Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Word for Word Parola Per Parola Mot Pour Mot
wort für wort palabra por palabra word for word parola per parola mot pour mot 1 word for word wort für wort palabra por palabra mot pour mot parola per parola 2015/2016 2 table of contents foreword word for word / wort für wort Columbia University School of the Arts & Deutsches Literaturinstitut Leipzig 6 word for word / palabra por palabra Columbia University School of the Arts & New York University MFA in Creative Writing in Spanish 83 word for word / parola per parola Columbia University School of the Arts & Scuola Holden 154 word for word / mot pour mot Columbia University School of the Arts & Université Paris 8 169 participating institutions 320 acknowledgements 4 foreword Word for Word is an exchange program that was conceived in 2011 by Professor Binnie Kirshenbaum, Chair of the Writing Program of Columbia University’s School of the Arts, in the belief that that when writers engage in the art of literary transla- tion and collaborate on translations of each other’s work, the experience will broad- en and enrich their linguistic imaginations. Since 2011, the Writing Program conducted travel-based exchanges in partnership with the Deutsches Literaturinstitut Leipzig in Leipzig, Germany; the Scuola Holden in Turin, Italy; the Institut Ramon Llull and Universitat Pompeu Fabra–IDEC in Barcelona, Catalonia (Spain); the Columbia Global Center | Middle East in Amman, Jordan; Gallaudet University in Washington, D.C.; and the University of the Arts Helsinki in Helsinki, Finland. Starting in 2016, the Word for Word program expanded to include a collaborative translation workshop running parallel to the exchanges, in which Writing Program students, over the course of one semester, translate work by their partners at some of these same institutions – the Deutsches Literaturinstitut Leipzig and Scuola Holden–as well as some new ones: Université Paris 8 in Paris, France; New York University’s Creative Writing in Spanish MFA Program; and the Instituto Vera Cruz in São Paulo, Brazil. -
Cfa in the News ~ Week Ending 3 January 2010
Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis. -
New Herschel Maps and Catalogues Reveal Stellar Nurseries Across the Galactic Plane 22 April 2016
New Herschel maps and catalogues reveal stellar nurseries across the galactic plane 22 April 2016 observations, equivalent to almost 40 days – and sky coverage – about 800 square degrees, or two percent of the entire sky. Its aim was to map the entire disc of the Milky Way, where most of its stars form and reside, in five of Herschel's wavelength channels: 70, 160, 250, 350 and 500 ?m. Over the past two years, the Hi-GAL team has processed the data to obtain a series of calibrated maps of extraordinary quality and resolution. With a dynamical range of at least two orders of magnitude, these maps reveal the emission by diffuse material as well as huge filamentary Herschel's view of the Eagle Nebula. Credit: structures and individual, point-like sources ESA/Herschel/PACS, SPIRE/Hi-GAL Project Herschel's scattered across the images. view of the Galactic Plane. Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project ESA's Herschel mission releases today a series of unprecedented maps of star-forming hubs in the plane of our Milky Way galaxy. This is accompanied by a set of catalogues of hundreds of thousands of compact sources that span all phases leading to the birth of stars in our Galaxy. These maps and catalogues will be very valuable resources for astronomers, to exploit scientifically and for planning follow-up studies of particularly interesting regions in the Galactic Plane. During its four years of operations (2009-2013), the Herschel space observatory scanned the sky at far- infrared and sub-millimetre wavelengths. Observations in this portion of the electromagnetic spectrum are sensitive to some of the coldest objects in the Universe, including cosmic dust, a minor but crucial component of the interstellar material from which stars are born. -
Characterization of Solar X-Ray Response Data from the REXIS Instrument Andrew T. Cummings
Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Earth, Atmospheric, and Planetary Sciences May 18, 2020 Certified by. Richard P. Binzel Professor of Planetary Sciences Thesis Supervisor Certified by. Rebecca A. Masterson Principal Research Scientist Thesis Supervisor Accepted by . Richard P. Binzel Undergraduate Officer, Department of Earth, Atmospheric, and Planetary Sciences 2 Characterization of Solar X-ray Response Data from the REXIS Instrument by Andrew T. Cummings Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on May 18, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences Abstract The REgolith X-ray Imaging Spectrometer (REXIS) is a student-built instrument that was flown on NASA’s Origins, Spectral Interpretation, Resource Identification, Safety, Regolith Explorer (OSIRIS-REx) mission. During the primary science ob- servation phase, the REXIS Solar X-ray Monitor (SXM) experienced a lower than anticipated solar x-ray count rate. Solar x-ray count decreased most prominently in the low energy region of instrument detection, and made calibrating the REXIS main spectrometer difficult. This thesis documents a root cause investigation intothe cause of the low x-ray count anomaly in the SXM. Vulnerable electronic components are identified, and recommendations for hardware improvements are made to better facilitate future low-cost, high-risk instrumentation. -
407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical -
A Compendium of Distances to Molecular Clouds in the Star Formation Handbook?,?? Catherine Zucker1, Joshua S
A&A 633, A51 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936145 & c ESO 2020 Astrophysics A compendium of distances to molecular clouds in the Star Formation Handbook?,?? Catherine Zucker1, Joshua S. Speagle1, Edward F. Schlafly2, Gregory M. Green3, Douglas P. Finkbeiner1, Alyssa Goodman1,5, and João Alves4,5 1 Center for Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA e-mail: [email protected], [email protected] 2 Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA 3 Kavli Institute for Particle Astrophysics and Cosmology, Physics and Astrophysics Building, 452 Lomita Mall, Stanford, CA 94305, USA 4 University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, 1180 Vienna, Austria 5 Radcliffe Institute for Advanced Study, Harvard University, 10 Garden St, Cambridge, MA 02138, USA Received 21 June 2019 / Accepted 12 August 2019 ABSTRACT Accurate distances to local molecular clouds are critical for understanding the star and planet formation process, yet distance mea- surements are often obtained inhomogeneously on a cloud-by-cloud basis. We have recently developed a method that combines stellar photometric data with Gaia DR2 parallax measurements in a Bayesian framework to infer the distances of nearby dust clouds to a typical accuracy of ∼5%. After refining the technique to target lower latitudes and incorporating deep optical data from DECam in the southern Galactic plane, we have derived a catalog of distances to molecular clouds in Reipurth (2008, Star Formation Handbook, Vols. I and II) which contains a large fraction of the molecular material in the solar neighborhood. Comparison with distances derived from maser parallax measurements towards the same clouds shows our method produces consistent distances with .10% scatter for clouds across our entire distance spectrum (150 pc−2.5 kpc). -
Stock Codes Numerical
STOCK CODE DESCRIPTION STOCK CODE DESCRIPTION MAY 6, 2021 A MIXED C2 COLONIAL A1 ARBOR ACRES C3 CHAUMIERE BB-NL A2 ANDREWS-NL C3 CORBETT A2 BABCOCK C4 DAVIS A3 CAREY C5 HARCO A5 COLONIAL C6 HARDY A6 EURIBRID C7 PARKS A7 GARBER C8 ROWLEY A8 H AND N-NL C9 GUILFORD-NL A8 H AND N C9 TATUM A9 HALEY C10 HENNING-NL A10 HUBBARD C10 WELP A11 LOHMANN C11 SCHOONOVER A12 MERRILL C12 IDEAL A13 PARKS C19 NICHOLAS-NL A14 SHAVER C35 ORLOPP LARGE BROAD-NL A15 TATUM C57 ROSE-A-LINDA-NL A16 WELP C122 ORLOPP BROAD-NL A17 HANSON C129 KENT-NL A18 DEKALB C135 B.U.T.A., LARGE-NL A19 HYLINE C142 HYBRID DOUBLE DIAMOND MEDIUM-NL A38 KENT-NL C143 HYBRID LARGE-NL A45 MARCUM-NL C144 B.U.T.A., MEDIUM-NL A58 ORLOPP-NL C145 NICHOLAS 85-NL B MIXED C146 NICHOLAS 88-NL B1 ARBOR ACRES C147 HYBRID CONVERTER-NL B2 COLONIAL C148 HYBRID EXTREME-NL B3 CORBETT C149 MIXED B4 DAVIS C150 NICHOLAS SELECT B5 DEKALB WARREN D MIXED B6 HARCO D1 ARBOR ACRES B7 HARDY D2 BRADWAY B8 LAWTON D3 COBB B9 ROWLEY D4 COLONIAL B10 WELP D5 HARDY B11 CARGILL D6 HUBBARD B12 SCHOONOVER D7 LAWTON B13 CEBE D8 PILCH B14 OREGON D9 WELP B15 IDEAL D10 PENOBSCOT C MIXED D11 WROLSTAD SMALL-NL C1 ARBOR ACRES D11 CEBE, RECESSIVE C2 BROADWHITE-NL D12 IDEAL 1 STOCK CODE DESCRIPTION STOCK CODE DESCRIPTION MAY 6, 2021 N14 OLD ENGLISH, WHITE E MIXED N15 OLD ENGLISH, BLACK E1 COLONIAL N16 OLD ENGLISH, SPANGLED E2 HUBBARD N17 PIT E3 BOURBON, RED-NL N18 OLD ENGLISH E3 ROWLEY N19 MODERN E4 WELP N20 PIT, WHITE HACKLE E5 SCHOONOVER N21 SAM BIGHAM E6 CEBE N22 MCCLANHANS H MIXED N23 CLIPPERS H1 ARBOR ACRES N24 MINER BLUES H2 -
The Bubbling Galactic Disk E
The Astrophysical Journal, 649:759–778, 2006 October 1 A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE BUBBLING GALACTIC DISK E. Churchwell,1 M. S. Povich,1 D. Allen,1 M. G. Taylor,1 M. R. Meade,1 B. L. Babler,1 R. Indebetouw,2 C. Watson,3 B. A. Whitney,4 M. G. Wolfire,5 T. M. Bania,6 R. A. Benjamin,7 D. P. Clemens,6 M. Cohen,8 C. J. Cyganowski,1 J. M. Jackson,6 H. A. Kobulnicky,9 J. S. Mathis,1 E. P. Mercer,6 S. R. Stolovy,10 B. Uzpen,9 D. F. Watson,1 and M. J. Wolff4 Received 2005 November 14; accepted 2006 June 9 ABSTRACT Avisual examination of the images from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) has revealed 322 partial and closed rings that we propose represent partially or fully enclosed three-dimensional bubbles. We argue that the bubbles are primarily formed by hot young stars in massive star formation regions. We have found an average of about 1.5 bubbles per square degree. About 25% of the bubbles coincide with known radio H ii regions, and about 13% enclose known star clusters. It appears that B4–B9 stars (too cool to produce detectable radio H ii regions) probably produce about three-quarters of the bubbles in our sample, and the remainder are produced by young O–B3 stars that produce detectable radio H ii regions. Some of the bubbles may be the outer edges of H ii regions where PAH spectral features are excited and may not be dynamically formed by stellar winds. -
THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds
THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 192 — 6 Dec 2008 Editor: Bo Reipurth ([email protected]) Special Issue Handbook of Star Forming Regions Edited by Bo Reipurth The Handbook describes the ∼60 most important star forming regions within approximately 2 kpc, and has been written by a team of 105 authors with expertise in the individual regions. It consists of two full color volumes, one for the northern and one for the southern hemisphere, with a total of over 1900 pages. The Handbook aims to be a source of comprehensive factual information about each region, with very extensive references to the literature. The development of our understanding of a given region is outlined, and hence many of the earliest studies are, if not discussed, then at least mentioned, even if they are only of historical interest today. Young low- and high-mass populations are discussed, as well as the molecular and ionized gas. The text is supported by extensive use of figures and tables. Authors have been encouraged to complete their chapters with a section on individual objects of special interest. Little emphasis is placed on more general discussions of star formation processes and the properties of young stars, subjects that are well covered elsewhere. The Handbook will thus serve as a reference guide for researchers and students embarking on a study of one or more of these regions, and will hopefully also inspire new work to be done where information is clearly missing. In order to keep the Handbook within some reasonable limits, it was from the beginning decided to limit regions to those closer than approximately 2 kpc. -