Cyprinus Carpio) Using Ddrad Sequencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Status of the Endangered Freshwater Fishes in China and the Analysis of the Endangered Causes Institute of Hydrobiology
The status of the endangered freshwater fishes in China and The analysis of the endangered causes HE Shunping, CIIEN Yiyu Institute of Hydrobiology, CAS, Wuhan, ITubei Province, 430072 Abstract More than 800 species of freshwater fishes are precious biological resources in inland water system of China. Among them, there are a great number of endemic and precious group, and a lot of monotypic genera and species. Recently, owing to the synthetic effects of the natural and human-beings, many of these fishes gradually became endangered. The preliminary statistic result indicates that 92 species are endangered fishes and account for 10% of the total freshwater fishes in China. For the purpose of protection of the biodiversity of fishes, it is necessary to analyse these causes which have led the fishes to become endangered. This report could be used as a scientific reference for researching and saving the endemic precious freshwater fishes in China. Key words Endangered freshwater fishes, Endangered causes, China In the process of the evolution of living things, along with the origin of life, the extinction of life also existed. In the long_ life history, the speciation and the extinction of living things often keep a relative balance. As time goes on, especially after by the impact of human beings activity of production and life, the pattern of the biodiversity were changed or damaged, more or less. At last, in the modern society, human beings activity not only accelerate the progress of society and the development of economy, but also, as a special species, become the source of disturbing_ to other species. -
FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
The Relict Gull Larusrelictus in China and Elsewhere
FORKTAIL 6 (1991): 43-65 The Relict Gull Larusrelictus in China and elsewhere DANIEL G. DUFF, DAVID N. BAKEWELL and MARTIN D. WilLIAMS Since the last review a decade ago of the Relict Gull Larus relictus, some new specimens have been discovered, observations made and photographic records identified. All the known localities for the species are now summarised. Historically, before the validity of the species was established in 1970, the majority of specimens and sight records seem to have been attributed to Brown-headed Gull L. brunnicephalus. Five breeding sites are now known. The first indications are that the non-breeding range lies at more northerly latitudes than hitherto surmised. The species seems to replace Brown-headed Gull through much of Mongolia, Nei Mongol autonomous region and neighbouring territories, but shows features suggesting close relationship with Great Black-headed Gull L. ichthY{1£tus. On 24 April 1929 K. G. Soderbom collected a specimen of an unusual hooded gull at Tsondol on the Edsin Gol (river) in Inner Mongolia, China. The resulting controversy surrounding this bird is well summarised by Kitson (1980); the specimen was initially described as a race of Mediterranean Gull Larus melanocephalus relictus (LOnnberg 1931), and subsequently as an aberrant Brown-headed Gull L. brnnnicephalus (Dement'yev and Gladkov 1969) or as a Brown-headed X Great Black-headed L. ichthyaetus hybrid (Vaurie 1962). The Relict Gull Larus relictuswas eventually confirmed as a valid species in 1970 (Auezov 1971, Stubbe and Bolod 1971, ll'ichyev and Zubakin 1988) following the discovery of two breeding colonies in the U.S.S.R Only five breeding sites have so far been located and the wintering grounds remain largely undiscovered. -
Body Shape Change in Common Carp, Cyprinus Carpio Var. Sazan (Teleostei: Cyprinidae), During Early Development Using Geometric Morphometric Method
Iran. J. Ichthyol. (September 2016), 3(3): 210–217 Received: May 7, 2016 © 2016 Iranian Society of Ichthyology Accepted: August 30, 2016 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2016.02.015 http://www.ijichthyol.org Body shape change in Common carp, Cyprinus carpio var. Sazan (Teleostei: Cyprinidae), during early development using geometric morphometric method Fatemeh MOSHAYEDI1, Soheil EAGDERI*1, Masoud IRI2 1Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, P.O. Box 4111, Iran. 2Fisheries Department, Agricultural and Natural Resources Faculty, Gonbad kavoos University, Gonbad kavoos, Iran. * . Email: [email protected] Abstract: This research was conducted to study the body shape changes in common carp, Cyprinus carpio var. Sazan during early developmental stages using landmark- based geometric morphometric method. For this purpose, a total number of 210 larvae from hatching time till 55 days post hatching (dph) were sampled. For extracting body shape data, the right side of specimens was photographed and nine landmark-points were defined and digitized on 2D pictures using tpsDig2 software. After GPA, the landmark data were analyzed using Relative Warp analysis, regression of shape on total length and cluster analysis. The results showed that change of body shape in common carp during early development includes (1) increase in the head depth, and trunk length from hatching up to 8 dph, (2) increase in the body depth, and the head and tail lengths from 8-20 dph, and (3) increase in the head length and depth from 20-55 dph. The cluster analysis was revealed that larval stages can be divided into four phases, including eleuthero-embryonic, larva, younger juvenile and juvenile. -
1 the Origin of Domesticated Breeds of Common Carp
HYDROBIOLOGIE ET AQUACULTURE genetics and breeding of common carp VALENTIN S. KIRPITCHNIKOV revised by R. Billard, J. Repérant, J.P. Rio and R. Ward INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE 147, rue de l'Université, 75338 Paris Cedex 07 HYDROBIOLOGIE ET AQUACULTURE Déjà parus dans la même collection : Le Brochet : Aquaculture of Cyprinids gestion dans le milieu naturel Evry (France), 2-5 septembre 1985 et élevage R. Billard, J. Marcel, éd. Grignon (France), 9-10 septembre 1982 1986, 502 p. R. Billard, éd. La truite. Biologie et élevage 1983, 374 p. J.L. Bagliniere, G. Maisse, éd. 1991, 303 p. L'Aquaculture du Bar et des Sparidés Les carpes. Sète (France), 15-16-17 mars 1983 Biologie et élevage G. Barnabe et R. Billard, éd. R. Billard, coord. 1984, 542 p. 1995, 388 p. Poissons de Guyane Caractérisation et essais Guide écologique de l'Approuague et de de restauration d'un écosystème la réserve des Nouragues dégradé : le lac de Nantua Boujard T., Pascal M.. Meunier J.F., J. Feuillade, éd. Le Bail P.Y, Galle J. 1985, 168 p. 1997, 262 p. Valentin S. KIRPITCHNIKOV (f) institute of Cytology Academy of Sciences of Russia Tikhoretsky Avenue 4 Leningrad 194064, Russia revised by R. BILLARD J.P. RIO Muséum National d'Histoire Naturelle Hôpital de La Salpêtrière Ichtyologie Générale et Appliquée INSERM U 106 43 rue Cuvier 47 bd de l'Hôpital 75231 Paris cedex 05 75651 Paris cedex 13 R. WARD J. REPERANT Neurogénétique Muséum National d'Histoire Naturelle Université du Québec Laboratoire d'Anatomie Comparée CP 500, Trois-Rivières 55 rue Buffon, 75005 Paris Québec, Canada G9A 5H7 ©INRA, Paris 1999 - ISBN : 2-7380-0869-0 - ISSN : 0763-1707 ©Le code de la propriété intellectuelle du 1er juillet 1992 interdit la photocopie à usage collectif sans autor- isation des ayants-droits. -
Carp, Bighead (Hypophthalmichthys Nobilis)
Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994. -
Parasitology Is a Tool for Identifying the Original Biotope of the Gibel Carp (Carassius Auratus Gibelio Berg, 1932) Parazitoló
Pisces Hungarici 12 (2018) 87–94 Parasitology is a tool for identifying the original biotope of the gibel carp (Carassius auratus gibelio Berg, 1932) Parazitológiai bizonyítékok az ezüstkárász (Carassius auratus gibelio Berg, 1932) eredetéről Molnár K.1, Nyeste K.2, Székely Cs.1 1MTA ATK, Állatorvos‐tudományi Intézet, Budapest 2Debreceni Egyetem TTK, Hidrobiológiai Tanszék, Debrecen Keywords: original biotpe of Carassius spp., gibel carp, myxosporean infection, nomenclature Kulcsszavak: kárász eredeti biotópja, ezüstkárász, nyálkaspórás fertőzöttség, nevezéktani problémák Abstract At this time the occurrence of three Carassius taxa (C. carassius, C. auratus auratus and C. auratus gibelio) are known from Europe. Crucian carp [Carassius carassius (Linnaeus, 1758)] is a native fish species in European waters. The goldfish, a species of Chinese origin arrived to Europe long time ago, and at the time when Linnaeus in 1758 published his Systema Naturae he described two Carassius species, the crucian carp as Cyprinus carassius and the goldfish as Cyprinus auratus. During the last two centuries 13 other Carassius spp. were described which proved to be synonymous of C. carassius and 3‐3 species as synonymous of Carassius auratus auratus and C. auratus gibelio, respectively. The authors confute the European origin of Carassius gibelio Bloch, called as Prussian carp. They compared infections of the gibel carp and goldfish with myxosporeans in Europe and in the Far‐East and found that these fishes in the Far‐East have been infected by several host specific Myxobolus and Thelohanellus species, while in Europe of them only a single species is known. Great differences in the range of myxosporean spp. suggest that both gibel carp and goldfish are Far‐ East origin fishes which arrived to Europe in the historical times. -
Sharing of Experiences on Water Governance in the Context of Disaster Risk Reduction in the Chu-Talas Basin
SESSION 3 EEF.DEL/24/15 12 May 2015 Second Preparatory Meeting of the 23rd OSCE Economic and Environmental Forum ENGLISH only SHARING OF EXPERIENCES ON WATER GOVERNANCE IN THE CONTEXT OF DISASTER RISK REDUCTION IN THE CHU-TALAS BASIN Commission of the Republic of Kazakhstan and the Kyrgyz Republic on the Use of Water Management Facilities of Intergovernmental Status on the Rivers Chu and Talas GENERAL INFORMATION ON THE CHU AND TALAS Chu basin Talas basin ´ The catchment area - ´ The catchment area - 38 400 km2 (Large Arna) 52 700 km2 ´ The length of the river - ´ The length of the river - 661 1186 km km ´ Power supply - snow-glacier ´ Power supply - snow-glacier ´ Water resources - 6.64 km3 ´ Water resources – 1.74 km3 ´ Irrigated areas - 476.0 t.ga: ´ Irrigated areas – 162.7 t.ga: Kazakhstan - 114,7- 24% Kazakhstan – 60.0 - 37% Kyrgyzstan - 361,3-76% Kyrgyzstan – 102.7-63% ´ Population - 2 095 th. ´ Population – 686.3 th. Commission of the Republic of Kazakhstan and the Kyrgyz Republic on the Use of Water Management Facilities of Intergovernmental Status on the Rivers Chu and Talas STEPS TO ENSURE STABILITY IN USE WATER RESOURCES OF CHU AND TALAS 1996 - decision-making by water management authorities in Kazakhstan and Kyrgyzstan on the joint solution of water problems, 2000, Jan. 21, Astana - the signing of the Intergovernmental “Agreement on the Use of Water Management Facilities of Intergovernmental Status on the Chu and Talas Rivers”, August 2004 - the establishment of the Commission, May 2011, Bishkek - an International Conference to commemorate a decade of a bilateral “Agreement”. -
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys Molitrix) and Bighead Carp (Hypophthalmichthys Nobilis) in the Wabash River Watershed
Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed FINAL REPORT Kensey Thurner PhD Student Maria S Sepúlveda, Reuben Goforth, Cecon Mahapatra Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 Jon Amberg, US Geological Service, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 Eric Leis, US Fish and Widlife Service, La Crosse Fish Health Center, Onalaska, WI 54650 9/22/2014 Silver Carp (top) and Bighead Carp (bottom) caught in the Tippecanoe River, Photos by Alison Coulter Final Report 9/22/2014 - Page 2 Executive Summary The Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed project was undertaken to address the lack of available information regarding pathogens in the highly invasive Silver and Bighead Carps, collectively known as bigheaded carps. Very little is known about the prevalence and effects of parasites, bacteria and viruses on the health of invasive bigheaded carp populations in the United States or the effects of bigheaded carps on the disease risk profile for sympatric, native fish of the U.S. The main objectives of this project were to conduct a systematic survey of parasites, bacteria and viruses of Asian carps and a representative number of native Indiana fish species in the upper and middle Wabash and the lower Tippecanoe Rivers, Indiana; to determine the susceptibility of Asian carps to a representative number of natural pathogens using in vitro approaches; and to involve anglers in the development of a cost effective state-wide surveillance program for documentation of viral diseases of fish. -
J Ournal of Environmental Management
Volume VII, Issue 4(16) Winter 2016 ASERS ournal of Environmental Management J and Tourism Biannually Volume VIII Issue 1(17) SPRING 2017 ISSN 2068 – 7729 Journal DOI http://dx.doi.org/10.14505/jemt SPRING 2017 VolumeJournal VIof EnvironmentII al Management and Tourism Issue 1(17) Editor in Chief Ramona PÎRVU Contents: University of Craiova, Romania Editorial Advisory Board Price Co-movement between Biodiesel and Natural Gas 1 Karel JANDA, Jakub KOURILEK, Sarah TRABELSI …7 Omran Abdelnaser University Sains Malaysia, Malaysia Specifics of Agricultural Risks Insurance System in the Republic of Kazakhstan Huong Ha University of Newcastle, Singapore, 2 Yury KHAN, Galina NIKITINA, Vladimir GRIGORUK, …17 Australia Galya AKIMBEKOVA Harjeet Kaur Diversified Approach to Quantification of Risks that Arise in Projects HELP University College, Malaysia Associated with Extraction of Hydrocarbon Janusz Grabara 3 Mikhail Nikolayevich DUDIN, Nikolay Vasilievich LYASNIKOV, Czestochowa University of Technology, Evgeniy Danilovich KATUL'SKIY, Dorina Grigor'evna SHHIPANOVA, …31 Poland Andrey Evgen'evich CHEKANOV Vicky Katsoni Foreign Direct Investment and Environmental Degradation: Techonological Educational Institute of Further Evidence from Brazil and Singapore Athens, Greece 4 Ioannis KOSTAKIS, Sarantis LOLOS, Eleni SARDIANOU …45 Sebastian Kot Methodology for Identifying the Differentiated Mineral Extraction Tax Czestochowa University of Technology, Rates Relating to the Recovery of Solid Minerals Institute of Logistics and International Management, Poland -
Water Resources Lifeblood of the Region
Water Resources Lifeblood of the Region 68 Central Asia Atlas of Natural Resources ater has long been the fundamental helped the region flourish; on the other, water, concern of Central Asia’s air, land, and biodiversity have been degraded. peoples. Few parts of the region are naturally water endowed, In this chapter, major river basins, inland seas, Wand it is unevenly distributed geographically. lakes, and reservoirs of Central Asia are presented. This scarcity has caused people to adapt in both The substantial economic and ecological benefits positive and negative ways. Vast power projects they provide are described, along with the threats and irrigation schemes have diverted most of facing them—and consequently the threats the water flow, transforming terrain, ecology, facing the economies and ecology of the country and even climate. On the one hand, powerful themselves—as a result of human activities. electrical grids and rich agricultural areas have The Amu Darya River in Karakalpakstan, Uzbekistan, with a canal (left) taking water to irrigate cotton fields.Upper right: Irrigation lifeline, Dostyk main canal in Makktaaral Rayon in South Kasakhstan Oblast, Kazakhstan. Lower right: The Charyn River in the Balkhash Lake basin, Kazakhstan. Water Resources 69 55°0'E 75°0'E 70 1:10 000 000 Central AsiaAtlas ofNaturalResources Major River Basins in Central Asia 200100 0 200 N Kilometers RUSSIAN FEDERATION 50°0'N Irty sh im 50°0'N Ish ASTANA N ura a b m Lake Zaisan E U r a KAZAKHSTAN l u s y r a S Lake Balkhash PEOPLE’S REPUBLIC Ili OF CHINA Chui Aral Sea National capital 1 International boundary S y r D a r Rivers and canals y a River basins Lake Caspian Sea BISHKEK Issyk-Kul Amu Darya UZBEKISTAN Balkhash-Alakol 40°0'N ryn KYRGYZ Na Ob-Irtysh TASHKENT REPUBLIC Syr Darya 40°0'N Ural 1 Chui-Talas AZERBAIJAN 2 Zarafshan TURKMENISTAN 2 Boundaries are not necessarily authoritative. -
Investor's Atlas 2006
INVESTOR’S ATLAS 2006 Investor’s ATLAS Contents Akmola Region ............................................................................................................................................................. 4 Aktobe Region .............................................................................................................................................................. 8 Almaty Region ............................................................................................................................................................ 12 Atyrau Region .............................................................................................................................................................. 17 Eastern Kazakhstan Region............................................................................................................................................. 20 Karaganda Region ........................................................................................................................................................ 24 Kostanai Region ........................................................................................................................................................... 28 Kyzylorda Region .......................................................................................................................................................... 31 Mangistau Region ........................................................................................................................................................