Geology, Altered Rocks and Ore Deposits of the San Rafael Swell Emery County, Utah

Total Page:16

File Type:pdf, Size:1020Kb

Geology, Altered Rocks and Ore Deposits of the San Rafael Swell Emery County, Utah Geology, Altered Rocks And Ore Deposits of The San Rafael Swell Emery County, Utah By C. C. HAWLEY, R. C. ROBECK, and H. B. DYER GEOLOGICAL SURVEY BULLETIN 1239 A study of the stratigraphy, structure, alteration, and uraniferous deposits in sedimentary rocks, with emphasis on the Chinle Formation Prepared on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 67-287 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Abstract... _ _ ____ _ ________ ____ 1 Introduction_____._._________-__________--_-_-______________--_--_ 5 Location and geography_____ ____ _____________ _ ______ 7 Some previous geologic investigations-___________!.-- ___ - 7 Sources of data and acknowledgments _-_---_--_ _____ 9 Stratigraphy_________________________________.____._________-_---- 10 Pre-Triassic rocks____________ 10 Triassic System.______________________________________________ 11 Moenkopi Formation_______________-_-___-__________-_---_ 11 Chinle Formation___________________________________ __ 14 Monitor Butte and Temple Mountain Members____ ____ 14 Moss Back Member_____.______________ 20 Channels in the Chinle Formation_______________________ 23 Church Rock Member__________-___-__-_________------ 25 Triassic and Jurassic Glen Canyon Group__________-__-___-_---__ 26 Post-Glen Canyon rocks_____________-______-______-____-_---- 27 Igneous rocks.__________________________________________________ 27 Warm springs..____________________________________________ 28 Structure____________________________________ 28 Folds_______________________________________________________ 29 Collapse structures.___________________________________________ 31 Temple Mountain area________________________________--__- 31 Reds Canyon and vicinity________________________.___.___-- 32 North part of the swell_________________________________ 34 Origin____________________________________________________ 34 Bedding-plane fractures-______________________________--- 34 High-angle faults_________________________ 35 Age and origin of structures___________________________-_------ 37 Altered rocks_____________________________________________________ 39 Altered rocks in the Moenkopi Formation__________________ -- 40 Altered rocks in the lower part of the Chinle Formation._______ . 42 Description and occurrence___________--__-_______-_-------- 42 Mineralogy ___________________________________________ 44 Chemical nature of the alteration...____________________ 45 Altered Monitor Butte Member in the Delta mine area_ 46 Altered Monitor Butte or Temple Mountain Members in other areas_____________________________ 50 Bleached rocks at the base of the Moss Back Member of the Chinle Formation and other sandstone-rich units _____ _- 53 Origin of the purple-white and bleached rocks of the Chinle Formation-,_______________________ 55 Altered rocks hi the Glen Canyon Group.__________- 57 m IV CONTENTS Page Ore deposits._____ _ ---_ 58 Distribution of deposits ____ 58 Size of the ore bodies____________- __ 60 Shape of the ore bodies ____ ______ _________ __ 61 Localization of ore._ __ ____________________ __ 62 Localization of single ore bodies_____________________________ 62 Localization of groups of ore bodies and belts of favorable ground. 64 Mineralogy ________________ ___ __ ________ 65 Primary minerals _______________________________________ 65 Sulfides, arsenides, selenides, and sulfosalts_____ _____ 65 Oxides______________-_-------____---__-__-_-_----__-_ 69 Sulfates and carbonates.______ __ __ 70 Silicates________-__________ - 70 Carbonaceous materials.--.---.-----------------------.---- 71 Secondary minerals__-_-__----_------_---_- ______ 73 Metal content and classification of deposits._______ _____ 75 Contrasting metal content of the Temple Mountain deposits__ 79 Classification of deposits--------- -___ ______ 79 Metal zoning____________-________________________________ 79 Alteration and ore deposition___________________________________ 80 Age and origin of the deposits__------__---_-_-__--_____ _____ 82 Age_____________________________________ 83 Origin of deposits in the North and South belts a hypothetical treatment._____________________________________________ 85 Origin of deposits in the Temple Mountain district_____________ 87 Descriptions of selected mines and mine areas___________________ 87 Temple Mountain district_______________________________ 88 South belt___________________________________ 89 Southeast flank_________________________________ 89 Delta mine area___________________________________ 89 Delta mine__________________________________ 90 Blue Bird prospect______________________________ 92 Southwest flank_______________________ 94 Little Susan mine and Ryan 101 prospect__________ 95 Tomsich Butte area.___________________________ 96 Dirty Devil group of mines_____________________ 96 Lucky Strike mine_____________________________ 97 Green Vein Mesa area_______________________________ 100 Pay Day mine.___________________________________ 100 Hertz mine_______________________________________ 103 North belt________________________________________________ 105 Dexter 7 mine________--____-_--_-___-_____-___-____ 105 Uneva prospect____________________ ___________ 105 Literature cited.____..__________________________________ -___ 105 Index_________________________________.__________________________ 111 CONTENTS ILLUSTRATIONS [Plates are In pocket] PLATE 1. Isopach map of the lower part of the Chinle Formation, showing channels and occurrences of uraniferous rocks, San Rafael Swell, Utah. 2. Structure contour map of the San Rafael Swell, Utah. 3. Geologic map and section of the Delta mine area, San Rafael Swell, Utah. 4. Geologic strip map of the Chinle Formation and enclosing units, southwest flank of the San Rafael Swell, Emery County, Utah. 5. Map and geologic section of the Little Susan mine, San Rafael Swell, Emery County, Utah. 6. Geologic map and section of the Dirty Devil 3 and 4 mines, San Rafael Swell, Emery County, Utah. 7. Map and fence diagram of part of the Lucky Strike mine, San Rafael Swell, Utah. Page FIGUEE 1. Index map of the San Rafael Swell, Utah.______ ____ 5 2. Geologic map showing general distribution of major rock units in and near the San Rafael Swell__________________ 6 3. Isopach map of the Moenkopi Formation____________ 12 4. Generalized isopach map of the Moss Back Member of the Chinle Formation____________________________________ 21 5. Diagrammatic classification of channel structures of the Chinle Formation________________________________ 24 6. Map showing folds and collapse structures of the San Rafael Swell.. _________________________________________ 30 7. Geologic section through South Reds Canyon collapse structure.____ _______ __________________ 33 8. Schmidt net diagram of poles of 102 fractures in the lower part of the Chinle Formation._______________________ 36 9. Map showing altered rocks in the Moenkopi Formation and Glen Canyon Group__________________________________ 41 10. Sketches showing purple-white mottling in Temple Mountain and Monitor Butte Members, Chinle Formation_____ 43 11. X-ray powder diffractograms of altered and unaltered mud- stone. _______ _____ _________ _____ 47 12. Diagrammatic section showing altered rocks in the Delta mine area__________________________-__ 48 13. Graph showing variation in concentration of some elements in altered and unaltered Monitor Butte Member___ __ __ 49 14. Sketch showing fracture control of alteration in the Monitor Butte Member, Delta mine area_____________ 51 VI CONTENTS Page FIGURE 15. Photomicrograph showing microbrecciation of quartz grains in sheared sandstone layer, Monitor Butte Member_____ 52 16. Sketch showing relation of bleached zone below the Moss Back Member to a fault and to purple-white zone,_______ 54 17. Map showing relation of larger uranium deposits to prefault structure in the southern part of the San Rafael Swell____ 66 18. Diagrammatic sketch showing relation of ore deposits to zones of altered rocks______________________________________ 67 19. Map and geologic section of the Blue Bird prospect_____ 93 20. Plan map of the Dirty Devil 6 mine______________ 98 21. Map of the Lucky Strike mine area 99 22. Map showing the Pay Day mine_________________________ 101 23. Map of the Hertz mine showing results of drilling._________ 102 24. Sketch of face in upper Dexter 7 adit_________________ 103 25. Map of the Uneva prospect..._________________ 104 TABLES Page TABLE 1. Partial chemical analyses of mudstone of the lower part of the Chinle___________________________________ 46 2. Radiometric, chemical, and semiquantitative spectrographic analyses of uraniferous asphaltite, San Rafael Swell_____ 72 3. Secondary uranium and vanadium minerals, San Rafael Swell-___-__-_-___-_-_-_------_-----------_--------- 74 4. Composition of ore and mineralized rock, San Rafael Swell, exclusive of the Temple Mountain district-______-----__- 76 5. Partial average composition of ore and unmineralized sand­ stone. ___________-_____________----_--__-___------__ 78 6. Composition of unaltered and altered mudstone ____________ 82 GEOLOGY, ALTERED ROCKS, AND ORE DEPOSITS OF THE SAN RAFAEL SWELL, EMERY COUNTY, UTAH By C. C. HAWLET, R. C. KOBECK, and H. B. DYER ABSTRACT The San Rafael Swell is a large asymmetric anticline in which sedimentary
Recommended publications
  • UMNP Mountains Manual 2017
    Mountain Adventures Manual utahmasternaturalist.org June 2017 UMN/Manual/2017-03pr Welcome to Utah Master Naturalist! Utah Master Naturalist was developed to help you initiate or continue your own personal journey to increase your understanding of, and appreciation for, Utah’s amazing natural world. We will explore and learn aBout the major ecosystems of Utah, the plant and animal communities that depend upon those systems, and our role in shaping our past, in determining our future, and as stewards of the land. Utah Master Naturalist is a certification program developed By Utah State University Extension with the partnership of more than 25 other organizations in Utah. The mission of Utah Master Naturalist is to develop well-informed volunteers and professionals who provide education, outreach, and service promoting stewardship of natural resources within their communities. Our goal, then, is to assist you in assisting others to develop a greater appreciation and respect for Utah’s Beautiful natural world. “When we see the land as a community to which we belong, we may begin to use it with love and respect.” - Aldo Leopold Participating in a Utah Master Naturalist course provides each of us opportunities to learn not only from the instructors and guest speaKers, But also from each other. We each arrive at a Utah Master Naturalist course with our own rich collection of knowledge and experiences, and we have a unique opportunity to share that Knowledge with each other. This helps us learn and grow not just as individuals, but together as a group with the understanding that there is always more to learn, and more to share.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Saline Soils and Water Quality in the Colorado River Basin: Natural and Anthropogenic Causes Gabriel Lahue River Ecogeomorphology Winter 2017
    Saline soils and water quality in the Colorado River Basin: Natural and anthropogenic causes Gabriel LaHue River Ecogeomorphology Winter 2017 Outline I. Introduction II. Natural sources of salinity and the geology of the Colorado River Basin IIIA. Anthropogenic contributions to salinity – Agriculture IIIB. Anthropogenic contributions to salinity – Other anthropogenic sources IV. Moving forward – Efforts to decrease salinity V. Summary and conclusions Abstract Salinity is arguably the biggest water quality challenge facing the Colorado River, with estimated damages up to $750 million. The salinity of the river has doubled from pre-dam levels, mostly due to irrigation and reservoir evaporation. Natural salinity sources – saline springs, eroding salt-laden geologic formations, and runoff – still account for about half of the salt loading to the river. Consumptive water use for agricultural irrigation concentrates the naturally- occurring salts in the Colorado River water, these salts are leached from the root zone to maintain crop productivity, and the salts reenter the river as agricultural drainage water. Reservoir evaporation represents a much smaller cause of river salinity and most programs to reduce the salinity of the Colorado River have focused on agriculture; these include the lining of irrigation canals, irrigation efficiency improvements, and removing areas with poor drainage from production. Salt loading to the Colorado River has been reduced because of these efforts, but more work will be required to meet salinity reduction targets. Introduction The Colorado River is one of the most important rivers in the Western United States: it provides water for approximately 40 million people and irrigation water for 5.5 million acres of land, both inside and outside the Colorado River Basin (CRBSCF, 2014).
    [Show full text]
  • West Colorado River Plan
    Section 9 - West Colorado River Basin Water Planning and Development 9.1 Introduction 9-1 9.2 Background 9-1 9.3 Water Resources Problems 9-7 9.4 Water Resources Demands and Needs 9-7 9.5 Water Development and Management Alternatives 9-13 9.6 Projected Water Depletions 9-18 9.7 Policy Issues and Recommendations 9-19 Figures 9-1 Price-San Rafael Salinity Control Project Map 9-6 9-2 Wilderness Lands 9-11 9-3 Potential Reservoir Sites 9-16 9-4 Gunnison Butte Mutual Irrigation Project 9-20 9-5 Bryce Valley 9-22 Tables 9-1 Board of Water Resources Development Projects 9-3 9-2 Salinity Control Project Approved Costs 9-7 9-3 Wilderness Lands 9-8 9-4 Current and Projected Culinary Water Use 9-12 9-5 Current and Projected Secondary Water Use 9-12 9-6 Current and Projected Agricultural Water Use 9-13 9-7 Summary of Current and Projected Water Demands 9-14 9-8 Historical Reservoir Site Investigations 9-17 Section 9 West Colorado River Basin - Utah State Water Plan Water Planning and Development 9.1 Introduction The coordination and cooperation of all This section describes the major existing water development projects and proposed water planning water-related government agencies, and development activities in the West Colorado local organizations and individual River Basin. The existing water supplies are vital to water users will be required as the the existence of the local communities while also basin tries to meet its future water providing aesthetic and environmental values.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • Raman Spectroscopy of Efflorescent
    ASTROBIOLOGY Volume 13, Number 3, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2012.0908 Raman Spectroscopy of Efflorescent Sulfate Salts from Iron Mountain Mine Superfund Site, California Pablo Sobron1 and Charles N. Alpers2 Abstract The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination. Key Words: Acid mine drainage—Efflorescent sulfate minerals—Mars analogue—Iron Mountain—Laser Raman spectroscopy. Astro- biology 13, 270–278. 1. Introduction efflorescent sulfate minerals. This reconnaissance sampling resulted in characterization of the extremely acidic mine ron Mountain, California, is the host of massive sulfide waters (pH values from - 3.6 to + 0.5) and a variety of iron- Ideposits that were mined for copper, zinc, gold, silver, and sulfate efflorescent salts (Nordstrom and Alpers, 1999; pyrite (for sulfuric acid) between the early 1860s and the early Nordstrom et al., 2000).
    [Show full text]
  • Geology of U Rani Urn Deposits in Triassic Rocks of the Colorado Plateau Region
    Geology of U rani urn Deposits in Triassic Rocks of the Colorado Plateau Region By W. I. FINCH CONTRIBUTIONS TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY BULLETIN 1074-D This report concerns work done on behalf ~1 the U. S. Atomic Energy Commission -Jnd is published with the permission of ~he Commission NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printin~ Office Washin~ton 25, D. C. CONTENTS Page Abstract---------------------------------------------------------- 125 Introduction__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 125 History of mining and production ____ ------------------------------- 127 Geologic setting___________________________________________________ 128 StratigraphY-------------------------------------------------- 129 ~oenkopiformation_______________________________________ ~29 Middle Triassic unconformity_______________________________ 131 Chinle formation__________________________________________ 131 Shinarump Inernber____________________________________ 133 ~udstone member------------------------------------- 136 ~oss Back member____________________________________ 136 Upper part of the Chinle formation______________________ 138 Wingate sandstone_________________________________________ 138 lgneousrocks_________________________________________________ 139 Structure_____________________________________________________
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Geology and Stratigraphy Column
    Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Appendix L—Acec Evaluations for the Price Resource Management Plan
    Proposed RMP/Final EIS Appendix L APPENDIX L—ACEC EVALUATIONS FOR THE PRICE RESOURCE MANAGEMENT PLAN INTRODUCTION Section 202(c)(3) of the Federal Land Policy and Management Act (FLPMA) requires that priority be given to the designation and protection of areas of critical environmental concern (ACEC). FLPMA Section 103 (a) defines ACECs as public lands for which special management attention is required (when such areas are developed or used or when no development is required) to protect and prevent irreparable damage to important historic, cultural, or scenic values; fish and wildlife resources; or other natural systems or processes or to protect life and safety from natural hazards. CURRENTLY DESIGNATED ACECS BROUGHT FORWARD INTO THE PRICE RMP FROM THE SAN RAFAEL RMP In its Notice of Intent (NOI) to prepare this Resource Management Plan (RMP) (Federal Register, Volume 66, No. 216, November 7, 2001, Notice of Intent, Environmental Impact Statement, Price Resource Management Plan, Utah), BLM identified the 13 existing ACECs created in the San Rafael RMP of 1991. The NOI explained BLM’s intention to bring these ACECs forward into the Price Field Office (PFO) RMP. A scoping report was prepared in May 2002 to summarize the public and agency comments received in response to the NOI. The few comments that were received were supportive of continued management as ACECs. The ACEC Manual (BLM Manual 1613, September 29, 1988) states, “Normally, the relevance and importance of resource or hazards associated with an existing ACEC are reevaluated only when new information or changed circumstances or the results of monitoring establish a need.” The following discussion is a brief review of the existing ACECs created by the San Rafael RMP of 1991 and discussed in the Environmental Impact Statement (EIS).
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]