Enhancing Properties of Soft Magnetic Materials: a Study Into Hot Isostatic Pressing and Sintering Atmosphere Influences

Total Page:16

File Type:pdf, Size:1020Kb

Enhancing Properties of Soft Magnetic Materials: a Study Into Hot Isostatic Pressing and Sintering Atmosphere Influences metals Article Enhancing Properties of Soft Magnetic Materials: A Study into Hot Isostatic Pressing and Sintering Atmosphere Influences Ana Romero 1 , Angel L. Morales 2 and Gemma Herranz 2,* 1 Escuela de Ingeniería Industrial y Aeroespacial, Institute of Applied Aeronautical Industry Research, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; [email protected] 2 E.T.S.I. Industrial, Institute of Energy Research and Industrial Applications, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain; [email protected] * Correspondence: [email protected] Abstract: Soft magnetic materials are characterized by achieving a high magnetic induction value in the presence of a small magnetic field. Common applications of these materials, such as transformers or sensors, are in constant evolution and new requirements are becoming more demanding. Nickel and its alloys are employed as smart materials taking advantage of their superior magnetoelastic properties. A metal injection molding (MIM) technique provides high-quality complex-shaped parts with a good density and controlled impurity levels, which are necessary for these applications, by carefully adjusting the sintering stage. Previous investigations have established a sintering ◦ cycle for pure nickel consisting of 1325 C for 12 h within an N2-5%H2 atmosphere. Nevertheless, microstructural, mechanical and magnetoelastic responses can still be greatly enhanced. In this context, the effects of hot isostatic pressing (HIP), and sintering atmosphere have been investigated. The application of an adequate HIP treatment leads to significant improvements in comparison to the reference sintering process. It achieves almost complete densification while increasing field- dependent elastic modulus from 8.1% up to 9.6%. Additionally, the sintering atmosphere has been Citation: Romero, A.; Morales, A.L.; proven to be a key factor in reducing impurities and hence facilitating magnetic domain motion. Herranz, G. Enhancing Properties of Soft Magnetic Materials: A Study into Three different atmospheres have been studied: N2-5%H2 (with a higher gas flow), N2-10%H2- Hot Isostatic Pressing and Sintering 0.1%CH4 and low vacuum. Minimum carbon contents have been registered using more reducing Atmosphere Influences. Metals 2021, atmospheres (N2-5%H2 and N2-10%H2-0.1%CH4) which has led to values of field-dependent elastic 11, 643. https://doi.org/10.3390/ modulus higher than 10%. This value is 2.5 times higher than that obtained when nickel parts are met11040643 processed via conventional techniques. Moreover, although minimizing carbon content has been shown to be easier and more beneficial than achieving complete densification, both strategies could Academic Editor: Tadeusz Kulik be used in combination to improve and maximize magnetoelastic performance. Received: 20 March 2021 Keywords: nickel; metal injection moulding; hot isostatic pressing; sintering atmosphere; soft Accepted: 10 April 2021 magnetic alloy; magnetomechanical properties Published: 15 April 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- iations. Nickel-base materials are widely used for commercial purposes due to remarkable properties, reported extensively in the ASM Specialty Handbook [1], such as corrosion resistance, mechanical strength, thermal expansion, electrical conductivity, and magnetic properties. As a consequence, commercial products can be obtained in a wide range of shapes and sizes. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. The increase of the relative density and the reduction of impurities, such as C or S, This article is an open access article lends itself to the improvement of magnetic performance as has been shown in multiple distributed under the terms and studies such as the one carried out by Lall [2] in which the magnetic properties of different conditions of the Creative Commons Fe-base alloys and a stainless steel type 410L were analyzed. Melting and casting techniques Attribution (CC BY) license (https:// cannot guarantee the high purity and the low level of inclusions required for magnetic creativecommons.org/licenses/by/ applications. On the contrary, Herranz [3] remarks that the processing of a high purity 4.0/). powder via the Metal Injection Moulding (MIM) technique provides contamination control Metals 2021, 11, 643. https://doi.org/10.3390/met11040643 https://www.mdpi.com/journal/metals Metals 2021, 11, 643 2 of 19 and results in high-quality parts. Multiple purity grades of spherical or round carbonyl Ni powders with suitable particle size ranges for use in MIM are commercially available. Furthermore, MIM allows high production quantities of complex shapes, exceptional performance, and lower production costs than other manufacturing techniques. Banerjee and Joens [4] highlight that the main steps in MIM technology are the removal of the binder system followed by the sintering process to ensure the permanent bonding of the particles in a suitable protective atmosphere. Heckel [5] stated that sintering atmospheres must fulfill various functions such as preventing oxygen and other airborne contaminants from entering the furnace, reducing surface oxides on the powder particles, controlling carbon on the surface, removing carbon, controlling oxidation during cooling, and efficiently transferring or removing heat. All these features were also confirmed years later by German [6]. Typical MIM powders have a D90 particle size distribution of around 20 µm. The huge surface area of MIM powders guarantees surface energy that allows the obtention of intense diffusive forces for the sintering process and therefore high densification. This, however, results in an increased risk of oxidation during thermal processing, because nickel is a metal in which the oxides are easily reduced by carbon or hydrogen. For this reason, according to Blais [7], sintering of nickel parts is typically carried out in a sulfur-free reducing atmosphere, such as hydrogen, combinations of nitrogen-hydrogen, dissociated ammonia, or burnt natural gas. Sintering cycles of time–temperature are carefully aimed to obtain specific density requirements. Nevertheless, MIM does not ensure obtaining fully densified materials in some cases when the particle distribution is too narrow. This fact has been verified by Romero et al. [8] in a previous study in which the sintering process of nickel powders between 3 and 7 microns was done at high temperatures and for long periods of the plateau without achieving relative densifications higher than 97%. This obstacle may restrict the use of these materials for applications where high magnetic properties are required since Ma et al. [9] proved that the highest magnetic performance is achieved with the highest density values. Accordingly, some thermal treatments such as hot isostatic pressing (HIP) could be used to decrease porosity and hence improve the magnetic response. In this sense, Qiu et al. [10] achieved fully densities in a nickel-base superalloy after applying for 3 h a HIP process at ∼1190 °C and a pressure of 120 MPa. In a recent study carried out by Martínez et al. [11], higher densifications were obtained in pure nickel powders via HIP than those obtained via a conventional hot-pressing process. The interest in the wide possibilities of nickel and nickel alloys has grown over the years. In the recent review of Horke et al. [12] it is possible to find many studies related to these materials after being processed by MIM, but they are mainly based on their mechanical properties. On the other hand, the application of HIP in nickel [11] or nickel alloys [13] is also an issue of topical interest. However, these studies do not focus on magnetic properties but in the study of densification [14], microstructure [15], elongation [16] or strength and ductility [17] after HIP. There are few studies about the magnetic properties of nickel alloys, and none of the pure nickel, after the combined application of MIM and HIP. Thus, there is still room for exploring the application of these techniques for enhancing the magnetic properties of nickel. In the search for optimizing pure nickel microstructural, mechanical and magnetic performance (by means of facilitating magnetic domain motion), the objective of this paper is twofold: 1. Execution of a HIP treatment after sintering to minimize the residual porosity of the pieces. 2. Selection of an adequate sintering atmosphere (N2-5%H2,N2-10%H2-0.1%CH4 or low vacuum) which decreases impurities. Metals 2021, 11, 643 3 of 19 2. Experimental Procedure Commercially available pure carbonyl nickel powder (3–7 µm) was selected for the evaluations. The rounded morphology of the powder can be seen in Figure1, which shows a Scanning Electron Micrograph (SEM) of the powder with a carbon content of 0.07 wt.% and an absolute density of 8.87 g/cm3 measured by means of an elemental analyzer LECO CS-230 and a helium pycnometer Micromeritics AccuPyc II 1340, respectively. Figure 1. Scanning Electron Micrograph (SEM) image of carbonyl nickel powder. The feedstock was prepared by mixing the nickel powder with a previously devel- oped multi-component binder system consisting of paraffin wax (PW) and high-density polyethylene (HDPE) in equal proportions. The nickel powder content in the feedstock is 50% in volume based on previous research carried out by Herranz et al. [18] in which a feedstock with adequate fluidity was developed after different rheological
Recommended publications
  • Structural, Thermal and Magnetic Analysis of Fe75co10nb6b9 and Fe65co20nb6b9 Nanostructured Alloys
    materials Article Structural, Thermal and Magnetic Analysis of Fe75Co10Nb6B9 and Fe65Co20Nb6B9 Nanostructured Alloys Albert Carrillo, Jason Daza, Joan Saurina, Lluisa Escoda and Joan-Josep Suñol * Department of Physics, Higher Polytechnic School, Campus Montilivi s/n, University of Girona, 17003 Girona, Spain; [email protected] (A.C.); [email protected] (J.D.); [email protected] (J.S.); [email protected] (L.E.) * Correspondence: [email protected] Abstract: Two nanocrystalline ferromagnetic alloys of the Fe-Co-Nb-B system have been produced by mechanical alloying (MA). Their microstructure, thermal behavior and magnetic response were checked by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). After 80 h of MA, the alloys were nanostructured (bcc-Fe(Co)-rich phase). As the Co content increases, the density of the dislocations decreases. Besides, a higher concentration of Co causes an increase in the activation energy of the crystallization process. The calculated energies, 267 and 332 kJ/mol, are associated to the crystalline growth of the bcc-Fe-rich phase. The Co content of the samples has no effect on the value of the saturation magnetization, whereas the coercivity is lower in the alloy containing less Co. Samples were compacted and heat-treated. Optimal annealing reduces the coercivity by a factor of two. Results were compared with the data of Fe-Nb-B and Fe-Ni-Nb-B alloys. Keywords: mechanical alloying; Fe-Co-Nb-B alloys; ferromagnetic alloys; thermal analysis; Citation: Carrillo, A.; Daza, J.; X-ray diffraction Saurina, J.; Escoda, L.; Suñol, J.-J.
    [Show full text]
  • INFLUENCE of PURITY and FABRICATION TECHNOLOGY on the PROPERTIES of SOFT MAGNETIC Fe- 50Ni ALLOY
    U.P.B. Sci. Bull., Series B, Vol. 69, No. 2, 2007 ISSN 1454-2331 INFLUENCE OF PURITY AND FABRICATION TECHNOLOGY ON THE PROPERTIES OF SOFT MAGNETIC Fe- 50Ni ALLOY Violeta TSAKIRIS1, Maria PETRESCU2 Aliajul Fe-50Ni apaţinând grupului de aliaje Permalloy cu aplicaţii în electronică, automatică, telefonie, instrumente electrice fine, a fost elaborat din fier extramoale şi nichel de înaltă puritate (99,95Ni). La elaborare s-a folosit topirea prin inducţie în aer sub protecţie cu insuflare de argon, în locul topirii în vid. Aliajul a fost forjat şi apoi recopt în atmosferă de H2 pentru a obţine o microstructură favorabilă şi o creştere a purităţii chimice şi fizice. Când aliajului forjat i s-a aplicat tratamentul termic de recoacere în H2, s-a obţinut o scădere a durităţii Brinell de la 182 la 130 daN/mm2 şi a câmpului coecitiv de la 0,5 la 0,4 Oe, împreună cu o creştere a permeabiltaţii magnetice de la 16000 la 23000 Gs/Oe şi a inducţiei la saturaţie de la 12300 la 14940 Gs. Luând în considerare creşterea grăunţilor produsă de tratamentul termic de recoacere se poate stabili un paralelism între scăderea de duritate prezisă de teoria dislocaţiilor şi modificarea proprietăţilor magnetice prezisă de teoria câmpului coercitiv. The soft magnetic alloy Fe-50Ni belonging to the Permalloy group that finds application in electronics, automatics, telephony and fine electrical devices has been obtained from extra-mild iron and high purity nickel (99.95). Induction melting was carried out in air under a protective argon blanket instead of vacuum melting. Forging and annealing in H2 atmosphere have been applied for obtaining a favourable microstructure and an increase in chemical and physical purity.
    [Show full text]
  • Process for Manufacturing Alnico System Permanent Magnet
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 662 239 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: H01F 1/08, B22F 9/10, of the grant of the patent: C22C 38/16 03.12.1997 Bulletin 1997/49 (86) International application number: (21) Application number: 94922384.6 PCT/KR94/00100 Date of 27.07.1994 (22) filing: (87) International publication number: WO 95/04362 (09.02.1995 Gazette 1995/07) (54) PROCESS FOR MANUFACTURING ALNICO SYSTEM PERMANENT MAGNET VERFAHREN ZUR HERSTELLUNG EINES PERMANENTMAGNETEN AUF ALNICO-BASIS PROCEDE DE FABRICATION D'UN AIMANT PERMANENT EN ALNICO (84) Designated Contracting States: (56) References cited: DE GB • CHEMICAL ABSTRACTS, Vol. 102, No. 16, issued 1985, April 22 (Columbus, Ohio, USA), (30) Priority: 27.07.1993 KR 9314285 Hitachi Metals, "Alnico Permanent Magnet Alloy", page 275, column 1, Abstract No. (43) Date of publication of application: 1 36354a, Jpn. Kokai Tokkyo Koho; & JP, A,59 1 90 12.07.1995 Bulletin 1995/28 338. • CHEMICAL ABSTRACTS, Vol. 102, No. 16, (73) Proprietors: issued 1985, April 22 (Columbus, Ohio, USA), • POHANG IRON & STEEL CO., LTD. Hitachi Metals, "Alnico Permanent Magnet Pohang City, Kyong Sang Book-Do 790-300 (KR) Alloy", page 275, column 1, Abstract No. • RESEARCH INSTITUTE OF INDUSTRIAL 1 36355b, Jpn. Kokai Tokkyo Koho; & JP, A,59 1 90 SCIENCE & TECHNOLOGY 337. Pohang City, Kyong Sang Book-Do 790-330 (KR) • PATENT ABSTRACTS OF JAPAN, Unexamined Applications, Field C, Vol. 9, No. 247, issued (72) Inventors: 1985, October 03, The Patent Office Japanese YANG, Choong, Jin, Government, page 71; & JP,A,60 103 150 Res.
    [Show full text]
  • Leadership in Soft Magnetic Alloys Leadership in Soft Magnetic Alloys
    cartech.com Leadership in Soft Magnetic Alloys Leadership in Soft Magnetic Alloys CARPENTER TECHNOLOGY CORPORATION OFFERS A WIDE SELECTION OF SOFT MAGNETIC ALLOYS TO MEET YOUR MATERIALS SPECIFICATIONS. Choose from high permeability alloys, shielding alloys, silicon core irons or high- THE RESULT OF DECADES flux-density cobalt-iron alloys that have been used in applications ranging from simple magnetic cores to the most complex electronic circuitry. All are produced OF MATERIALS EXPERTISE to Carpenter’s exacting standards of consistency for uniform magnetic response IS CARPENTER’S ABILITY TO using premium-melting vacuum technologies. CONSISTENTLY HELP OUR Carpenter soft magnetic alloys have been used in the following applications: CUSTOMERS COMPETE IN A • Motor laminations • Relays • Magnetic amplifiers • Speedometers CHANGING WORLD. • Magnetic bearings • Transformers • Magnetic shielding • Vacuum equipment • Forged electromagnetic components • Watt-hour meters • GFCI World-Class Manufacturing and Quality Systems Carpenter is a fully integrated manufacturer, using advanced equipment and technologies including vacuum induction melting, vacuum arc remelting, double-vacuum melting (VIM-VAR), in-line hot rolling, and modern cold finishing equipment. This combination of capabilities, coupled with a highly skilled work force, supports your requirements for consistent, quality material lot after lot. Selecting Carpenter Soft Magnetic Alloys The matrix below compares various classes or “families” of soft magnetic alloys in terms of their relative
    [Show full text]
  • Hiperco 50 and Hiperco 50A Soft Magnetic Alloy Rod, Bar, Plate, Strip, Coil Hiperco 50 and Hiperco 50A Soft Magnetic Alloy Rod
    Hiperco 501 and Hiperco 50A1 Soft Magnetic Alloys 769 Susquehanna Avenue, Franklin Lakes, NJ 07417 • phone 201.891.4003 10537 Humbolt Street, Los Alamitos, CA 90720 • phone 562.431.2568 DESCRIPTION An alloy of 49% Cobalt, and 2% Vanadium, balance Iron, Hiperco 50 and Hiperco 50A have the highest magnetic saturation of all soft-magnetic alloys and excels in applications where this attribute is needed. Hiperco 50 maintains its strength after heat treating making it your best choice for applications that experience high forces (e.g. rotating parts). APPLICATIONS Special Motors for the Aerospace Industry (e.g. applications where high magnetic saturation and high strength is required with as little weight as possible); Electromagnets for medical appli- cations (e.g. to focus beams for radiation therapy in medical radiology applications); Electrical Generators; Specialty Transformers (e.g. electrical circuits and magnetic circuits where frequen- cies must be varied); Pole Pieces for Electromagnets; Magnetic Bearings (e.g. applications where rotating parts are levitated); High Magnetic Flux Devices and Instruments. TYPICAL DC MAGNETIC TYPICAL AC MAGNETIC PROPERTIES - 0.014" STRIP PROPERTIES - 0.014" STRIP Hiperco 50 Hiperco 50A Hiperco 50 Hiperco 50A Saturation Induction - Gausses 24,000 24,000 Core Loss W/lb @ 400Hz & 20k G 34 30 Maximum Permeability 12,000 15,000 B-40 Permeability @ 60Hz N/A N/A Coercive Force - Oersteds 0.9 0.4 N/A = not a typical application value Coercive Force - A/m 72 32 MECHANICAL PROPERTIES PHYSICAL PROPERTIES (Hiperco 50 & 50A) ANNEALED CONDITION Hiperco 50 Hiperco 50A Density lb/cu in 0.293 Tensile Strength ksi 118 104 Specific Gravity 8.12 MPa 814 717 Curie Temp ˚F 1720 Yield Strength ksi 63 53 ˚C 938 MPa 435 365 Melting Point ˚F 2600 Elongation % in 2 in.
    [Show full text]
  • Turbulent Heat Transfer and Pressure Drop
    DESIGN OPTIMIZATION OFMAGNETIC ALLOYS AND NICKEL-BASED SUPERALLOYS FOR HIGH TEMPERATURE APPLICATIONS Rajesh Jha George S. Dulikravich Department of Mechanical and Materials Engineering, MAIDROC Lab. Florida International University 10555 West Flagler Street, Miami, Florida 33174, U.S.A. [email protected], [email protected] Marcelo J. Colaço Department of Mechanical Engineering –POLI/COPPE Federal University of Rio de Janeiro - UFRJ Cidade Universitaria, Cx. Postal: 68503, Rio de Janeiro, RJ, 21941-972, Brazil [email protected] Abstract. Developing a new material or even improving properties of an existing material is a complex and time- consuming task. In recent years, materials scientists around the globe proposed a number of ways to speed up the alloy development process by using various computational tools. In this work, we made an attempt to demonstrate the efficacy of using computational tools in design optimization of materials, especially for high-temperature applications. We addressed two different material systems: Alnico alloys (magnetic) and Nickel-based superalloys. Alnico type alloys are hard magnetic alloys and well known for high-temperature applications. In this work, we defined the variable range of various elements and generated an initial set of alloys by a quasi-random sequence generation algorithm. These alloys were synthesized and tested for determining various material properties. We used a response surface methodology approach to develop surrogate models (meta-models) that approximately linked alloy chemistry with desired properties for these multi-component systems while being computationally affordable. These models were further used for multi-objective optimization of desired (conflicting) properties by using a number of algorithms based on evolutionary approaches, as well as our hybrid optimizer.
    [Show full text]
  • Additive Manufacturing and Topology Optimization of Magnetic Materials for Electrical Machines—A Review
    energies Review Additive Manufacturing and Topology Optimization of Magnetic Materials for Electrical Machines—A Review Thang Pham 1,*,† , Patrick Kwon 2,† and Shanelle Foster 1,*,† 1 Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA 2 Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA; [email protected] * Correspondence: [email protected] (T.P.); [email protected] (S.F.); Tel.: +1-517-355-5234 (T.P.) † Current address: College of Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, MI 48824, USA. Abstract: Additive manufacturing has many advantages over traditional manufacturing methods and has been increasingly used in medical, aerospace, and automotive applications. The flexibility of additive manufacturing technologies to fabricate complex geometries from copper, polymer, and ferrous materials presents unique opportunities for new design concepts and improved machine power density without significantly increasing production and prototyping cost. Topology optimiza- tion investigates the optimal distribution of single or multiple materials within a defined design space, and can lead to unique geometries not realizable with conventional optimization techniques. As an enabling technology, additive manufacturing provides an opportunity for machine designers to overcome the current manufacturing limitation that inhibit adoption of topology optimization. Successful integration of additive manufacturing and topology optimization for fabricating magnetic components for electrical machines can enable new tools for electrical machine designers. This article presents a comprehensive review of the latest achievements in the application of additive manu- facturing, topology optimization, and their integration for electrical machines and their magnetic components. Citation: Pham, T.; Kwon, P.; Foster, S.
    [Show full text]
  • Solidification Process, Mechanical and Electrochemical Properties of Amorphous and Nanocrystalline Iron Alloy for a Power System Application
    Int. J. Electrochem. Sci., 16 (2021) Article ID: 210839, doi: 10.20964/2021.08.39 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Solidification Process, Mechanical and Electrochemical Properties of Amorphous and Nanocrystalline Iron Alloy for a Power System Application Xiaozhong Xu*, Jiangang Li, Jiajie Yu, Xiaoqin Jiang, Gan Shao Sategrid Ningbo Electric Power Supply Company, Ningbo 315000, China *E-mail: [email protected] Received: 26 March 2021/ Accepted: 15 May 2021 / Published: 30 June 2021 Nanocrystalline alloy is widely used in power systems because of its advantages of high magnetic conductivity, low loss, high strength and high resistivity. The amorphous method was used to prepare iron with the best amorphous thin strip processing parameters: the size of circular quartz tube was 0.8 mm; the distance between the nozzle and the surface of copper roller was 0.5 mm; the linear speed of copper roller surface was 41 m/s; the pressure difference between the inside and outside of quartz tube was 0.03 MPa; the spray angle was 0°. The solidification of the Fe based nanocrystalline alloy was studied by the solidification morphology, X-ray diffraction analysis, magnetic properties and mechanical properties. According to EIS studies, a 360K undercooling temperature leads to an increase in the penetration of electrolyte ions into electrode structures due to the formation of a high surface area and a high electron-transfer rate. The experimental results show that the undercooling of the alloy melt can be significantly improved by the amorphous method; the crystallization process of the prepared nanocrystalline alloy was controlled by the growth of the nanocrystalline; the prepared Fe based nanocrystalline alloy was more suitable for the common mode choke core, and can reflect different degrees of magnetic properties under the influence of different annealing temperatures; the prepared Fe based nanocrystalline alloy was better than the coarse-grained alloy.
    [Show full text]
  • Laser Additive Manufacturing of Fe-Based Magnetic Amorphous Alloys
    magnetochemistry Review Laser Additive Manufacturing of Fe-Based Magnetic Amorphous Alloys Merve G. Ozden * and Nicola A. Morley Department of Material Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; n.a.morley@sheffield.ac.uk * Correspondence: mgozden1@sheffield.ac.uk Abstract: Fe-based amorphous materials offer new opportunities for magnetic sensors, actuators, and magnetostrictive transducers due to their high saturation magnetostriction (ls = 20–40 ppm) and low coercive field compared with polycrystalline Fe-based alloys, which have high magne- tostriction but large coercive fields and Co-based amorphous alloys with small magnetostriction (ls = −3 to −5 ppm). Additive layer manufacturing (ALM) offers a new fabrication technique for more complex net-shaping designs. This paper reviews the two different ALM techniques that have been used to fabricate Fe-based amorphous magnetic materials, including the structural and magnetic properties. Selective laser melting (SLM)—a powder-bed fusion technique—and laser- engineered net shaping (LENS)—a directed energy deposition method—have both been utilised to fabricate amorphous alloys, owing to their high availability and low cost within the literature. Two different scanning strategies have been introduced by using the SLM technique. The first strategy is a double-scanning strategy, which gives rise to maximum relative density of 96% and corresponding magnetic saturation of 1.22 T. It also improved the glassy phase content by an order of magnitude of 47%, as well as improving magnetic properties (decreasing coercivity to 1591.5 A/m and increasing magnetic permeability to around 100 at 100 Hz). The second is a novel scanning strategy, which Citation: Ozden, M.G.; Morley, N.A.
    [Show full text]
  • Electrical and Magnetic Properties of Metals
    \ 396-4 V) PUBLICATION a NBS SPECIAL / / National Bureau of Standards U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (I) a basis lor the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and 14) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement: coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center " for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics — Cryogenics - — Electromagnetics - — Time and Frequency '-'. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Alloy - Electrical Properties Electrical Resistivity Temperature Coefficient Mohmcm K-1
    Goodfellow Cambridge Limited Ermine Business Park, Huntingdon PE29 6WR England Telephone 0800 731 4653 : Fax 0800 328 7689 Alloy - Electrical Properties Electrical resistivity Temperature coefficient mOhmcm K-1 Alloy 825 131 - Ni39.5/Fe32/Cr22/Mo 3/Cu 2/ Ti Aluchrom O1 - Resistance 135-145 0.00007 Alloy Fe70/Cr25/Al 5 Aluminium alloy 2011 4.5 - Al93/Cu 5.3/Fe 0.7/Si 0.4/Pb 0.3/B Aluminium alloy 6061 3.9-4.1 - Al97.5/Mg 1/Si 0.6/Fe 0.5/Cu 0.4 Aluminium alloy 6082 3.8 - Al97.4/Si 1/Mg 0.9/Mn 0.7 Aluminium alloy 7075 5.15 - Al90/Zn 5.5/Mg 2.5/Cu 1.5/Si 0.5 Aluminium alloy EN AC 4 - 42100 Al 91.7/Si 7/Mg 0.3 Aluminium/Magnesium/ 5.1 - Manganese/Chromium Al96.45/Mg 2.6/Mn 0.8/Cr 0.15 Aluminium/Magnesium/ 3.4-3.8 0.0030 Silicon Al98/Mg 1/Si 0.6 Aluminium/Magnesium/ 3.4-3.8 0.0031-0.0035 Silicon Al98/Mg 1/Si 1 Aluminium/Magnesium/ 3.2 - Silicon Al99/Mg 0.5/Si 0.5 Aluminium/Magnesium 5.6-6.1 0.0020 Al95/Mg 5 Aluminium/Magnesium 4.5-5.7 0.0019-0.0026 Al97/Mg 3 Aluminium/Magnesium 4.95 - Al97.5/Mg 2.5 Aluminium/Silicon/ 3.8 - Magnesium/Manganese Al97.5/Si 1.0/Mg 0.8/Mn 0.7 Aluminium/Silicon 5.56 - Al88/Si12 All information and technical data are given as a guide only.
    [Show full text]
  • Magnetic Properties Study of the Mn-Al System with Additions of B Or C and Mechanical Milling Techniques
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mechanical & Materials Engineering, Engineering Mechanics Dissertations & Theses Department of 8-2012 Magnetic Properties Study of the Mn-Al System with Additions of B or C and Mechanical Milling Techniques Timothy E. Prost University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/engmechdiss Part of the Mechanical Engineering Commons, Metallurgy Commons, and the Other Materials Science and Engineering Commons Prost, Timothy E., "Magnetic Properties Study of the Mn-Al System with Additions of B or C and Mechanical Milling Techniques" (2012). Engineering Mechanics Dissertations & Theses. 30. https://digitalcommons.unl.edu/engmechdiss/30 This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Engineering Mechanics Dissertations & Theses by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAGNETIC PROPERTIES STUDY OF THE Mn-Al SYSTEM WITH ADDITIONS OF B OR C AND MECHANICAL MILLING TECHNIQUES By Timothy E. Prost A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Engineering Mechanics Under the Supervision of Professor Jeffrey E. Shield Lincoln, Nebraska August, 2012 MAGNETIC PROPERTIES STUDY OF THE Mn-Al SYSTEM WITH ADDITIONS OF B OR C AND MECHANICAL MILLING TECHNIQUES Timothy E. Prost, M.S. University of Nebraska, 2012 Adviser: Jeffrey E. Shield Recently a shift in the focus of permanent magnetic research has moved from Rare Earth (RE)-based alloys to those made from more readily available elements.
    [Show full text]