Physiological Feelings T ⁎ Edward F

Total Page:16

File Type:pdf, Size:1020Kb

Physiological Feelings T ⁎ Edward F Neuroscience and Biobehavioral Reviews 103 (2019) 267–304 Contents lists available at ScienceDirect Neuroscience and Biobehavioral Reviews journal homepage: www.elsevier.com/locate/neubiorev Review article ☆ Physiological feelings T ⁎ Edward F. Pace-Schotta, , Marlissa C. Amoleb, Tatjana Auec, Michela Balconid, Lauren M. Bylsmab, Hugo Critchleye, Heath A. Demareef, Bruce H. Friedmang, Anne Elizabeth Kotynski Goodingf, Olivia Gosseriesh, Tanja Jovanovici, Lauren A.J. Kirbyj, Kasia Kozlowskak, Steven Laureysh, Leroy Lowel, Kelsey Mageef, Marie-France Marinm, Amanda R. Mernerf, Jennifer L. Robinsonn, Robert C. Smitho, Derek P. Spanglerp, Mark Van Overveldq, Michael B. VanElzakkerr a Harvard Medical School, Boston, MA, USA b University of Pittsburgh, Pittsburgh, PA, USA c University of Bern, Bern, Switzerland d Catholic University of Milan, Milan, Italy e University of Sussex, Sussex, UK f Case Western Reserve University, Cleveland, OH, USA g Virginia Tech, Blacksburg, VA, USA h University of Liege, Liege, Belgium i Emory University, Atlanta, GA, USA j University of Texas at Tyler, Tyler, TX, USA k University of Sydney, Sydney, Australia l Neuroqualia (NGO), Truro, Nova Scotia, Canada m Université du Québec à Montréal, Montreal, Canada n Auburn University, Auburn, AL, USA o Michigan State University, East Lansing, MI, USA p United States Army Research Laboratory, Aberdeen, MD, USA q Erasmus University Rotterdam, Rotterdam, the Netherlands r Massachusetts General Hospital, Boston, MA, USA ARTICLE INFO ABSTRACT Keywords: The role of peripheral physiology in the experience of emotion has been debated since the 19th century fol- Emotion lowing the seminal proposal by William James that somatic responses to stimuli determine subjective emotion. Feelings Subsequent views have integrated the forebrain's ability to initiate, represent and simulate such physiological Interoception events. Modern affective neuroscience envisions an interacting network of “bottom-up” and “top-down” sig- Somatic markers naling in which the peripheral (PNS) and central nervous systems both receive and generate the experience of Emotion regulation emotion. “Feelings” serves as a term for the perception of these physical changes whether emanating from actual Autonomic nervous system Insula somatic events or from the brain's representation of such. “Interoception” has come to represent the brain's receipt and representation of these actual and “virtual” somatic changes that may or may not enter conscious awareness but, nonetheless, influence feelings. Such information can originate from diverse sources including endocrine, immune and gastrointestinal systems as well as the PNS. We here examine physiological feelings from diverse perspectives including current and historical theories, evolution, neuroanatomy and physiology, de- velopment, regulatory processes, pathology and linguistics. Introduction bodily sensations. Indeed, if one accepts the notion that consciousness is grounded in biological processes (Crick, 1994; Damasio, 1994; Conscious emotional experience is closely bound to changes in Pinker, 2018), emotional experience must, by its nature, be ☆ Please note: Co-author listing is based on alphabetical order. ⁎ Corresponding author at: Harvard Medical School, Massachusetts General Hospital – East, CNY 149 13th Street Room 2605, Charlestown, MA 02129, USA. E-mail address: [email protected] (E.F. Pace-Schott). https://doi.org/10.1016/j.neubiorev.2019.05.002 Received 13 November 2018; Received in revised form 27 March 2019; Accepted 3 May 2019 Available online 22 May 2019 0149-7634/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/). E.F. Pace-Schott, et al. Neuroscience and Biobehavioral Reviews 103 (2019) 267–304 physiological. However, the direction of causality and the specificity of are deployed as predictions of probable interoceptive experience, to relationships between physiological processes and emotional experi- yield ‘prediction errors’, i.e., the difference between an expected in- ence have been topics of debate since at least the 19th century. This ternal state and afferent interoceptive data (Barrett and Simmons, review focuses on interaction between subjective emotional experience 2015; Paulus and Yu, 2012; Saxe and Houlihan, 2017; Seth and Friston, and the body. Specifically, we address how emotional feelings are in- 2016). One remarkable corollary of this perspective is that, when pre- formed by physiological processes that are detected by peripheral organ diction errors are small, interoceptive experience may be generated ‘interoceptors’, encoded and transmitted from the peripheral nervous largely by what our brain expects to feel rather than by actual afferent system (PNS), to be represented at specific levels of the central nervous neural signals from the periphery (Barrett and Simmons, 2015; Seth and system (CNS). We additionally address how emotional experience may Friston, 2016). Also the ‘top-down’ efferent neural drive to the PNSto encompass the prediction, as well as feedback, of physiological change the internal bodily state supports ‘active inference’, whereby changes, through efferent responses from CNS to PNS that change prediction errors are minimized by changing the input (feedback) at bodily physiology as an obligatory component of an emotive response. source. These counterintuitive possibilities capture the key function of This work is undertaken as part of ‘The Human Affectome Project’, interoception in the maintenance of physiological homeostasis (Seth an initiative organized in 2016 by a non-profit organization called and Friston, 2016). Thus, centrally-generated predictions of physiolo- Neuroqualia. The project aims to produce a series of overarching re- gical states are expressed in autonomic reflexes. Unpredicted inter- views that summarize current knowledge about affective neuroscience oceptive inputs generate prediction errors, which trigger both emo- and the language that we use to convey feelings and emotions. The tional feelings and homeostatic responses (Seth and Friston, 2016). projects comprise twelve teams, organized into a task force with the Although this review will not describe in detail the theoretical and aim of developing a comprehensive and integrated model of affect to computational models of predictive coding, active inference or Baye- serve as a common focal point for future affective research. To that end, sian analyses of the physiology of emotions, it is crucial to bear in mind our team was specifically tasked to review neuroscience research onthe that the reality of perceived emotions (including their interoceptive relationship between subjective experiences of emotion and associated components) encompasses more than the direct representation of per- physiological processes. We were also asked to review the language that ipheral states and includes central predictions of peripheral physiology. people use to express feelings that relate to physiological processes and Another important, but difficult distinction is between emotion and consider whether or not feelings that people convey in language might mood (Beedie et al., 2005). Typically these are operationally dis- inform the way we approach neuroscience research on these topics. An tinguished by duration and sometimes by intensity or reactivity (Beedie important reason to focus on the physiology of emotional experience et al., 2005; Kaplan et al., 2016), but consensus regarding cutoffs on and expression along with consideration of emotional language is the any dimension is lacking. This review conceptualizes emotion as a well-documented imprecision inherent in self-report instruments for phasic response, yet recognizes its overlap with the enduring phe- such experiences (Harmon-Jones et al., 2016; Mauss and Robinson, nomenon of mood (particularly when describing interoceptive influ- 2009). Moreover, emotion is a multi-component process hence it is ences of tonic or gradually changing physiological state including the important to examine from different levels, including physiology, fluctuating hormonal milieu, pain, sickness and inflammation). Indeed, which is complementary to self-reported experience and behavior. mood states are perhaps the affective phenomena most strongly influ- A unifying theme of this review is that the subjective experience of enced by interoception and are recognizably a powerful biasing factor emotion is influenced, and often determined by CNS representations of for the subjective experience and regulation of affective feelings in both afferent sensory input from peripheral organs and tissues –con- normal emotion (Ritchie et al., 2009; Sereno et al., 2015) and psy- ventionally termed interoception (Craig, 2016; Critchley and Garfinkel, chopathology (Gilbert et al., 2013). 2017; Damasio and Carvalho, 2013). We strive to follow Damasio and This review will not seek to provide an exhaustive account of the Carvalho's (Damasio and Carvalho, 2013) distinction between ‘emotion’ physiology of emotion or the phenomenon of interoception. Instead, we – an adaptive, patterned neural response akin to physiological drives highlight a sample of important theories and discoveries with an ap- such as hunger and thirst, and ‘feeling’ – internal sensations resulting preciation for their historical precedents and clinical relevance. The from these patterned responses as well as from other interoceptive following
Recommended publications
  • The Sniffin' Sticks Parosmia Test (Ssparot)
    www.nature.com/scientificreports OPEN Assessment of odor hedonic perception: the Snifn’ sticks parosmia test (SSParoT) David T. Liu1, Antje Welge‑Lüssen2, Gerold Besser1, Christian A. Mueller1* & Bertold Renner3,4 Qualitative olfactory dysfunction is characterized as distorted odor perception and can have a profound efect on quality of life of afected individuals. Parosmia and phantosmia represent the two main subgroups of qualitative impairment and are currently diagnosed based on patient history only. We have developed a test method which measures qualitative olfactory function based on the odors of the Snifn’ Sticks Identifcation subtest. The newly developed test is called Snifn’ Sticks Parosmia Test (SSParoT). SSParoT uses hedonic estimates of two oppositely valenced odors (pleasant and unpleasant) to assess hedonic range (HR) and hedonic direction (HD), which represent qualitative olfactory perception. HR is defned as the perceivable hedonic distance between two oppositely valenced odors, while HD serves as an indicator for overall hedonic perception of odors. This multicenter study enrolled a total of 162 normosmic subjects in four consecutive experiments. Cluster analysis was used to group odors from the 16‑item Snifn’ Sticks Identifcation test and 24‑additional odors into clusters with distinct hedonic properties. Eleven odor pairs were found to be suitable for estimation of HR and HD. Analysis showed agreement between test–retest sessions for all odor pairs. SSparoT might emerge as a valuable tool to assess qualitative olfactory function in health and disease. Te sense of smell enables us to interact with our environment and olfactory impairment results in a loss of critical information. Olfactory disorders (OD) can be classifed into two major groups: Reduced perception of odor intensity (quantitative impairment) and distorted odor perception (qualitative impairment).
    [Show full text]
  • Olfactory Influences on Appetite and Satiety in Humans
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online Olfactory influences on appetite and satiety in humans. Martin R Yeomans Department of Psychology, School of Life Sciences, University of Sussex, Brighton, BN1 9QH, UK Address correspondence to: Dr Martin R Yeomans Department of Psychology School of Life Sciences University of Sussex Brighton BN1 9QH, UK Tel: +44 1273 678617 Fax: +44 1273 678058 Email: [email protected] 1 ABSTRACT YEOMANS, M. R. Olfactory influences on appetite and satiety in humans . PHYSIOL BEHAV. 200X; 00(X): 000-000. Odor stimuli play a major role in perception of food flavor. Food- related odors have also been shown to increase rated appetite, and induce salivation and release of gastric acid and insulin. However, our ability to identify an odor as food-related, and our liking for food-related odors, are both learned responses. In conditioning studies, repeated experience of odors with sweet and sour tastes result in enhanced ratings of sensory quality of the paired taste for the odor on its own. More recent studies also report increased pleasantness ratings for odors paired with sucrose for participants who like sweet tastes, and conversely decreased liking and increased bitterness for quinine-paired odors. When odors were experienced in combination with sucrose when hungry, liking was not increased if tested sated, suggesting that expression of acquired liking for odors depends on current motivational state. Other studies report sensory-specific satiety is seen with food-related odors. Overall, these studies suggest that once an odor is experienced in a food-related context, that odor acquires the ability to modify both preparatory and satiety-related components of ingestion.
    [Show full text]
  • The Role of Olfactory Cues and Their Effects on Food Choice and Acceptability
    The Role of Olfactory Cues and their Effects on Food Choice and Acceptability Louise Ruth Blackwell - A thesis submitted in partial fulfilment of the requirements of Bournemouth University for the degree of Doctor of Philosophy July 1997 Bournemouth University Abstract Food intake in humans is guided by a variety of factors, which include physiological, cultural, economic and environmental influences. The sensory attributes of food itself play a prominent role in dietary behaviour, and the roles of visual, auditory, gustatory and tactile stimuli have been extensively researched. Other than in the context of flavour, however, olfaction has received comparatively little attention in the field of food acceptability. The investigation was designedto test the hypothesisthat olfactory cues, in isolation of other sensorycues, play a functional role in food choice and acceptability. Empirical studies were conducted to investigate: the effects of exposure to food odours on hunger perception; the effects of exposure to food odours with both high and low hedonic ratings on food choice, consumption and acceptability; and the application of odour exposure in a restaurant environment. Results from these studies indicated that exposure to the food odours led to a conscious perception of a shift in hunger, the direction and magnitude of which was dependent on the hedonic response to the odour. Exposure to a food odour with a high hedonic rating prior to a meal significantly increased consumption and acceptability (p<0.05), and exposure to a food odour with a low hedonic rating had no significant effect (p>0.05). When applied to a restaurant environment, exposure to a food odour with a high hedonic rating significantly influenced food choice and acceptability (p<0.05).
    [Show full text]
  • Ten Questions Concerning Well-Being in the Built Environment
    Paper published in: Building and Environment, available on: https://doi.org/10.1016/j.buildenv.2020.106949 TEN QUESTIONS CONCERNING WELL-BEING IN THE BUILT ENVIRONMENT Sergio Altomontea∗, Joseph Allenb, Philomena M. Bluyssenc, Gail Bragerd, Lisa Heschonge, Angela Loderf, Stefano Schiavond, Jennifer A. Veitchg, Lily Wangh, Pawel Wargockii a Architecture et Climat, Faculty of Architecture, Architectural Engineering, Urbanism (LOCI), Université catholique de Louvain, Belgium b Harvard T.H. Chan School of Public Health, USA c Faculty of Architecture and the Built Environment, Delft University of Technology, The Netherlands d Center for the Built Environment, University of California, Berkeley, USA e Independent, Former Principal of the Heschong Mahone Group, USA f International WELL Building Institute, USA g National Research Council of Canada, Canada h Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, USA I Department of Civil Engineering, Technical University of Denmark, Denmark * corresponding author: [email protected] Received Date: 20 March 2020; Revised Date: 5 May 2020; Accepted Date: 6 May 2020 Please cite this article as: Altomonte S, Allen J, Bluyssen PM, Brager G, Heschong L, Loder A, Schiavon S, Veitch JA, Wang L, Wargocki P, Ten questions concerning well-being in the built environment, Building and Environment (2020), doi: https://doi.org/10.1016/j.buildenv.2020.106949 POST-PRINT ACCEPTED AUTHORS’ SELF-ARCHIVED MANUSCRIPT Paper published in: Building and Environment, available on: https://doi.org/10.1016/j.buildenv.2020.106949 ABSTRACT Well-being in the built environment is a topic that features frequently in building standards and certification schemes, in scholarly articles and in the general press.
    [Show full text]
  • Stefano Schiavon CV Spring 2020 S.Pdf
    SUMMARY OF PERSONAL RECORD Stefano Schiavon, PhD Current Position Associate Professor of Architecture, Department of Architecture Associate Director, Center for Environmental Design Research University of California, Berkeley, USA Education PhD Building Science-Energy Engineering (2009) at University of Padua, Italy MSc Mechanical Engineering summa cum laude (2005) at University of Padua, Italy Visiting student at Technical University of Denmark and Tsinghua University, China Principal Field of Interests Indoor Environment Quality; Mechanical Systems; Sustainable Building Design; Building Energy Efficiency; Thermal Comfort Wellbeing; Post-Occupancy Evaluation; Indoor Air Quality; Major Honors and Awards1 3 Building and Environment 2018 Best Paper Award Best Paper Award PLEA 2018 Faculty Award for Excellence in Postdoctoral Mentoring 2017 Ralph G. Nevins Physiology and Human Environment Award 2013 REHVA young scientist award 2010 Employment History Assistant professor at Polytechnic University of Turin, Italy Postdoctoral scholar and assistant professional researcher at University of California, Berkeley Publications Google Scholar citations: 3007; H-index: 29 Peer-reviewed Papers in International Journals: 68 Books: 1 Peer-reviewed Papers in Conference Proceedings: 61 Journal Papers in Italian: 11 Editorials: 1 Reports: 18 Software programs published: 4 Media: 17 Wikipedia: 114 edited pages, 349 live edits Invited lectures/Keynotes/Seminars2 65 Postdoctoral Scholar 13 Patent application 1 Grants ~$11M 1 RESUME OF STEFANO SCHIAVON Contact info Work: 390 Wurster Hall #1839, Berkeley, CA-94720 [email protected] Home: 1311 Glendale Avenue, Berkeley, CA-94708 skype: hb_stefano Cell: +1 (510) 859-3811 www.cbe.berkeley.edu Google Scholar | ORCID Education 2006-2009 PhD in Energy Engineering (Building Science). University of Padua, Italy. Title: Energy savings with personalized ventilation and cooling fans.
    [Show full text]
  • Depression, Olfaction, and Quality of Life: a Mutual Relationship
    brain sciences Review Depression, Olfaction, and Quality of Life: A Mutual Relationship Marion Rochet 1, Wissam El-Hage 1,2 ID , Sami Richa 3, François Kazour 1,4 ID and Boriana Atanasova 1,* ID 1 UMR 1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; [email protected] (M.R.); [email protected] (W.E.-H.); [email protected] (F.K.) 2 CHRU de Tours, Clinique Psychiatrique Universitaire, 37044 Tours, France 3 Department of Psychiatry, Faculty of Medicine, Saint-Joseph University, P.O. Box 17-5208, 11-5076 Beirut, Lebanon; [email protected] 4 Psychiatric Hospital of the Cross, 60096 Jal Eddib, Lebanon * Correspondence: [email protected]; Tel.: +33-2-47-36-73-05 Received: 13 April 2018; Accepted: 3 May 2018; Published: 4 May 2018 Abstract: Olfactory dysfunction has been well studied in depression. Common brain areas are involved in depression and in the olfactory process, suggesting that olfactory impairments may constitute potential markers of this disorder. Olfactory markers of depression can be either state (present only in symptomatic phases) or trait (persistent after symptomatic remission) markers. This study presents the etiology of depression, the anatomical links between olfaction and depression, and a literature review of different olfactory markers of depression. Several studies have also shown that olfactory impairment affects the quality of life and that olfactory disorders can affect daily life and may be lead to depression. Thus, this study discusses the links between olfactory processing, depression, and quality of life. Finally, olfaction is an innovative research field that may constitute a new therapeutic tool for the treatment of depression.
    [Show full text]
  • Thermal Sensation in Older People with and Without Dementia Living in Residential Care: New Assessment Approaches to Thermal Comfort Using Infrared Thermography
    International Journal of Environmental Research and Public Health Article Thermal Sensation in Older People with and without Dementia Living in Residential Care: New Assessment Approaches to Thermal Comfort Using Infrared Thermography Charmaine Childs 1,* , Jennifer Elliott 1 , Khaled Khatab 1 , Susan Hampshaw 2, Sally Fowler-Davis 1 , Jon R. Willmott 3 and Ali Ali 4 1 College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield S10 2BP, UK; [email protected] (J.E.); [email protected] (K.K.); [email protected] (S.F.-D.) 2 School of Health and Related Research (SCHARR), University of Sheffield, Sheffield S10 2TN, UK; s.hampshaw@sheffield.ac.uk 3 Electronic and Electrical Engineering Department, University of Sheffield, Sheffield S10 2TN, UK; j.r.willmott@sheffield.ac.uk 4 Sheffield Teaching Hospitals, National Institute for Health Research (NIHR), Biomedical Research Centre, Sheffield S10 2JF, UK; ali.ali@sheffield.ac.uk * Correspondence: [email protected]; Tel.: +44-0-114-225-2282 Received: 14 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: The temperature of the indoor environment is important for health and wellbeing, especially at the extremes of age. The study aim was to understand the relationship between self-reported thermal sensation and extremity skin temperature in care home residents with and without dementia. The Abbreviated Mental Test (AMT) was used to discriminate residents to two categories, those with, and those without, dementia. After residents settled and further explanation of the study given (approximately 15 min), measurements included: tympanic membrane temperature, thermal sensation rating and infrared thermal mapping of non-dominant hand and forearm.
    [Show full text]
  • Sensory Influences on Food Intake Control: Moving Beyond Palatability
    obesity reviews doi: 10.1111/obr.12340 Etiology and Pathophysiology Sensory influences on food intake control: moving beyond palatability K. McCrickerd1,2 and C. G. Forde1,2,3 1Clinical Nutrition Research Centre, Centre for Summary Translational Medicine, Yong Loo Lin School of The sensory experience of eating is an important determinant of food intake control, Medicine, Singapore; 2Singapore Institute for often attributed to the positive hedonic response associated with certain sensory Clinical Sciences, Agency for Science, cues. However, palatability is just one aspect of the sensory experience. Sensory cues Technology and Research (A*STAR), based on a food’s sight, smell, taste and texture are operational before, during and Singapore; 3National University of Singapore, after an eating event. The focus of this review is to look beyond palatability and Department of Physiology, Yong Loo Lin School highlight recent advances in our understanding of how certain sensory characteris- of Medicine, Singapore tics can be used to promote better energy intake control. We consider the role of visual and odour cues in identifying food in the near environment, guiding food Received 19 July 2015; revised 24 September choice and memory for eating, and highlight the ways in which tastes and textures 2015; accepted 25 September 2015 influence meal size and the development of satiety after consumption. Considering sensory characteristics as a functional feature of the foods and beverages we Address for correspondence: Dr K McCrickerd, consume provides the opportunity for research to identify how sensory enhance- Clinical Nutrition Research Centre, Centre for ments might be combined with energy reduction in otherwise palatable foods to Translational Medicine, 14 Medical Drive optimize short-term energy intake regulation in the current food environment.
    [Show full text]
  • Neurocomputational Theories of Homeostatic Control Oliver Hulme 1, Tobias Morville1 , Boris Gutkin 2,3
    Neurocomputational Theories of Homeostatic Control Oliver Hulme 1, Tobias Morville1 , Boris Gutkin 2,3 1. Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegard Allé 30, 2650, Hvidovre, Denmark 2 Group for Neural Theory, LNC INSERM U960, DEC Ecole Normale Superieure PSL University, Paris, France 3 Center for Cognition and Decision Making, NRU HSE, Moscow, Russia. Abstract. Homeostasis is a problem for all living agents. It entails predictively regulating internal states within the bounds compatible with survival in order to maximise fitness. This can be achieved physiologically, through complex hierarchies of autonomic regulation, but it must also be achieved via behavioural control. Here we review some of the major theories of homeostatic control and their historical cognates, addressing how they tackle the optimisation of both physiological and behavioural homeostasis. We start with optimal control approaches, setting up key concepts, and expanding on their limitations. We then move onto contemporary approaches, in particularly focusing on a branch of reinforcement learning known as homeostatic reinforcement learning (HRL). We explain its main advantages, empirical applications, and conceptual insights. We then outline some challenges to HRL and reinforcement learning in general, and how survival constraints and Active Inference models could circumvent these problems. 1 Homeostasis as a problem Physiological states are insulated from hazardous fluctuations in the external environment by the operational and computational processes known as homeostasis [1-3]. These homeostatic processes unfold over deep hierarchies of biophysical structure, molecules to networks of agents, and over a spectrum of timescales, milliseconds to years.
    [Show full text]
  • Neuroanatomical Maps and Taste Reactivity to Sweet, Umami, And
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 8-2016 Neuroanatomical Maps and Taste Reactivity to Sweet, Umami, and Bitter Taste in the PBN of C57BL/6J Mice Jennifer Marie Saputra University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Neurosciences Commons Recommended Citation Saputra, Jennifer Marie (http://orcid.org/0000-0002-7317-8307), "Neuroanatomical Maps and Taste Reactivity to Sweet, Umami, and Bitter Taste in the PBN of C57BL/6J Mice" (2016). Theses and Dissertations (ETD). Paper 401. http://dx.doi.org/10.21007/ etd.cghs.2016.0413. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Neuroanatomical Maps and Taste Reactivity to Sweet, Umami, and Bitter Taste in the PBN of C57BL/6J Mice Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Neuroscience Research Advisor John D. Boughter, Jr., Ph.D. Committee Malinda E.C. Fitzgerald, Ph.D. Kristin M. Hamre, Ph.D. Jeffrey D. Steketee, Ph.D. ORCID http://orcid.org/0000-0002-7317-8307 DOI 10.21007/etd.cghs.2016.0413 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/401 Neuroanatomical Maps and Taste Reactivity to Sweet, Umami, and Bitter Taste in the PBN of C57BL/6J Mice A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Jennifer Marie Saputra May 2016 Copyright © 2016 by Jennifer Marie Saputra.
    [Show full text]
  • Alliesthesia. Up-Date of the Word and Concept
    American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Research Article Copy Right@ Michel Cabanac Alliesthesia. Up-date of the Word and Concept Michel Cabanac1*, Laurent Brondel2 and Arnaud Cabanac3 1Laval University, Quebec, Canada 2University of Bourgogne Franche-Comté Dijon, France 3Rochebelle School, Quebec, Canada *Corresponding author: Michel Cabanac, Laval University, Quebec, Canada. To Cite This Article: Michel Cabanac, Laurent Brondel, Arnaud Cabanac. Alliesthesia. Up-date of the Word and Concept. 2020 - 8(4). AJBSR. MS.ID.001293. DOI: 10.34297/AJBSR.2020.08.001293. Received: March 12, 2020; Published: April 16, 2020 Abstract was skin temperature and sweet tastes. However, accrued experimental evidence shows that changes in hedonicity place also in sensations, and then The current dictionary definition for alliesthesia is the hedonic modification of a sensation. The stimuli used to establish this initial definition in other cognitive processes, mental experiences, and in all decision making. These accumulated data render obsolete the previous definition. We displeasurepropose the orfollowing pain, while new negative one: Alliesthesia alliesthesia refers is the to aopposite. modified outcome of the hedonic dimension of any mental process, from sensation to mental performance, and decision making leading to physiological comfort and happiness. Positive alliesthesia is the
    [Show full text]
  • Glossary of Terms for Thermal Physiology
    Glossary of terms for thermal physiology Glossary of terms for thermal physiology Third Edition revised by The Commission for Thermal Physiology of the International Union of Physiological Sciences (IUPS Thermal Commission) Preface Order of Presentation of Terms The first Glossary of Terms for Thermal Physiology To bring similar or related terms closer together in the was published in the J. Appl. Physiol. (1973, 35: 941– Glossary, the common term is given first followed by 961) by J.Bligh and K.G.Johnson, under the auspices of the descriptive term, e.g., emissivity, hemispherical. the I.U.P.S. Commission for Thermal Physiology. The In use the order is reversed: hemispherical emissivity. second revised glossary was again collated with the To avoid confusion such entries have a cross-reference, help of the members of the I.U.P.S Commission for e.g., hemispherical emissivity. →Emissivity, hemi- Thermal Physiology and consulted experts and was spherical. If the same root of a term is used in more published in Pflügers Arch. (1987, 410: 567–587) by E. than one grammatical form, however, with analogous Simon. Once again the members of the I.U.P.S. Com- meaning, it is defined only once without referring ex- mission for Thermal Physiology and consulted experts plicitly to the other forms; example: homeothermy, whose names are listed in APPENDIX 3 have contrib- homeothermic, homeotherm. uted to the revision of this 3rd edition. Use of Fonts and Markers in Text This revised edition obeys the following rules outlined in the first and second editions: Horizontal arrows in the headings of the definition point to cross-references.
    [Show full text]