Exploring the Moon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
Mobile Lunar and Planetary Base Architectures
Space 2003 AIAA 2003-6280 23 - 25 September 2003, Long Beach, California Mobile Lunar and Planetary Bases Marc M. Cohen, Arch.D. Advanced Projects Branch, Mail Stop 244-14, NASA-Ames Research Center, Moffett Field, CA 94035-1000 TEL 650 604-0068 FAX 650 604-0673 [email protected] ABSTRACT This paper presents a review of design concepts over three decades for developing mobile lunar and planetary bases. The idea of the mobile base addresses several key challenges for extraterrestrial surface bases. These challenges include moving the landed assets a safe distance away from the landing zone; deploying and assembling the base remotely by automation and robotics; moving the base from one location of scientific or technical interest to another; and providing sufficient redundancy, reliability and safety for crew roving expeditions. The objective of the mobile base is to make the best use of the landed resources by moving them to where they will be most useful to support the crew, carry out exploration and conduct research. This review covers a range of surface mobility concepts that address the mobility issue in a variety of ways. These concepts include the Rockwell Lunar Sortie Vehicle (1971), Cintala’s Lunar Traverse caravan, 1984, First Lunar Outpost (1992), Frassanito’s Lunar Rover Base (1993), Thangavelu’s Nomad Explorer (1993), Kozlov and Shevchenko’s Mobile Lunar Base (1995), and the most recent evolution, John Mankins’ “Habot” (2000-present). The review compares the several mobile base approaches, then focuses on the Habot approach as the most germane to current and future exploration plans. -
Spacecraft Deliberately Crashed on the Lunar Surface
A Summary of Human History on the Moon Only One of These Footprints is Protected The narrative of human history on the Moon represents the dawn of our evolution into a spacefaring species. The landing sites - hard, soft and crewed - are the ultimate example of universal human heritage; a true memorial to human ingenuity and accomplishment. They mark humankind’s greatest technological achievements, and they are the first archaeological sites with human activity that are not on Earth. We believe our cultural heritage in outer space, including our first Moonprints, deserves to be protected the same way we protect our first bipedal footsteps in Laetoli, Tanzania. Credit: John Reader/Science Photo Library Luna 2 is the first human-made object to impact our Moon. 2 September 1959: First Human Object Impacts the Moon On 12 September 1959, a rocket launched from Earth carrying a 390 kg spacecraft headed to the Moon. Luna 2 flew through space for more than 30 hours before releasing a bright orange cloud of sodium gas which both allowed scientists to track the spacecraft and provided data on the behavior of gas in space. On 14 September 1959, Luna 2 crash-landed on the Moon, as did part of the rocket that carried the spacecraft there. These were the first items humans placed on an extraterrestrial surface. Ever. Luna 2 carried a sphere, like the one pictured here, covered with medallions stamped with the emblem of the Soviet Union and the year. When Luna 2 impacted the Moon, the sphere was ejected and the medallions were scattered across the lunar Credit: Patrick Pelletier surface where they remain, undisturbed, to this day. -
A Lunar Micro Rover System Overview for Aiding Science and ISRU Missions Virtual Conference 19–23 October 2020 R
i-SAIRAS2020-Papers (2020) 5051.pdf A lunar Micro Rover System Overview for Aiding Science and ISRU Missions Virtual Conference 19–23 October 2020 R. Smith1, S. George1, D. Jonckers1 1STFC RAL Space, R100 Harwell Campus, OX11 0DE, United Kingdom, E-mail: [email protected] ABSTRACT the form of rovers and landers of various size [4]. Due to the costly nature of these missions, and the pressure Current science missions to the surface of other plan- for a guaranteed science return, they have been de- etary bodies tend to be very large with upwards of ten signed to minimise risk by using redundant and high instruments on board. This is due to high reliability re- reliability systems. This further increases mission cost quirements, and the desire to get the maximum science as components and subsystems are expected to be ex- return per mission. Missions to the lunar surface in the tensively qualified. next few years are key in the journey to returning hu- mans to the lunar surface [1]. The introduction of the As an example, the Mars Science Laboratory, nick- Commercial lunar Payload Services (CLPS) delivery named the Curiosity rover, one of the most successful architecture for science instruments and technology interplanetary rovers to date, has 10 main scientific in- demonstrators has lowered the barrier to entry of get- struments, requires a large team of people to control ting science to the surface [2]. Many instruments, and and cost over $2.5 billion to build and fly [5]. Curios- In Situ Surface Utilisation (ISRU) experiments have ity had 4 main science goals, with the instruments and been funded, and are being built with the intention of the design of the rover specifically tailored to those flying on already awarded CLPS missions. -
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T
PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T. Crofton Department of Aerospace & Ocean Engineering TEAM LEAD Allison Quinn STUDENT MEMBERS Ethan LeBoeuf Brian McLemore Peter Bradley Smith Amanda Swanson Michael Valosin III Vidya Vishwanathan FACULTY SUPERVISOR AIAA 2018 Undergraduate Spacecraft Design Dr. Kevin Shinpaugh Competition Submission i AIAA Member Numbers and Signatures Ethan LeBoeuf Brian McLemore Member Number: 918782 Member Number: 908372 Allison Quinn Peter Bradley Smith Member Number: 920552 Member Number: 530342 Amanda Swanson Michael Valosin III Member Number: 920793 Member Number: 908465 Vidya Vishwanathan Dr. Kevin Shinpaugh Member Number: 608701 Member Number: 25807 ii Table of Contents List of Figures ................................................................................................................................................................ v List of Tables ................................................................................................................................................................vi List of Symbols ........................................................................................................................................................... vii I. Team Structure ........................................................................................................................................................... 1 II. Introduction .............................................................................................................................................................. -
FARSIDE Probe Study Final Report
Study Participants List, Disclaimers, and Acknowledgements Study Participants List Principal Authors Jack O. Burns, University of Colorado Boulder Gregg Hallinan, California Institute of Technology Co-Authors Jim Lux, NASA Jet Propulsion Laboratory, California Institute of Andres Romero-Wolf, NASA Jet Propulsion Laboratory, California Technology Institute of Technology Lawrence Teitelbaum, NASA Jet Propulsion Laboratory, California Tzu-Ching Chang, NASA Jet Propulsion Laboratory, California Institute of Technology Institute of Technology Jonathon Kocz, California Institute of Technology Judd Bowman, Arizona State University Robert MacDowall, NASA Goddard Space Flight Center Justin Kasper, University of Michigan Richard Bradley, National Radio Astronomy Observatory Marin Anderson, California Institute of Technology David Rapetti, University of Colorado Boulder Zhongwen Zhen, California Institute of Technology Wenbo Wu, California Institute of Technology Jonathan Pober, Brown University Steven Furlanetto, UCLA Jordan Mirocha, McGill University Alex Austin, NASA Jet Propulsion Laboratory, California Institute of Technology Disclaimers/Acknowledgements Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech © 2019. -
Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C
DOCUMENT RESUME ED 053 930 SE 012 016 AUTHOR Simmons, Gene TITLE On the Moon with Apollo 15,A Guidebook to Hadley Rine and the Apennine Mountains. INSTITUTION National Aeronautics and Space Administration, Washington, D.C. PUB DATE Jun 71 NOTE 52p. AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (3300-0384 $0.50) EDRS PRICE EDRS Price MF-$0.65 HC-$3.29 DESCRIPTORS *Aerospace Technology, Geology, Reading Materials, Resource Materials IDENTIFIERS *Lunar Studies, Moon ABSTRACT The booklet, published before the Apollo 15 mission, gives a timeline for the mission; describes and illustrates the physiography of the landing site; and describes and illustrates each lunar surface scientific experiment. Separate timelines are included for all traverses (the traverses are the Moon walks and, for Apollo 15, the Moon rides in the Rover) with descriptions of activities at each traverse stop. Each member of the crew and the backup crew is identified. Also included is a bibliography of lunar literature and glossary of terms used in lunar studies. Photographs and diagrams are utilized throughout. Content is descriptive and informative but with a minimum of technical detail. (Author/PR) , ON THE MOON WITH APOLLO 15 A Guidebook to Hadley Rille and the Apennine Mountains U.S. DEPARTMENT OFHEALTH, EDUCATION,& WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS SEENREPRO- DUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATIONORIG INATING IT. POINTS OF VIEWOR OPIN IONS STATED DO NOTNECESSARILY REPRESENT OFFICIAL OFFICEOF EDU CATION POSITION OR POLICY isr) 1..r1 w fl R CO iiii0OP" O NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 1 \n ON THE MOON WITH APOLLO 15 A uidebook to Hadley Rille and the Apennine Mountains by Gene Simmons Chief Scientist Manned Spacecraft Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION June 1971 2 For sale by the Superintendent of Documents, U.S. -
Moon Landings - Luna 9
Age Research cards 7-11 years Moon landings - Luna 9 About Credit-Pline On the 3 February 1966, Luna 9 made history by being the first crewless space mission to make a soft landing on the surface of the Moon. It was the ninth mission in the Soviet Union’s Luna programme (the previous five missions had all experienced spacecraft failure). The Soviet Union existed from 1922 to 1991 and was the largest country in the world; it was made up of 15 states, the largest of which was the Russian Republic, now called Russia. The Space Race is a term that is used to describe the competition between the United States of America and the Soviet Union which lasted from 1955 to 1969, as both countries aimed to be the first to get humans to the Moon. Working scientifically The Luna 9 spacecraft had a mass of 98kg (about outwards to make sure the spacecraft was stable the same as a baby elephant) and it carried before it began its scientific exploration. communication equipment to send information back to Earth, a clock, a heating system, a power The camera on board took many photographs of source and a television system. The spacecraft the lunar surface including some panoramic included scientific equipment for two enquiries: images. These images were transmitted back to one to find out what the lunar surface was like; Earth using radio waves. Although the Soviet and another to find out how much dangerous Union didn’t release these photographs to the rest radiation there was on the lunar surface. -
NASA's Recommendations to Space-Faring Entities: How To
National Aeronautics and Space Administration NASA’s Recommendations to Space-Faring Entities: How to Protect and Preserve the Historic and Scientific Value of U.S. Government Lunar Artifacts Release: July 20, 2011 1 National Aeronautics and Space Administration Revision and History Page Status Revision No. Description Release Date Release Baseline Initial Release 07/20/2011 Update Rev A Updated with imagery from Apollo 10/28/2011 missions 12, 14-17. Added Appendix D: Available Photo Documentation of Apollo Hardware 2 National Aeronautics and Space Administration HUMAN EXPLORATION & OPERATIONS MISSION DIRECTORATE STRATEGIC ANALYSIS AND INTEGRATION DIVISION NASA HEADQUARTERS NASA’S RECOMMENDATIONS TO SPACE-FARING ENTITIES: HOW TO PROTECT AND PRESERVE HISTORIC AND SCIENTIFIC VALUE OF U.S. GOVERNMENT ARTIFACTS THIS DOCUMENT, DATED JULY 20, 2011, CONTAINS THE NASA RECOMMENDATIONS AND ASSOCIATED RATIONALE FOR SPACECRAFT PLANNING TO VISIT U.S. HERITAGE LUNAR SITES. ORGANIZATIONS WITH COMMENTS, QUESTIONS OR SUGGESTIONS CONCERNING THIS DOCUMENT SHOULD CONTACT NASA’S HUMAN EXPLORATION & OPERATIONS DIRECTORATE, STRATEGIC ANALYSIS & INTEGRATION DIVISION, NASA HEADQUARTERS, 202.358.1570. 3 National Aeronautics and Space Administration Table of Contents REVISION AND HISTORY PAGE 2 TABLE OF CONTENTS 4 SECTION A1 – PREFACE, AUTHORITY, AND DEFINITIONS 5 PREFACE 5 DEFINITIONS 7 A1-1 DISTURBANCE 7 A1-2 APPROACH PATH 7 A1-3 DESCENT/LANDING (D/L) BOUNDARY 7 A1-4 ARTIFACT BOUNDARY (AB) 8 A1-5 VISITING VEHICLE SURFACE MOBILITY BOUNDARY (VVSMB) 8 A1-6 OVERFLIGHT -
Update on the Qualification of the Hakuto Micro-Rover for the Google
Update on the Qualification of the Hakuto Micro-Rover for the Google Lunar X-Prize John Walker, Nathan Britton, Kazuya Yoshida, Shimizu Toshiro, Louis-Jerome Burtz, Alperen Pala 1 Introduction 1.1 Commercial off the shelf components in space robotics missions In the past several years, due to the proliferation of cubesat and micro-satellite mis- sions, several companies have started offering off-the-shelf space-ready hardware[3]. These products offer a welcome reduction in cost but do not solve a major prob- lem for space robotics designers: available space-ready controllers are years behind COTS microprocessors and microcontrollers in terms of performance and power consumption. For applications involving human safety or critical timing, the extra cost and difficulty of using certified space-ready hardware is justifiable. But for some low-cost missions that require high performance, terrestrial com- ponents are increasingly being qualified and integrated. The University of Tokyo’s HODOYOSHI 3 and 4 satellites have integrated readily available COTS FPGAs and microcontrollers and protected them with safeguards against Single Event Latch-up (SEL)[9]. This paper presets a lunar rover architecture that uses many COTS parts, with a focus on electrical parts and their function in and survival of various tests. Walker, John Tohoku University, Sendai, Miyagi, JAPAN e-mail: [email protected] Britton, Nathan Tohoku University, Sendai, Miyagi, JAPAN e-mail: [email protected] 1 2 Walker, J. and Britton, N. 1.2 Google Lunar XPRIZE The Google Lunar XPRIZE (GLXP) is a privately funded competition to land a rover on the surface of the Moon, travel 500 m and send HD video back to Earth. -
An Active X-Ray Spectrometer for the SELENE-2 Rover
Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Pk_35-Pk_42, 2014 Original Paper An Active X-Ray Spectrometer for the SELENE-2 Rover 1) 2) 3) 4) 5) By Kyeong Ja KIM , Yoshiharu AMANO , William V. BOYNTON , Gostar KLINGELHÖFER , Johannes BRÜCKNER , 2) 3) 6) 7) 8) 2) Nobuyuki HASEBE , Dave HAMARA , Richard D. STARR , Lucy F. LIM , Gwanghyeok JU , Timothy J. FAGAN , 2) 2) Tohru OHTA and Eido SHIBAMURA 1) Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea 2) Research Institute for Science and Engineering, Waseda University, Tokyo, Japan 3) LPL, University of Arizona, Tucson, AZ, USA 4) Johannes Gutenberg University, Mainz, Germany 5)Max-Planck-Institute for Chemistry, Mainz, Germany 6) Catholic University of America, Washington, DC, USA 7) NASA GSFC, Greenbelt, MD, USA 8) Korea Aerospace Research Institute, Daejeon, Korea (Received June 27th, 2013) The Active X-ray Spectrometer (AXS) for the Japanese SELENE-2 rover has been proposed for elemental analysis on the lunar surface to measure the major elements: Mg, Al, Si, Ca, Ti, and Fe; the minor elements, Na, K, P, S, Cl, Cr, and Mn and the trace element Ni, all depending on their concentrations at a landing site. The elemental data of the AXS allow us to not only classification but also quantification of surface rocks on the Moon. The AXS is a compact low-weight instrument for elemental analysis based on the principle of X-ray fluorescence spectrometry using an X-ray spectrometer and two (four) pyroelectric crystals as X-Ray Generators (XRG). This paper introduces the current status of the pre-project to develop an AXS for the SELENE-2 Rover including the investigations on the generation of X-ray flux of the XRG, required surface roughness for the XRS measurement, and a thermal design of the AXS. -
The Flexible Lunar Architecture for Exploration (FLARE) Designed for the Artemis-3 Moon 2024 Mission and Beyond
NASA/TP-2020-220517 The Flexible Lunar Architecture for Exploration (FLARE) Designed for the Artemis-3 Moon 2024 mission and beyond Dr. Michael E. Evans Planetary Scientist Astromaterials Research and Exploration Science (ARES) Division NASA Johnson Space Center [email protected] 281-483-3276 Mr. Lee D. Graham Senior Research Engineer Astromaterials Research and Exploration Science (ARES) Division NASA Johnson Space Center [email protected] 281-244-5192 National Aeronautics and Space Administration Johnson Space Center Houston, Texas 77058 April 2020 NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA scientific and technical information (STI) technical conferences, symposia, seminars, program plays a key part in helping NASA or other meetings sponsored or maintain this important role. co-sponsored by NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. technical, or historical information from It collects, organizes, provides for archiving, and NASA programs, projects, and missions, disseminates NASA’s STI. The NASA STI often concerned with subjects having program provides access to the NTRS Registered substantial public interest. and its public interface, the NASA Technical Report Server, thus providing one of the largest • TECHNICAL TRANSLATION. collections of aeronautical and space science STI in English-language translations of foreign the world. Results are published in both non-NASA scientific and technical material pertinent to channels and by NASA in the NASA STI Report NASA’s mission. Series, which includes the following report types: Specialized services also include organizing • TECHNICAL PUBLICATION.