California Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

California Agriculture JANUARY-MARCH 2005 ■ VOLUME 59 NUMBER 1 California Agriculture Beyond organophosphates University of California | Division of Agriculture and Natural Resources | Research in Agricultural, Natural and Human Resources Environmental laws elicit evolution in pest management he era of synthetic UC and USDA scientists released a task force report in 1992 organic pesticides entitled Beyond Pesticides: Biological Approaches to Pest Manage- beganT in the 1940s and ment in California (UC DANR Pub. 21512). This report provided brought with it many an overview of possible alternative control tactics without the Robert Van Steenwyk Frank G. Zalom benefits. The new pesti- use of broad-spectrum pesticides, and was produced with Entomologist, Entomologist, cides enabled growers an appreciation for the mounting political pressures on these UC Berkeley UC Davis to produce abundant products because of safety concerns. Two controversial Na- food and fiber, both tional Research Council reports, Regulating Pesticides in Food: economically and predictably. They enabled public health The Delaney Paradox in 1987, and Pesticides in the Diets of Infants officials to control many serious insect-vectored diseases in and Children in 1993, focused attention on dietary risk from the United States and throughout the world. However, the pesticides and on the differential effects of pesticides on vul- universal adoption of synthetic organic pesticides in the nerable groups in the population. These reports questioned 1950s also brought risks. UC scientists soon noted adverse how the EPA established pesticide tolerances, and were drivers impacts from these broad-spectrum pesticides on natural for passage of the Food Quality Protection Act of 1996 (FQPA). biological control agents and developed the concept of The FQPA is the most important regulatory reform yet enacted. “integrated control.” In addition to their adverse effect on Many broad-spectrum pesticide products and uses have been biological control agents, it soon became apparent that pests lost and more are anticipated in the future. could develop resistance to the new pesticides. This resis- The elimination of the uses of many broad-spectrum tance required that increased rates of pesticides be applied pesticides has resulted in the development and registration to achieve acceptable control, exacerbating the problem. of a number of reduced-risk and environmentally benign The publication of Rachel Carson’s famous book, Silent pesticides and control strategies. These new pesticides are Spring, in 1962, brought concerns about the environmental and more pest-specific and less robust in their control and will re- health risks of pesticides to the forefront of public awareness, quire increased vigilance on the part of pest control advisers. and began a national debate. The U.S. Department of Health, The new products are often slower-acting, will control only Education and Welfare established the Commission on Pesti- related pest species, and are more expensive. In addition, cides and Their Relationship to Environmental Health in 1969, resistance to these new materials can occur in populations chaired by UC Davis Chancellor Emil Mrak, to conduct the of many important pest species. Effective reduced-risk pes- first assessment of pesticide risks. The Mrak Commission rec- ticides have not been developed for a number of important ommended the establishment of a governmental mechanism pests. Thus, there could be substantial economic impacts on for assessing the environmental safety of pesticides. California agriculture from implementation of the FQPA. In 1971, President Nixon created the Environmental To address these concerns, the California Department of Food Protection Agency (EPA) by executive order, transferring and Agriculture supported a study to measure the economic pesticide regulation from the U.S. Department of Agricul- impact on the 13 top-valued economic agricultural crops in ture (USDA) to the new agency. Congress soon mandated California if all organophosphate insecticides were eliminated EPA’s charge to evaluate risks and benefits of pesticides by from use. The study, The Economic Impact of Organophosphates in passing the Federal Insecticide, Fungicide and Rodenticide California Agriculture (http://www.cdfa.ca.gov/publications. Act of 1972. Lawmakers had now established a mechanism htm), showed that the elimination of broad-spectrum pesticides for careful evaluation of any pesticide’s environmental and would increase the cost of production, and the amount of in- health risks, and for consideration of more environmentally crease was crop-specific. This report was the stimulus for the benign pest-management alternatives. UC scientists, who publication of this special issue of California Agriculture, in which were already leaders in the development of biological con- UC scientists discuss alternative control measures that they have trol, integrated pest management (IPM) and pesticide toxi- developed over decades of research. cology, became increasingly engaged in national programs The importance of UC maintaining its capacity to respond to identify and develop alternative pest-management strate- to future regulatory issues, introductions of invasive species, gies to broad-spectrum pesticides. They formed alliances vector-related public health issues and economic challenges with their counterparts in federal and California agencies faced by California citizens has never been greater. To meet to develop and implement new pest-management systems these challenges, a new era of cooperation and integration be- and tactics, including both biological and chemical means to tween UC’s Agricultural Experiment Station and Cooperation combat pests. Extension must be implemented in the near future. This re- However, developing and implementing alternatives to organization must be substantial and collegial, and foster the organophosphate pesticides to meet the needs of California’s vertical integration of knowledge development and delivery. highly diverse agriculture, as well as its urban areas and natu- Through the closer integration of these two units, a leaner ral resources, has been and will continue to be a challenge be- and more efficient organization will be positioned to lead cause of decreasing public funding for research and extension. California as it responds to the challenges ahead. 2 CALIFORNIA AGRICULTURE, VOLUME 59, NUMBER 1 News departments 4 Letters California Agriculture 5 Science briefs Galen Rowell/Corbis Pyrethroids in Central Valley News and Peer-reviewed Research published by the Division of Agriculture and stream sediments toxic to Natural Resources, University of California bottom-dwellers VOLUME 59, NUMBER 1 State announces new methyl Executive editor: Janet White bromide use rules; phase-out Managing editor: Janet Byron delayed Under the Food Quality Protection Act of 1996, many Art director: Davis Krauter uses of organophosphate insecticides and other broad- California Agriculture Three of four county spectrum pesticides are being phased out, with impor- 1111 Franklin St., 6th floor anti-GMO measures fail tant implications for California growers; UC scientists are Oakland, CA 94607-5200 exploring a range of alternatives. Shown on this home Phone: (510) 987-0044; Fax: (510) 465-2659 gardener’s shelf are generations of pesticides, some of [email protected] Research articles which have been banned or their uses curtailed. http://CaliforniaAgriculture.ucop.edu California Agriculture (ISSN 0008-0845) is published quarterly and mailed at periodicals postage rates at Oakland, CA and additional mailing offices. Postmaster: Send change of address "Form 3579" to California Agriculture at the above address. Beyond organophoshates RATES: Subscriptions free upon request in U.S.; $24/year outside the U.S. After publication, the single copy price is $5.00. Orders must be accompanied by payment. Payment may be by check or international money order in U.S. Food Quality Protection Act Various novel insecticides are funds payable to UC Regents. MasterCard/Visa accepted; requests require 7 29 signature and card expiration date. Please include complete address. launches search for pest manage- less toxic to humans, more specific Articles published herein may be reprinted, provided no advertisement for a commercial product is implied or imprinted. Please credit California Agri- ment alternatives to key pests culture, University of California, citing volume and number, or complete date of issue, followed by inclusive page numbers. Indicate ©[[date]] The Regents Van Steenwyk, Zalom Grafton-Cardwell et al. of the University of California. Photographs may not be reprinted without Organophosphate insecticides have al- A number of newly registered insecticides have permission. UC prohibits discrimination against or harassment of any person on the lowed large yield increases, but under the low mammalian toxicity and target specific crop basis of race, color, national origin, religion, sex, gender identity, pregnancy FQPA many will be cancelled. Alternatives pests; however, resistance and secondary pest (including childbirth and medical conditions related to pregnancy and childbirth), physical or mental disability, medical condition (cancer-related are needed to maintain a viable state ag- outbreaks must be managed. or genetic characteristics), ancestry, marital status, age, sexual orientation, ricultural industry. citizenship, or status as a covered veteran (special disabled veteran, recently separated veteran, Vietnam-era veteran
Recommended publications
  • 47-60 ©Österr
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Entomofaunistik Jahr/Year: 2011 Band/Volume: 12 Autor(en)/Author(s): Malumphy Chris, Kahrer Andreas Artikel/Article: New data on the scale insects (Hemiptera: Coccoidea) of Vienna, including one invasive species new for Austria. 47-60 ©Österr. Ges. f. Entomofaunistik, Wien, download unter www.biologiezentrum.at Beiträge zur Entomofaunistik 12 47-60 Wien, Dezember 2011 New data on the scale insects (Hemiptera: Coccoidea) of Vienna, including one invasive species new for Austria Ch. Malumphy* & A. Kahrer** Zusammenfassung Sammeldaten von 30 im März 2008 in Wiener Parks und Palmenhäusern gesammelten Schild- und Wolllausarten (Hemiptera: Coccoidea) werden aufgelistet. Dreizehn dieser Arten (43 %) sind tropischen Ursprungs. Die San José Schildlaus (Diaspidiotus perniciosus (COMSTOCK)), die rote Austernschildlaus (Epidiaspis leperii (SIGNORET)) und die Maulbeerschildlaus (Pseudaulacaspis pentagona (TARGIONI- TOZZETTI)) (alle Diaspididae) rufen schwere Schäden an ihren Wirtspflanzen – im Freiland kultivierten Zierpflanzen hervor. Die ebenfalls nicht einheimische, invasive Art Pulvinaria floccifera (WESTWOOD) (Coccidae) wird für Österreich zum ersten Mal gemeldet. Summary Collection data are provided for 30 species of scale insects (Hemiptera: Coccoidea) found in Vienna during March 2008. Thirteen (43 %) of these species are of exotic origin. Diaspidiotus perniciosus (COMSTOCK), Epidiaspis leperii (Signoret) and Pseudaulacaspis pentagona (TARGIONI-TOZZETTI) (Diaspididae) were found causing serious damage to ornamental plants growing outdoors. The non-native, invasive Pulvinaria floccifera (WESTWOOD) (Coccidae) is recorded from Austria for the first time. Keywords: Non-native introductions, invasive species, Diaspidiotus perniciosus, Epidiaspis leperii, Pseudaulacaspis pentagona, Pulvinaria floccifera. Introduction The scale insect (Hemiptera: Coccoidea) fauna of Austria has been inadequately studied.
    [Show full text]
  • Five New Species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Argentina, with a Key to Argentine Species
    ZooKeys 948: 47–73 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.948.54618 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Five new species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Argentina, with a key to Argentine species Scott A. Schneider1, Lucia E. Claps2, Jiufeng Wei3, Roxanna D. Normark4, Benjamin B. Normark4,5 1 USDA, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Systematic Entomology Laboratory, Building 005 - Room 004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA 2 Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo, Instituto Su- perior de Entomología “Dr. Abraham Willink”, Batalla de Ayacucho 491, T4000 San Miguel de Tucumán, Tucumán, Argentina 3 College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China 4 Department of Biology, University of Massachusetts, 221 Morrill Science Center III 611 North Pleasant Street, Amherst, MA 01003, USA 5 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, 204C French Hall, 230 Stockbridge Road Amherst, MA 01003, USA Corresponding author: Scott A. Schneider ([email protected]) Academic editor: Roger Blackman | Received 22 May 2020 | Accepted 5 June 2020 | Published 13 July 2020 http://zoobank.org/1B7C483E-56E1-418D-A816-142EFEE8D925 Citation: Schneider SA, Claps LE, Wei J, Normark RD, Normark BB (2020) Five new species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Argentina, with a key to Argentine species. ZooKeys 948: 47–73. https:// doi.org/10.3897/zookeys.948.54618 Abstract Five new species of armored scale insect from Argentina are described and illustrated based upon morpho- logical and molecular evidence from adult females: Chortinaspis jujuyensis sp.
    [Show full text]
  • References, Sources, Links
    History of Diaspididae Evolution of Nomenclature for Diaspids 1. 1758: Linnaeus assigned 17 species of “Coccus” (the nominal genus of the Coccoidea) in his Systema Naturae: 3 of his species are still recognized as Diaspids (aonidum,ulmi, and salicis). 2. 1828 (circa) Costa proposes 3 subdivisions including Diaspis. 3. 1833, Bouche describes the Genus Aspidiotus 4. 1868 to 1870: Targioni-Tozzetti. 5. 1877: The Signoret Catalogue was the first compilation of the first century of post-Linnaeus systematics of scale insects. It listed 9 genera consisting of 73 species of the diaspididae. 6. 1903: Fernaldi Catalogue listed 35 genera with 420 species. 7. 1966: Borschenius Catalogue listed 335 genera with 1890 species. 8. 1983: 390 genera with 2200 species. 9. 2004: Homptera alone comprised of 32,000 known species. Of these, 2390 species are Diaspididae and 1982 species of Pseudococcidae as reported on Scalenet at the Systematic Entomology Lab. CREDITS & REFERENCES • G. Ferris Armored Scales of North America, (1937) • “A Dictionary of Entomology” Gordh & Headrick • World Crop Pests: Armored Scale Insects, Volume 4A and 4B 1990. • Scalenet (http://198.77.169.79/scalenet/scalenet.htm) • Latest nomenclature changes are cited by Scalenet. • Crop Protection Compendium Diaspididae Distinct sexual dimorphism Immatures: – Nymphs (mobile, but later stages sessile and may develop exuviae). – Pupa & Prepupa (sessile under exuviae, Males Only). Adults – Male (always mobile). – Legs. – 2 pairs of Wing. – Divided head, thorax, and abdomen. – Elongated genital organ (long style & penal sheath). – Female (sessile under exuviae). – Legless (vestigial legs may be present) & Wingless. – Flattened sac-like form (head/thorax/abdomen fused). – Pygidium present (Conchaspids also have exuvia with legs present).
    [Show full text]
  • Zootaxa, a New Species of Armored Scale (Hemiptera: Coccoidea: Diaspididae)
    Zootaxa 1991: 57–68 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A new species of armored scale (Hemiptera: Coccoidea: Diaspididae) found on avocado fruit from Mexico and a key to the species of armored scales found on avocado worldwide GREGORY A. EVANS, GILLIAN W. WATSON AND DOUGLASS R. MILLER (GAE) USDA/APHIS, BARC-West, Building 005, Beltsville, MD 20705 , U.S.A. (email: [email protected]); (GWW) California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, U.S.A. (email: [email protected]); (DRM) ARS/USDA/ Systematic Entomology Laboratory, BARC-West, Building 005, Beltsville, MD 20705, U.S.A. (email: douglass.miller @sel.barc.usda.gov). Abstract A new species of armored scale, Abgrallaspis aguacatae Evans, Watson, and Miller spec. nov. is described and illustrated from specimens collected on avocado fruit from Mexico. This species has caused considerable concern as a quarantine issue in the United States. A key to the armored scale species known to feed on avocado worldwide is provided. Key words: Pest, Persea americana, quarantine, taxonomy, regulatory, invasive species Introduction Avocado (Persea americana Mill., Lauraceae), known as aguacate or palta in Spanish, is a tree native to Mexico and Central America. Evidence suggests that it may have been cultivated in Mexico for as long as 10,000 years (Barry, 2001). It has been cultivated in South America since at least 900 A.D, because an avocado-shaped water jar was found in the pre-Incan city of Chan Chan in Peru (Barry, 2001).
    [Show full text]
  • Article 10362 8843052E4d07db
    41 ﮔﻴﺎه ﭘﺰﺷﻜﻲ ( ﻣﺠﻠﻪ ﻋﻠﻤﻲ ﻛﺸﺎورزي) ، ﺟﻠﺪ 36 ﺷﻤﺎره 2 ، ﺗﺎﺑﺴﺘﺎن 92 92 ﺷﭙﺸﻚ ﻫﺎي ﮔﻴﺎﻫﻲ( Hem.: Coccoidea ) ﺷﻬﺮﺳﺘﺎن ﺑﻬﺒﻬﺎن و ﺧﺼﻮﺻﻴﺎت ﻣﺮﻓﻮﻟﻮژﻳﻚ آﻧﻬﺎ اﻟﻬﺎم روزدار1 ، ﺣﺴﻨﻌﻠﻲ واﺣﺪي2 * ، ﻣﺤﻤﺪ ﺳﻌﻴﺪ ﻣﺼﺪق3 و ﻣﺤﻤﺪ اﻣﻴﻦ ﺳﻤﻴﻊ4 -1 داﻧﺸﺠﻮي ﺳﺎﺑﻖ ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، ﭘﺮدﻳﺲ ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ، داﻧﺸﮕﺎه رازي، ﻛﺮﻣﺎﻧﺸﺎه 2* - ﻧﻮﻳﺴﻨﺪه ﻣﺴﺆول : اﺳﺘﺎدﻳ ﺎر ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، ﭘﺮدﻳﺲ ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ، داﻧﺸﮕﺎه رازي، ﻛﺮﻣﺎﻧﺸﺎه ( [email protected]) -3 اﺳﺘﺎد ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، داﻧﺸﻜﺪه ﻛﺸﺎورزي، داﻧﺸﮕﺎه ﺷﻬﻴﺪ ﭼﻤﺮان، اﻫﻮاز -4 داﻧﺸﻴﺎر ﮔﺮوه ﮔﻴﺎﻫﭙﺰﺷﻜﻲ، داﻧﺸﻜﺪه ﻛﺸﺎورزي، داﻧﺸﮕﺎه وﻟﻲ ﻋﺼﺮ، رﻓﺴﻨﺠﺎن ﺗﺎرﻳﺦ درﻳﺎﻓﺖ : /1/27 91 ﺗﺎرﻳﺦ ﭘﺬﻳﺮش : /24/1 92 92 ﭼﻜﻴﺪه ﺷﭙﺸﻚ ﻫﺎي ﮔﻴﺎﻫﻲ از آﻓﺎت ﻣﻬﻢ درﺧﺘﺎن ﻣﻴﻮه و ﻣﺤﺼﻮﻻت زراﻋﻲ ﻫﺴ ﺘﻨﺪ؛ در ﺳﺎل ﻫﺎي -90 1389 ﻓﻮن ﺷﭙﺸﻚ ﻫﺎي ﮔﻴﺎﻫﻲ ، روي ﮔﻴﺎ ﻫﺎن ﻣﺨﺘﻠﻒ، در ﺷﻬﺮ ﺑﻬﺒﻬﺎن و ﺣﻮﻣﻪ ﺑﺮرﺳﻲ ﺷﺪ . در ﻣﺠﻤﻮع 21 ﮔﻮﻧﻪ ﺷﭙﺸﻚ ﻣﺘﻌﻠﻖ ﺑﻪ ﺧﺎﻧﻮاده ﻫﺎي : ( )Eriococcidae )2( ،Coccidae )4( ، Pseudococcidae )6( ،Diaspididae 8 و )Phoenicococcidae )1 ﮔﺰارش ﻣﻲ ﺷﻮد . ﻫﺮ ﻳﻚ از ﮔﻮﻧﻪ ﻫﺎ ﺑﻄﻮر ﻣﺨﺘﺼﺮ ﺑﺎ ﺗﺎﻛﻴﺪ روي ﻛﺎراﻛﺘﺮﻫﺎي ﺗﺎﻛﺴﻮﻧﻮﻣﻴﻜﻲ ﺗﻮﺻﻴﻒ و ﺗﺮﺳﻴﻢ ﮔﺮدﻳﺪ . ﻣﻴﺰﺑﺎن ﻫﺎ و زﻳﺴﺘﮕﺎه ﻫﺎي آﻧﻬﺎ ﻧﻴﺰ ﻣﺸﺨﺺ ﺷﺪ . ﺟﻨﺲ Paracoccus Ezzat and McConnell و ﮔﻮﻧﻪ (Acanthococcus aceris (Signoret ﺑﺮاي اوﻟﻴﻦ ﺑﺎر از اﻳﺮان و 9 ﮔﻮﻧﻪ ﻧﻴﺰ ﺑﺮاي اوﻟﻴﻦ ﺑﺎر از ﺧﻮزﺳﺘﺎن (* ) ﺛﺒﺖ ﺷﺪ؛ ﺑﺮ اﺳﺎس ﻣﺸﺎﻫﺪات و ﻣﻄﺎﻟﻌﺎت، ﮔﻮﻧﻪ ﻫﺎﻳﻲ ﻛﻪ داراي اﻫﻤﻴﺖ اﻗﺘﺼﺎدي ﻫﺴﺘﻨﺪ، ﻣﻮرد ﺑﺤﺚ ﻗﺮار ﮔﺮﻓﺖ . ﻓﻬﺮﺳﺖ ﮔﻮﻧﻪ ﻫﺎي ﺷﻨﺎﺳﺎﻳﻲ ﺷﺪه ﺑﻪ ﺗﺮﺗﻴﺐ زﻳﺮ اﺳﺖ : : DIASPIDIDAE: Aspidiotus nerii* (Bouche), Diaspidiotus armenicus* (Borchsenius), Lepidosaphes malicola* Borchsenius, Melanaspis inopinata* (Leonardi), Parlatoria blanchardi (Targioni-Tozzetti) P. crypta (McKenzie), P. oleae (Colvee) and Salicicola ?kermanensis Lindinger. PSEUDOCOCCIDAE: Chorizococcus sp.
    [Show full text]
  • From Panama, with a Key to Panamanian Species
    ZooKeys 1047: 1–25 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1047.68409 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Four new species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Panama, with a key to Panamanian species Jiufeng Wei1, Scott A. Schneider2, Roxanna D. Normark3, Benjamin B. Normark3,4 1 College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China 2 USDA, Ag- ricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Systematic Entomology Laboratory, Building 005 – Room 004, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA 3 Department of Biology, University of Massachusetts, Amherst, MA 01003, USA 4 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA Corresponding author: Scott A. Schneider ([email protected]) Academic editor: Roger Blackman | Received 7 May 2021 | Accepted 4 June 2021 | Published 24 June 2021 http://zoobank.org/77E36ADC-70CF-494F-A346-89B29D09CAFE Citation: Wei J, Schneider SA, Normark RD, Normark BB (2021) Four new species of Aspidiotini (Hemiptera, Diaspididae, Aspidiotinae) from Panama, with a key to Panamanian species. ZooKeys 1047: 1–25. https://doi. org/10.3897/zookeys.1047.68409 Abstract Four new species of armored scale insect, Clavaspis selvatica sp. nov., Clavaspis virolae sp. nov., Davidsonaspis tovomitae sp. nov., and Rungaspis neotropicalis sp. nov., are described and illustrated from Panama. We also transfer two previously described species of Panamanian Aspidiotini to new genera, Hemiberlesia crescentiae (Ferris) comb. nov. and Rungaspis rigida (Ferris) comb. nov., and report the first record ofSelenaspidopsis browni Nakahara in Panama. A key to the species of Aspidiotini occurring in Panama is provided.
    [Show full text]
  • Scale Insects Recorded on Ornamental Plants in Urban Areas of Kermanshah, Iran
    Vol. 8(16), pp. 1381-1383, 2 May, 2013 DOI: 10.5897/AJAR11.1641 African Journal of Agricultural ISSN 1991-637X ©2013 Academic Journals Research http://www.academicjournals.org/AJAR Short Communication Scale insects recorded on ornamental plants in urban areas of Kermanshah, Iran Massumeh Shirazi, Hassan-Ali Vahedi*, Ali-Naghi Mirmoayedi, Sayed Mohammad Masoumi and Khatereh Jalilvand Department of Plant Protection, Agricultural College, Razi University, Kermanshah, Iran. Accepted 21 May, 2012 Scale insects (Hemiptera: Coccoidea) are serious pests of ornamental plants, and are becoming increasingly important in urban areas in Iran. Here, we report on the results of an initial survey of scale insects found on ornamental plants in Kermanshah City, Iran. A total of 15 species of scale insects were recorded: 7 Diaspididae, 3 Pseudococcidae, 3 Coccidae, and 2 Eriococcidae. Of these, three species, Diaspidiotus gigas (Thiem and Gernek), Chortinaspis subterranean (Lindinger) and Acanthacoccus insignis (Newstead) are new records for Iran. In addition, five other species are new to Kermanshah. Key words: Coccoidea, ornamental plants, Kermanshah, new records. INTRODUCTION Ornamental plants are widely used in urban areas for monograph on the subtribe Aspidiotina, tribe Aspidiotini environmental management. The most obvious use is to (Diaspididae) (Kaussari and Farahbakhsh, 1968). The control soil erosion by wind and water. Apart for their use first complete list of scale insects in Iran was published as ground cover on eroded areas to reduce dust and by Bodenheimer (1944), who reported 89 species. Much glare, ornamental plants are also used to alleviate air later, Kozár et al. (1996) published a more extensive pollution, heat buildup and noise pollution (Baiyewu et al., checklist of 185 species.
    [Show full text]
  • An Online Interactive Identification Key to Common Pest Species of Aspidiotini (Hemiptera, Coccomorpha, Diaspididae), Version 1.0
    A peer-reviewed open-access journal ZooKeys 867: 87–96 (2019) Online interactive key to Aspidiotini 87 doi: 10.3897/zookeys.867.34937 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research An online interactive identification key to common pest species of Aspidiotini (Hemiptera, Coccomorpha, Diaspididae), version 1.0 Scott A. Schneider1,2,3, Michael A. Fizdale4, Benjamin B. Normark2,3 1 Systematic Entomology Laboratory, USDA, Agricultural Research Service, Henry A. Wallace Beltsville Agricul- tural Research Center, Beltsville, Maryland, USA 2 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA 3 Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA 4 School of Natural Sciences, Hampshire College, Amherst, Massachusetts, USA Corresponding author: Scott A. Schneider ([email protected]) Academic editor: R. Blackman | Received 27 March 2019 | Accepted 19 July 2019 | Published 30 July 2019 http://zoobank.org/D826AEF6-55CD-45CB-AFF7-A761448FA99F Citation: Schneider SA, Fizdale MA, Normark BB (2019) An online interactive identification key to common pest species of Aspidiotini (Hemiptera, Coccomorpha, Diaspididae), version 1.0. ZooKeys 867: 87–96. https://doi. org/10.3897/zookeys.867.34937 Abstract Aspidiotini is a species-rich tribe of armored scale insects that includes several polyphagous and specialist pests that are commonly encountered at ports-of-entry to the United States and many other countries. This article describes a newly available online interactive tool that can be used to identify 155 species of Aspidiotini that are recognized as minor to major pests or that are potentially emergent pests. This article lists the species and features included with a description of the development and structure of the key.
    [Show full text]
  • Checklist of the Scale Insects (Hemiptera : Sternorrhyncha : Coccomorpha) of New Caledonia
    Checklist of the scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) of New Caledonia Christian MILLE Institut agronomique néo-calédonien, IAC, Axe 1, Station de Recherches fruitières de Pocquereux, Laboratoire d’Entomologie appliquée, BP 32, 98880 La Foa (New Caledonia) [email protected] Rosa C. HENDERSON† Landcare Research, Private Bag 92170 Auckland Mail Centre, Auckland 1142 (New Zealand) Sylvie CAZÈRES Institut agronomique néo-calédonien, IAC, Axe 1, Station de Recherches fruitières de Pocquereux, Laboratoire d’Entomologie appliquée, BP 32, 98880 La Foa (New Caledonia) [email protected] Hervé JOURDAN Institut méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE), Aix-Marseille Université, UMR CNRS IRD Université d’Avignon, UMR 237 IRD, Centre IRD Nouméa, BP A5, 98848 Nouméa cedex (New Caledonia) [email protected] Published on 24 June 2016 Rosa Henderson† left us unexpectedly on 13th December 2012. Rosa made all our recent c occoid identifications and trained one of us (SC) in Hemiptera Sternorrhyncha slide preparation and identification. The idea of publishing this article was largely hers. Thus we dedicate this article to our late and dear Rosa. Rosa Henderson† nous a quittés prématurément le 13 décembre 2012. Rosa avait réalisé toutes les récentes identifications de cochenilles et avait formé l’une d’entre nous (SC) à la préparation des Hemiptères Sternorrhynques entre lame et lamelle. Grâce à elle, l’idée de publier cet article a pu se concrétiser. Nous dédicaçons cet article à notre chère et regrettée Rosa. urn:lsid:zoobank.org:pub:90DC5B79-725D-46E2-B31E-4DBC65BCD01F Mille C., Henderson R. C.†, Cazères S. & Jourdan H. 2016. — Checklist of the scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) of New Caledonia.
    [Show full text]
  • PRA Phytoplasma Phoenicium
    EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES 17-23265 Pest Risk Analysis for ‘Candidatus Phytoplasma phoenicium’ (Bacteria: Acholeplasmataceae) causing almond witches’ broom September 2017 EPPO 21 Boulevard Richard Lenoir 75011 Paris www.eppo.int [email protected] This risk assessment follows the EPPO Standard PM 5/5(1) Decision-Support Scheme for an Express Pest Risk Analysis (available at http://archives.eppo.int/EPPOStandards/pra.htm) and uses the terminology defined in ISPM 5 Glossary of Phytosanitary Terms (available at https://www.ippc.int/index.php). This document was first elaborated by an Expert Working Group and then reviewed by the Panel on Phytosanitary Measures and if relevant other EPPO bodies. Cite this document as: EPPO (2017) Pest risk analysis for ‘Candidatus Phytoplasma phoenicium’. EPPO, Paris. Available at http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm and https://gd.eppo.int/taxon/PHYPPH Photo: Witches’ Broom on almond. Courtesy: Marina Molino Lova (AVSI-Lebanon) 1 17-23265 (17-22751, 17-22511, 16-22364, 16-22291, 16-22231, 16-22152) Based on this PRA, ‘Candidatus Phytoplasma phoenicium’ was added to the A1 Lists of pests recommended for regulation as quarantine pests in 2017. Pest Risk Analysis for ‘Candidatus Phytoplasma phoenicium’ (Bacteria: Acholeplasmataceae) causing almond witches’ broom PRA area: EPPO region Prepared by: EWG on 'Candidatus Phytoplasma phoenicium' Date: 6-9 December 2016 (the PRA was further reviewed and amended by other EPPO bodies, see below) Composition of the Expert Working Group (EWG) ABOU-JAWDAH Yusuf (Prof.) Agriculture Department, Faculty of Agricultural and Food Sciences, American University of Beirut, Bliss Street, 11-0236, 1107-2020 Riad El-Solh, Lebanon Tel: +961-1343002 - [email protected] AVENDANO GARCIA Nuria (Ms) TRAGSATEC, C/Julian Camarillo, 6a.
    [Show full text]
  • A Dissertation By
    WEB-INTEGRATED TAXONOMY AND SYSTEMATICS OF THE PARASITIC WASP FAMILY SIGNIPHORIDAE (HYMENOPTERA, CHALCIDOIDEA) A Dissertation by ANAMARIA DAL MOLIN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, James B. Woolley Committee Members, Mariana Mateos Raul F. Medina Robert A. Wharton John M. Heraty Head of Department, David Ragsdale December 2014 Major Subject: Entomology Copyright 2014 Anamaria Dal Molin ABSTRACT This work focuses on the taxonomy and systematics of parasitic wasps of the family Signiphoridae (Hymenoptera: Chalcidoidea), a relatively small family of chalcidoid wasps, with 79 described valid species in 4 genera: Signiphora Ashmead, Clytina Erdös, Chartocerus Motschulsky and Thysanus Walker. A phylogenetic analysis of the internal relationships in Signiphoridae, a discussion of its supra-specific classification based on DNA sequences of the 18S rDNA, 28S rDNA and COI genes, and taxonomic studies on the genera Clytina, Thysanus and Chartocerus are presented. In the phylogenetic analyses, all genera except Clytina were recovered as monophyletic. The classification into subfamilies was not supported. Out of the four currently recognized species groups in Signiphora, only the Signiphora flavopalliata species group was supported. The taxonomic work was conducted using advanced digital imaging, content management systems, having in sight the online delivery of taxonomic information. The evolution of changes in the taxonomic workflow and dissemination of results are reviewed and discussed in light of current bioinformatics. The species of Thysanus and Clytina are revised and redescribed, including documentation of type material. Four new species of Thysanus and one of Clytina are described.
    [Show full text]
  • Biological Control of Arthropod Pests of C '" the Northeastern and North Central Forests in the United States: a Review and Recommendations
    Forest Health Technology , ..~ , Enterprise Team TECHNOLOGY TRANSFER Biological Control . Biological Control of Arthropod Pests of c '" the Northeastern and North Central Forests in the United States: A Review and Recommendations Roy G. Van Driesche Steve Healy Richard C. Reardon ,­ Forest Health Technology Enterprise Team - Morgantown, WV '.","' USDA Forest Service '. FHTET -96-19 December 1996 --------- Acknowledgments We thank: Richard Dearborn, Kenneth Raffa, Robert Tichenor, Daniel Potter, Michael Raupp, and John Davidson for help in choosing the list of species to be included in this report. Assistance in review ofthe manuscript was received from Kenneth Raffa, Ronald Weseloh, Wayne Berisford, Daniel Potter, Roger Fuester, Mark McClure, Vincent Nealis, Richard McDonald, and David Houston. Photograph for the cover was contributed by Carole Cheah. Thanks are extended to Julia Rewa for preparation, Roberta Burzynski for editing, Jackie Twiss for layout and design, and Patricia Dougherty for printing advice and coordination ofthe manuscript. Support for the literature review and its publication came from the USDA Forest Service's Forest Health Technology Enterprise Team, Morgantown, West Virginia, 26505. Cover Photo: The hemlock woolly adelgid faces a challenge in the form ofthe newly-discovered exotic adelgid predator, Pseudoscymnus tsugae sp. nov. Laboratory and preliminary field experiments indicate this coccinellid's potential to be one ofthe more promising biological control agents this decade. Tiny but voracious, both the larva and adult (shown here) attack all stages ofthe adelgid. The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis ofrace, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status.
    [Show full text]