosdladq1//3Lhmdq`knesgdLnmsg9I`o`m,K`vSvhmmdcPt`qsy “Of the various twin laws exhibited by quartz, few are more desirable or interesting to the collector than the Japan law. Such specimens are generally attractive, normally available from only a few locations worldwide, and often expensive.” --Robert B. Cook, Mineralogical Record, May-June 1979. OGXRHB@K OQNODQSHDR Chemistry: SiO2 Silicon Dioxide Class: Silicates Subclass: Tectosilicates Group: Quartz Crystal System: Hexagonal (Trigonal) Crystal Habits: Usually long, prismatic crystals, striated crosswise and frequently terminated by double rhombohedrons shaped like hexagonal pyramids; less frequently, short prisms to nearly bipyramidal; sometimes distorted, skeletal, and drusy; also granular, disseminated, and massive (microcrystalline). Twinning relatively common. Color: Colorless, white, and many shades, often with varietal names such as rose quartz, pink to rose-red; amethyst, purple; rock crystal, transparent and colorless; smoky quartz, pale brown to near-black; milky quartz, milk-white; citrine, yellow. Twinned crystals are usually colorless; may be smoky or amethyst in rare instances. Luster: Vitreous to slightly greasy Transparency: Transparent to translucent Streak: White Refractive Index: 1.55 Cleavage: Generally none; occasionally exhibits indistinct rhombohedral parting Fracture: Conchoidal to subconchoidal Hardness: Mohs 7.0 Figure 1 Japan-Law Specific Gravity: 2.65 twinned quartz Luminescence: Triboluminescent (luminescence caused by friction) Distinctive Features and Tests: Best field marks are vitreous to greasy luster, crosswise-striated hexagonal crystals, and hardness. Dana Classification Number: 75.1.3.1 M @L D The English word “quartz” derives from the German Quarz, which in turn may have originated from the archaic Slavic word kwardy, meaning “hard.” It is correctly pronounced KWÔRTZ. -
Advances in Photovoltaics: Part 3 SERIES EDITORS
VOLUME NINETY SEMICONDUCTORS AND SEMIMETALS Advances in Photovoltaics: Part 3 SERIES EDITORS EICKE R. WEBER Director Fraunhofer-Institut fur€ Solare Energiesysteme ISE Vorsitzender, Fraunhofer-Allianz Energie Heidenhofstr. 2, 79110 Freiburg, Germany CHENNUPATI JAGADISH Australian Laureate Fellow and Distinguished Professor Department of Electronic Materials Engineering Research School of Physics and Engineering Australian National University Canberra, ACT 0200 Australia VOLUME NINETY SEMICONDUCTORS AND SEMIMETALS Advances in Photovoltaics: Part 3 Edited by GERHARD P. WILLEKE Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany EICKE R. WEBER Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First edition 2014 Copyright © 2014 Elsevier Inc. All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). -
PV) Technologies
Australian Journal of Basic and Applied Sciences, 8(6) April 2014, Pages: 455-468 AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Current State-of-the-Art Solar Photovoltaic (PV) Technologies Banupriya Balasubramanian and A. Mohd Ariffin Center of Renewable Energy (CRE), Universiti Tenaga Nasional (UNITEN), Jalan IKRAM – UNITEN, Kajang, Selangor, Malaysia ARTICLE INFO ABSTRACT Article history: One of the most rapidly emerging renewable energy technologies is solar photovoltaic Received 25 January 2014 (SPV) cell. SPV cell is a specialized semiconductor device that converts visible light or Received in revised form 12 light energy directly into useful electrical energy. This paper work aims to provide a March 2014 comprehensive overview on the current state-of-the-art solar PV technologies. Each Accepted 14 April 2014 technology is reviewed in detail particularly on its use of light absorbing materials Available online 25 April 2014 together with its structure and deposition processes. Furthermore, conversion efficiency, advantages and disadvantages of these technologies are also discussed. This Keywords: comprehensive review is hoped encourage more participation from various parties in Solar PV technologies, Review, SPV, advancing the use of SPV as an alternative to generate electricity. Silicon, Thin film © 2014 AENSI Publisher All rights reserved. To Cite This Article: Banupriya Balasubramanian and A. Mohd Ariffin., Current State-of-the-Art Solar Photovoltaic (PV) Technologies. Aust. J. Basic & Appl. Sci., 8(6): 455-468, 2014 INTRODUCTION Renewable energy is a naturally available energy that replenishes rapidly for instance solar, wind, hydro and biomass. Solar energy is a form of renewable energy that has zero carbon emission and can be produced almost at any time, as long as sunlight is present. -
A Single-Crystal Epr Study of Radiation-Induced Defects
A SINGLE-CRYSTAL EPR STUDY OF RADIATION-INDUCED DEFECTS IN SELECTED SILICATES A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Geological Sciences University of Saskatchewan Saskatoon By Mao Mao Copyright Mao Mao, October, 2012. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Doctor of Philosophy degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Geological Sciences 114 Science Place University of Saskatchewan Saskatoon, Saskatchewan S7N5E2, Canada i Abstract This thesis presents a series of single-crystal electron paramagnetic resonance (EPR) studies on radiation-induced defects in selected silicate minerals, including apophyllites, prehnite, and hemimorphite, not only providing new insights to mechanisms of radiation-induced damage in minerals but also having direct relevance to remediation of heavy metalloid contamination and nuclear waste disposal. -
An Investigation of the Techniques and Advantages of Crystal Growth
Int. J. Thin. Film. Sci. Tec. 9, No. 1, 27-30 (2020) 27 International Journal of Thin Films Science and Technology http://dx.doi.org/10.18576/ijtfst/090104 An Investigation of the Techniques and Advantages of Crystal Growth Maryam Kiani*, Ehsan Parsyanpour and Feridoun Samavat* Department of Physics, Bu-Ali Sina University, Hamadan, Iran. Received: 2 Aug. 2019, Revised: 22 Nov. 2019, Accepted: 23 Nov. 2019 Published online: 1 Jan. 2020 Abstract: An ideal crystal is built with regular and unlimited recurring of crystal unit in the space. Crystal growth is defined as the phase shift control. Regarding the diverse crystals and the need to produce crystals of high optical quality, several many methods have been proposed for crystal growth. Crystal growth of any specific matter requires careful and proper selection of growth method. Based on material properties, the considered quality and size of crystal, its growth methods can be classified as follows: solid phase crystal growth process, liquid phase crystal growth process which involves two major sub-groups: growth from the melt and growth from solution, as well as vapour phase crystal growth process. Methods of growth from solution are very important. Thus, most materials grow using these methods. Methods of crystal growth from melt are those of Czochralski (tensile), the Kyropoulos, Bridgman-Stockbarger, and zone melting. In growth of oxide crystals with good laser quality, Czochralski method is still predominant and it is widely used in the production of most solid-phase laser materials. Keywords: Crystal growth; Czochralski method; Kyropoulos method; Bridgman-Stockbarger method. A special method is used for each group of elements depending on their usage and importance of their impurity, or consideration of form, impurity and size of crystal. -
3 Single Crystals Using Czochralski Method
Journal of Siberian Federal University. Engineering & Technologies 4 (2009 2) 400-408 ~ ~ ~ УДК 669:621.315.592 Synthesis of Ca4GdO(BO3)3 Single Crystals using Czochralski Method Robert Möckel*, Margitta Hengst, Christoph Reuther and Jens Götze TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany 1 Received 16.11.2009, received in revised form 03.12.2009, accepted 18.12.2009 The oxoborate Ca4GdO(BO3)3 (GdCOB) is a potential material for advanced industrial applications because of its optical and electric properties. High quality single crystals of GdCOB have been grown from a melt using the Czochralski method. Single crystals of laboratory scale are of good optical quality showing no macroscopic defects like cracks, inclusions or discolouration. Crystals in [001] direction reveal regular growth, whereas crystals in [010] are of asymmetric shape but show less difficulties during the growth process. Keywords: single crystal growth, Czochralski, oxoborate, Ca4GdO(BO3)3. 1. Introduction First investigations on the system REE2O3–CaO–B2O3 go back to the late 1960s, early 1970s, when Kindermann took care of the whole system [1]. Most of these early syntheses were realized by solid state reactions. Later, Ca4REEO(BO3)3 (REECOB) was synthesized and described by Norrestam & Nygren [2], who produced the materials by simple solid state reactions of stoichiometric mixtures as well. They showed that most trivalent REE like La, Nd, Sm, Gd, Er, and Y fit into the crystal lattice crystallizing isostructurally. First analysis of the crystallographic structures revealed analogies to calcium fluoroborate (Ca5F(BO3)3) and also to well known structure of common fluorapatite (Ca5[F/(PO4)3]). -
V.Lelting and Transformation Remperatures of Mineral and \Llied Substances
v.lelting and Transformation remperatures of Mineral and \llied Substances I F. c. KRACEK ONTRIBUTIONS TO GEOCHEMISTRY EOLOGICAL SURVEY BULLETIN 1144-D HTED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract~------------------------------------------------------- 1 General discussion----------------------------------------------- 1 Acknowledgments____________________________________________ 3 General references _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 Elements ------------------------------------------------------- 4 Oxides---------------------------------------------------------- 10 Oxide systems involving A120 3 ------------------------------------ 13 Oxide systems exclusive of Al2o3• B 2o 3, Si02 --------------------- 14 Silicate systems, binary__________________________________________ 17 Silicate systems, ternary _________________________________________ 21 Silicate systems, quaternary and higher ________ ----- _______________ 30 Silicate systems, miscellaneous ___________________________________ 32 Carbonates------------------------------------------------------ 33 Systems, miscellaneous __________________________________________ 36 References------------------------------------------------------ 63 ILLUSTRATIONS Figure 1. The system FeO -------------------------------------- -
1469 Vol 43#5 Art 03.Indd
1469 The Canadian Mineralogist Vol. 43, pp. 1469-1487 (2005) BORATE MINERALS OF THE PENOBSQUIS AND MILLSTREAM DEPOSITS, SOUTHERN NEW BRUNSWICK, CANADA JOEL D. GRICE§, ROBERT A. GAULT AND JERRY VAN VELTHUIZEN† Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ABSTRACT The borate minerals found in two potash deposits, at Penobsquis and Millstream, Kings County, New Brunswick, are described in detail. These deposits are located in the Moncton Subbasin, which forms the eastern portion of the extensive Maritimes Basin. These marine evaporites consist of an early carbonate unit, followed by a sulfate, and fi nally, a salt unit. The borate assemblages occur in specifi c beds of halite and sylvite that were the last units to form in the evaporite sequence. Species identifi ed from drill-core sections include: boracite, brianroulstonite, chambersite, colemanite, congolite, danburite, hilgardite, howlite, hydroboracite, kurgantaite, penobsquisite, pringleite, ruitenbergite, strontioginorite, szaibélyite, trembathite, veatchite, volkovskite and walkerite. In addition, 41 non-borate species have been identifi ed, including magnesite, monohydrocalcite, sellaite, kieserite and fl uorite. The borate assemblages in the two deposits differ, and in each deposit, they vary stratigraphically. At Millstream, boracite is the most common borate in the sylvite + carnallite beds, with hilgardite in the lower halite strata. At Penobsquis, there is an upper unit of hilgardite + volkovskite + trembathite in halite and a lower unit of hydroboracite + volkov- skite + trembathite–congolite in halite–sylvite. At both deposits, values of the ratio of B isotopes [␦11B] range from 21.5 to 37.8‰ [21 analyses] and are consistent with a seawater source, without any need for a more exotic interpretation. -
Transfers Young, Stephanie Lynne, Chalfont St
The Journal of Gemmology2010 / Volume 32 / Nos. 1–4 The Gemmological Association of Great Britain The Journal of Gemmology / 2009 / Volume 31 / No. 5–8 The Gemmological Association of Great Britain 27 Greville Street, London EC1N 8TN T: +44 (0)20 7404 3334 F: +44 (0)20 7404 8843 E: [email protected] W: www.gem-a.com Registered Charity No. 1109555 Registered office: Palladium House, 1–4 Argyll Street, London W1F 7LD President: Prof. A. H. Rankin Vice-Presidents: N. W. Deeks, R. A. Howie, E. A. Jobbins, M. J. O'Donoghue Honorary Fellows: R. A. Howie Honorary Life Members: H. Bank, D. J. Callaghan, T. M. J. Davidson, J. S. Harris, E. A. Jobbins, J. I. Koivula, M. J. O'Donoghue, C. M. Ou Yang, E. Stern, I. Thomson, V. P. Watson, C. H. Winter Chief Executive Officer: J. M. Ogden Council: J. Riley – Chairman, A. T. Collins, S. Collins, B. Jackson, C. J. E. Oldershaw, L. Palmer, R. M. Slater Members’ Audit Committee: A. J. Allnutt, P. Dwyer-Hickey, J. Greatwood, G. M. Green, J. Kalischer Branch Chairmen: Midlands – P. Phillips, North East – M. Houghton, North West – J. Riley, Scottish – B. Jackson, South East – V. Wetten, South West – R. M. Slater The Journal of Gemmology Editor: Dr R. R. Harding Assistant Editor: M. J. O’Donoghue Associate Editors: Dr A. J. Allnutt (Chislehurst), Dr C. E. S. Arps (Leiden), G. Bosshart (Horgen), Prof. A. T. Collins (London), J. Finlayson (Stoke on Trent), Dr J. W. Harris (Glasgow), Prof. R. A. Howie (Derbyshire), E. A. Jobbins (Caterham), Dr J.