Anthracene-Induced Mammary Tumors in Sprague–Dawley Rats

Total Page:16

File Type:pdf, Size:1020Kb

Anthracene-Induced Mammary Tumors in Sprague–Dawley Rats Published OnlineFirst April 19, 2011; DOI: 10.1158/1940-6207.CAPR-10-0382 Cancer Prevention Research Article Research Apigenin Prevents Development of Medroxyprogesterone Acetate-Accelerated 7,12-Dimethylbenz(a)anthracene-Induced Mammary Tumors in Sprague–Dawley Rats Benford Mafuvadze1, Indira Benakanakere1, Franklin R. López Pérez2, Cynthia Besch-Williford2, Mark R. Ellersieck3, and Salman M. Hyder1 Abstract The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague–Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA- induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor (ER/PR) levels, or the number of estrogen receptor–positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor–positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins. Cancer Prev Res; 4(8); 1316–24. Ó2011 AACR. Introduction however, overwhelming evidence shows that progestins stimulate proliferation of normal and neoplastic breast cells Recent clinical trials and studies show an increased risk in various species, including humans (5–8). of breast cancer in postmenopausal women undergoing A number of mechanisms have been implicated in the hormone replacement therapy (HRT) that consists of both progestin-induced increase in breast cancer risk observed estrogen and progestin (EþP) compared with women taking in women undergoing HRT, including induction of estrogen alone or placebo (1–3). Furthermore, women on a angiogenic growth factors such as vascular endothelial regimen of EþP are more at risk of metastasis and death than growth factor (VEGF) (9, 10), which renders the micro- those taking estrogen alone (4). Progestins are prescribed in environment conducive to tumor development and pro- HRT regimens to counter the unopposed proliferative effects gression. VEGF is considered one of the most important of estrogen on the uterus that could lead to uterine cancer; growth factors and its effects have been reported to be vital to the angiogenesis that is integral to the growth and metastasis of tumors (11), including those that arise in Authors' Affiliations: 1Department of Biomedical Sciences and Dalton response to progestins (7). Recently, other mechanisms 2 3 Cardiovascular Research Center, Department of Pathology, and Agri- have also been proposed to explain progestin-dependent culture Experiment Station, University of Missouri, Columbia, Missouri breast tumor development and progression. For example, Corresponding Author: Salman M. Hyder, Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Colum- in animal models, RANK-L has also been associated with bia, MO 65211. Phone: 573-882-1266; Fax: 573–884-4232; E-mail: progestin-dependent increased proliferation of breast- [email protected] cancer cells (12, 13), while it has also been reported doi: 10.1158/1940-6207.CAPR-10-0382 that medroxyprogesterone acetate (MPA), a progestin Ó2011 American Association for Cancer Research. commonly used in HRT, increased the stem-like cell 1316 Cancer Prev Res; 4(8) August 2011 Downloaded from cancerpreventionresearch.aacrjournals.org on September 30, 2021. © 2011 American Association for Cancer Research. Published OnlineFirst April 19, 2011; DOI: 10.1158/1940-6207.CAPR-10-0382 Apigenin Delays MPA-Accelerated DMBA-Induced Mammary Tumors subpopulation in mammary glands (14). Collectively, maintained according to the guidelines of the Association these observations suggest that progestins promote the for Assessment and Accreditation of Laboratory Animal growth of latent breast tumor cells by increasing their Care International under conditions of 12-hour light/dark proliferative potential and/or promote tumor develop- cycles and ad libitum access to food and water. All surgical ment through activation and transformation of dormant and experimental procedures were approved by the Institu- breast-cancer stem cells into intermediate subpopula- tional Animal Care and Use Committee of the University tions, which then differentiate into breast-cancer cells. of Missouri and were in accordance with procedures out- We have previously shown that progestins accelerate lined in the "Guide for Care and Use of Laboratory Ani- the development of 7,12-dimethylbenz(a)anthracene mals" (NIH publication 85–23). Each experiment was (DMBA)-induced mammary tumors in Sprague–Dawley carried out at least twice. rats (15–17). Whereas the molecular basis of this phe- nomenon has not been fully established, it is clear that Apigenin progestins accelerate the tumor development process by Apigenin (Indofine Chemical Company) was dissolved increasing VEGF and subsequent angiogenesis in this in a dimethyl sulfoxide (DMSO)/PBS mixture (1:4) to model (15–17). Thus, it appears that once tumor initia- produce the required concentration. Fresh apigenin was tion has occurred, progestins have the capacity to increase prepared every two days, with the remaining apigenin tumor cell proliferation, producing palpable tumors solution stored at À20C for use the following day. sooner. The progestin-accelerated DMBA-induced mam- mary tumor model is therefore a useful model in which to Experimental design identify natural "neutraceuticals" that can prevent the We followed a protocol previously established by our development of progestin-accelerated breast cancers. laboratory for progestin-acceleration of DMBA-induced Because HRT is used widely to alleviate the severe symp- mammary tumors in rats (15–17; Fig 1A). Briefly, 45- to toms of menopause, the inclusion of neutraceuticals in a 50-day-old Sprague–Dawley rats were given a single dose of drug regimen could well prove beneficial, as these com- 20 mg DMBA (Sigma) in vegetable oil by gavage (on day 0). pounds would selectively limit the proliferative effects of On day 28 post-DMBA administration, animals were progestins in the breast, protecting against the develop- anesthetized and implanted with a single 25 mg-60 day ment of frank tumors. release MPA or placebo pellet (Innovative Research) sub- Previous studies have shown that apigenin inhibits the cutaneously on the dorsal part of the neck. The dose of growth of several human cancers (18). Apigenin is a low apigenin used initially (50 mg/kg) was based on a previous molecular weight flavonoid commonly found in fruits, report (24), and was administered daily via intraperitoneal vegetables, nuts, and plant-derived beverages (19). Api- injection, beginning 21 days after the initial dose of DMBA genin exhibits low intrinsic toxicity and appears to have and continuing for 10–13 days. Control animals from the little effect on normal cells (20, 21), making it an attractive MPA implanted group and those implanted with placebo candidate for chemoprevention. Apigenin has been shown pellets only were treated with DMSO/PBS vehicle on the to be effective against several types of tumors (18), whereas same schedule. Following pellet implantation, animals its ability to act as an antiprogestin as a possible mechanism were palpated every 2 days to detect tumors. The time by which it exerts its antitumor action has not been well preceding the appearance of the first tumor (latency) studied. However, we recently showed that apigenin inhi- and tumor size, number, and location were recorded. bits progestin-dependent VEGF induction in human breast Tumor length (L) and width (W) were measured with a cancer cells in vitro (22). These findings provided a strong micrometer caliper, and tumor size was calculated using rationale for us to extend our studies to an in vivo model and the formula L/2 Â W/2 Â p (15). All animals were sacrificed examine apigenin’s ability to inhibit progestin-accelerated and the experiment terminated on day 60 and the abdom- DMBA-induced mammary tumors. Herein we provide evi- inal mammary tissue lacking tumors were collected. dence that apigenin significantly delays the appearance of In order to determine potential mechanisms by which and decreases the incidence and multiplicity of MPA-accel- apigenin could exert anticancer effects against MPA-accel- erated, DMBA-induced mammary tumors, though it
Recommended publications
  • Progesterone – an Amazing Hormone Sheila Allison, MD
    Progesterone – An Amazing Hormone Sheila Allison, MD Management of abnormal PAP smears and HPV is changing rapidly as new research information is available. This is often confusing for physicians and patients alike. I would like to explain and hopefully clarify this information. Almost all abnormal PAP smears and cervical cancers are caused by the HPV virus. This means that cervical cancer is a sexually transmitted cancer. HPV stands for Human Papilloma Virus. This is a virus that is sexually transmitted and that about 80% of sexually active women are exposed to. The only way to absolutely avoid exposure is to never be sexually active or only have intercourse with someone who has not had intercourse with anyone else. Because most women become sexually active in their late teens and early 20s, this is when most exposures occur. We do not have medication to eradicate viruses (when you have a cold, you treat the symptoms and wait for the virus to run its course). Most women will eliminate the virus if they have a healthy immune system and it is then of no consequence. There are over 100 subtypes of the HPV virus. Most are what we call low-risk viruses. These are associated with genital warts and are rarely responsible for abnormal cells and cancer. Two of these subtypes are included in the vaccine that is now recommended prior to initiating sexual activity. Few women who see me for hormone management will leave without a progesterone prescription. As a matter of fact, I have several patients who are not on any estrogen but are on progesterone exclusively.
    [Show full text]
  • Australian Public Assessment Report for Progesterone
    Australian Public Assessment Report for Progesterone Proprietary Product Name: Prometrium / Utrogestan Sponsor: Besins Healthcare Australia Pty Ltd June 2017 Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) • The Therapeutic Goods Administration (TGA) is part of the Australian Government Department of Health and is responsible for regulating medicines and medical devices. • The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance) when necessary. • The work of the TGA is based on applying scientific and clinical expertise to decision- making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. • The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. TGA investigates reports received by it to determine any necessary regulatory action. • To report a problem with a medicine or medical device, please see the information on the TGA website <https://www.tga.gov.au>. About AusPARs • An Australian Public Assessment Report (AusPAR) provides information about the evaluation of a prescription medicine and the considerations that led the TGA to approve or not approve a prescription medicine submission. • AusPARs are prepared and published by the TGA. • An AusPAR is prepared for submissions that relate to new chemical entities, generic medicines, major variations and extensions of indications. • An AusPAR is a static document; it provides information that relates to a submission at a particular point in time. • A new AusPAR will be developed to reflect changes to indications and/or major variations to a prescription medicine subject to evaluation by the TGA.
    [Show full text]
  • Gestational Age-Specific Normative Values and Determinants of Serum Progesterone Through the First Trimester of Pregnancy
    www.nature.com/scientificreports OPEN Gestational age‑specifc normative values and determinants of serum progesterone through the frst trimester of pregnancy Chee Wai Ku1,8*, Xiaoxuan Zhang2,8, Valencia Ru‑Yan Zhang3, John Carson Allen4, Nguan Soon Tan5,6, Truls Østbye7 & Thiam Chye Tan1,2 Progesterone is a steroid hormone that is critical for implantation and maintenance of pregnancy, and low levels are associated with higher miscarriage risk. However, little is known about its trajectory during early pregnancy. We sought to determine the gestational age‑specifc normative values of serum progesterone on a week‑by‑week basis, and its associated maternal and fetal factors, during the frst trimester of a viable low‑risk pregnancy. A cross‑sectional study was conducted at KK Women’s and Children’s Hospital from 2013 to 2018. 590 women with a single viable intrauterine low‑ risk pregnancy, between gestational weeks 5 and 12, were recruited. Serum progesterone showed an increasing trend during the frst trimester, with a transient decline between gestational weeks 6–8, corresponding to the luteal–placental shift. Lowest levels were seen at week 7. Maternal age, BMI, parity, gestational age and outcome of pregnancy at 16 weeks’ gestation were found to be associated with progesterone levels. Normative values of serum progesterone for low‑risk pregnancies would form the basis for future work on pathological levels of serum progesterone that may increase risk of miscarriage. Larger studies are required to validate these normative values, and personalize them to account for maternal age, BMI, parity and gestational age. Progesterone is a steroid hormone critical for the establishment and maintenance of early pregnancy.
    [Show full text]
  • PROGESTERONE PRIMER Patrick M. Mccue DVM, Phd, Diplomate American College of Theriogenologists
    PROGESTERONE PRIMER Patrick M. McCue DVM, PhD, Diplomate American College of Theriogenologists Progesterone is one of the key reproductive than 1 ng/ml after prostaglandins are hormones in the mare. It is the hormone that released from the uterus 13 to 15 days after takes a mare out of heat after ovulation and ovulation. The absence of progesterone and it is absolutely required for the maintenance the increase in levels of estrogen produced of pregnancy. The goal of this article is to by the next dominant follicle cause the mare review sources and blood levels of to return to estrus. progesterone in non-pregnant and pregnant mares and to discuss supplementation of If the mare is pregnant, a critical event mares with exogenous progesterone to termed maternal recognition of pregnancy maintain pregnancy. occurs which prevents release of prosta- glandins and destruction of the corpus The large preovulatory follicle of the luteum. Consequently, progesterone mare is filled with follicular fluid and production by the ovarian corpus luteum contains a single oocyte or egg. Cells lining continues in the pregnant mare. Pregnant the follicle produce the hormone estradiol- mares begin to form additional or secondary 17β (an estrogen) that stimulates behavioral corpora lutea by day 40 to 45 of gestation. estrus or heat. Ovulation is the process Secondary CL’s are unique to the mare and during which the follicle ruptures and are stimulated to develop in response to the releases the follicular fluid and egg. The hormone equine chorionic gonadotropin egg is transported down the oviduct where (eCG) produced by endometrial cups of the fertilization may occur if the mare had been placenta.
    [Show full text]
  • Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant
    International Journal of Molecular Sciences Review Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant Rachida Guennoun U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France; [email protected] Received: 4 May 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke. Keywords: progesterone; PR; allopregnanolone; neuroprotection; neurosteroid; stroke; traumatic brain injury; TBI 1. Introduction Steroid hormones are synthesized by adrenal glands, gonads, and placenta and influence the function of many target tissues including the nervous system.
    [Show full text]
  • Allopregnanolone Effects in Women Clinical Studies in Relation to the Menstrual Cycle, Premenstrual Dysphoric Disorder and Oral Contraceptive Use
    Umeå University Medical Dissertations, New Series No 1459 Allopregnanolone effects in women Clinical studies in relation to the menstrual cycle, premenstrual dysphoric disorder and oral contraceptive use Erika Timby Department of Clinical Sciences Obstetrics and Gynecology Umeå 2011 Responsible publisher under Swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7459-316-7 ISSN: 0346-6612 Front cover: Ceramic piece in raku technique by Charlotta Wallinder Elektronisk version tillgänglig på http://umu.diva-portal.org/ Tryck/Printed by: Print & Media, Umeå University Umeå, Sweden 2011 ”Morgon. Och sakerna förbi. Och HOTET som om det aldrig funnits. Hon var inte med barn och andra eftertankar behövdes inte.” Ur Lifsens rot av Sara Lidman Table of Contents Table of Contents i Abstract iii Abbreviations v Enkel sammanfattning på svenska vi Original papers ix Introduction 1 The menstrual cycle 1 Hormonal changes across the menstrual cycle 1 Brain plasticity across the menstrual cycle 2 Premenstrual symptoms and progesterone – a temporal relationship 3 Premenstrual symptoms in the clinic 3 Epidemiology of premenstrual symptoms/PMS/PMDD 3 The symptom diagnoses of PMDD and PMS 5 Comorbidity and risk factors in PMDD 6 Treatment options for PMDD 7 Trying to understand PMDD by in vivo and in vitro research 8 Etiological considerations in PMDD 8 Brain imaging in PMDD patients across the menstrual cycle 9 Connections between the GABA system and PMDD 10 Neurosteroids 12
    [Show full text]
  • Women and Drugs: a New Era for Research
    Women and Drugs: A New Era for Research DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration Women and Drugs: A New Era for Research Editors: Barbara A. Ray, Ph.D. Division of Clinical Research National Institute on Drug Abuse Monique C. Braude, Ph.D. Division of Preclinical Research National institute on Drug Abuse NIDA Research Monograph 65 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 NIDA Research Monographs are prepared by the research divisions of the National Institute on Drug Abuse and published by its Office of Science. The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. Its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates. Health Sciences RockviIle, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, Californla of North America Washington, DC DENISE KANDEL, Ph.D.
    [Show full text]
  • Pharmacokinetics of Hard Micronized Progesterone Capsules Via Vaginal
    Drug Design, Development and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Pharmacokinetics of hard micronized progesterone capsules via vaginal or oral route compared with soft micronized capsules in healthy postmenopausal women: a randomized open-label clinical study This article was published in the following Dove Press journal: Drug Design, Development and Therapy Hanbi Wang,1 Meizhi Liu,1 Purpose: This study aimed to evaluate the pharmacokinetics of hard micronized progester- Qiang Fu,2 Chengyan Deng1 one capsules (Yimaxin) via the vaginal or oral route compared with soft micronized progesterone capsules (Utrogestan) in a Chinese population. 1Reproductive Center, Department of Obstetrics and Gynecology, Peking Union Methods: A prospective single-center randomized open-label trial was conducted in 16 healthy Medical College Hospital, Chinese postmenopausal women. They were randomized into two groups to receive four phases of treat- Academy of Medical Sciences, Beijing, ment: vaginal Yimaxin, vaginal Utrogestan, oral Yimaxin, or oral Utrogestan, with different People’s Republic of China; 2Department of Pharmacy, Peking Union Medical sequences. College Hospital, Chinese Academy of Results: By the vaginal route, steady-state maximum concentration (Cmax) of Yimaxin and Medical Sciences, Beijing, People’s Republic of China Utrogestan was 29.13±8.09 and 12.30±1.60 mg/L, time to Cmax 9.72±10.50 and 11.03±9.62 hours, central compartment volume of distribution 4.26±1.86 and 10.40±2.32 L, clearance rate 0.18±0.05 and 0.38±0.10 L/h, and AUC 261.42±74.36 and 116.83±19.72 h·ng/mL, respectively.
    [Show full text]
  • Dependent Changes in Neuroactive Steroid Concentrations in the Rat Brain Following Acute Swim Stress
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Lincoln Institutional Repository Received: 5 June 2018 | Revised: 5 September 2018 | Accepted: 6 September 2018 DOI: 10.1111/jne.12644 ORIGINAL ARTICLE Sex‐dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress Ying Sze1,2 | Andrew C. Gill2,3 | Paula J. Brunton1,2 1Centre for Discovery Brain Sciences, University of Edinburgh, Sex differences in hypothalamic‐pituitary‐adrenal (HPA) axis activity are well estab‐ Edinburgh, UK lished in rodents. In addition to glucocorticoids, stress also stimulates the secretion 2 The Roslin Institute, University of of progesterone and deoxycorticosterone (DOC) from the adrenal gland. Neuroactive Edinburgh, Edinburgh, UK steroid metabolites of these precursors can modulate HPA axis function; however, it 3School of Chemistry, University of Lincoln, Lincoln, UK is not known whether levels of these steroids differ between male and females fol‐ lowing stress. In the present study, we aimed to establish whether neuroactive ster‐ Correspondence Paula J. Brunton, Centre for Discovery oid concentrations in the brain display sex‐ and/or region‐specific differences under Brain Sciences, University of Edinburgh, basal conditions and following exposure to acute stress. Brains were collected from Edinburgh, UK. Email: [email protected] male and female rats killed under nonstress conditions or following exposure to forced swimming. Liquid chromatography‐mass spectrometry was used to quantify Funding information Biotechnology and Biological Sciences eight steroids: corticosterone, DOC, dihydrodeoxycorticosterone (DHDOC), pregne‐ Research Council, Grant/Award Number: nolone, progesterone, dihydroprogesterone (DHP), allopregnanolone and testoster‐ BB/J004332/1 one in plasma, and in five brain regions (frontal cortex, hypothalamus, hippocampus, amygdala and brainstem).
    [Show full text]
  • Progesterone (Proe-JES-Ter-One) Helps Prevent Changes in the Uterus in Women Who Are Taking Estrogen
    Progesterone (By mouth) Progesterone (proe-JES-ter-one) Helps prevent changes in the uterus in women who are taking estrogen after menopause. Also treats unusual stoppage of periods in women who are still menstruating. Brand Name(s):Prometrium There may be other brand names for this medicine. When This Medicine Should Not Be Used: You should not use this medicine if you have had an allergic reaction to progesterone or peanuts. You should not use this medicine if you have liver disease or certain types of cancer. You should not use this medicine if you have a history of blood clotting problems, or if you have had a heart attack or stroke in the past 12 months. Do not use this medicine if you may be pregnant, if you have had an incomplete miscarriage, or if you have unusual vaginal bleeding that has not been checked by your doctor. How to Use This Medicine: Capsule • This medicine comes with patient instructions. Read and follow these instructions carefully. Ask your doctor or pharmacist if you have any questions. • Your doctor will tell you how much of this medicine to use and how often. Do not use more medicine or use it more often than your doctor tells you to. • This medicine is usually taken for 10 to 12 days for each 28-day cycle. It is best to take the medicine in the evening. Be sure you understand your personal dosing schedule. • If you have trouble swallowing this medicine, take it with a glass of water while standing up. Talk to your doctor or pharmacist if this does not help.
    [Show full text]
  • Endotoxin Increases Sleep and Brain Allopregnanolone Concentrations in Newborn Lambs
    0031-3998/02/5206-0892 PEDIATRIC RESEARCH Vol. 52, No. 6, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. Endotoxin Increases Sleep and Brain Allopregnanolone Concentrations in Newborn Lambs SARAID S. BILLIARDS, DAVID W. WALKER, BENEDICT J. CANNY, AND JONATHAN J. HIRST Department of Physiology, Monash University, Clayton, Victoria, Australia ABSTRACT Infection has been identified as a risk factor for sudden infant LPS-induced increase of allopregnanolone in the brain may death syndrome (SIDS). Synthesis of allopregnanolone, a neu- contribute to somnolence in the newborn, and may be responsible roactive steroid with potent sedative properties, is increased in for the reduced arousal thought to contribute to the risk of SIDS response to stress. In this study, we investigated the effect of in human infants. (Pediatr Res 52: 892–899, 2002) endotoxin (lipopolysaccharide, LPS) on brain and plasma allo- pregnanolone concentrations and behavior in newborn lambs. LPS was given intravenously (0.7 ␮g/kg) at 12 and 15 d of age Abbreviations (n ϭ 7), and resulted in a biphasic febrile response (p Ͻ 0.001), AS, active sleep hypoglycemia, lactic acidemia (p Ͻ 0.05), a reduction in the AW, awake incidence of wakefulness, and increased nonrapid eye movement ECoG, electrocorticogram sleep and drowsiness (p Ͻ 0.05) compared with saline-treated EMG, electromyogram lambs (n ϭ 5). Plasma allopregnanolone and cortisol were EOG, electrooculogram significantly (p Ͻ 0.05) increased after LPS treatment. These GABA, ␥-aminobutyric acid responses to LPS lasted 6–8 h, and were similar at 12 and 15 d GABAA, GABA-A type receptor of age.
    [Show full text]
  • Project II Have Used This Instrument with Success
    SCOR Grant: Project 4 Sex Differences and Progesterone: Association with Impulsivity and Marijuana Reduction in Co-Users of Marijuana and Nicotine Cigarettes Short Title: Hormones & Reduction in Co-Users Principal Investigator: Sharon S. Allen, M.D., Ph.D. Study Protocol Version: 6.0 Date: January 24, 2017 Page 1 of 19 Significance Marijuana is one of the most commonly used, behaviorally addictive, substances in the world, surpassed only by caffeine, alcohol and nicotine. Marijuana use has gradually risen over the last several decades and with increasing legalization, relaxing of restrictions, and no firm regulation this trend is likely to continue. Approximately 1 in 10 users develop an addiction to marijuana, and this fraction is even higher for adolescents (Hall, 2009). Adolescents are particularly at risk since marijuana use contributes to more adverse long-term outcomes with earlier use and has potential effects on brain adolescent development (Volkow, 2014). In 2012, overall use among 12th graders was > 30%, lower than alcohol use (about 40%), but greater than tobacco use (approximately 18%) (Johnston, 2012). Further in all age groups (12-65) from 2007 to 2012 marijuana use has increased with >300 days/year of use occurring at a rate of approximately 5% and >20 days/month of use occurring at approximately 7%. Sex hormone research to date indicates that estrogen is associated with the facilitation of drug-abuse behaviors, whereas progesterone is associated with reduction of these behaviors (Carroll & Anker, 2010; Lynch & Sofuoglu, 2010). While the clinical literature is mixed, our work offers additional support for this theory as the luteal phase (high progesterone) of the female menstrual cycle appears to be associated with decreased smoking-related symptomatology (Allen et al 2009b) and improved smoking cessation outcomes (Allen et al 2008; Allen et al 2009c) relative to the follicular phase (low progesterone).
    [Show full text]