Status of Water Quality Parameters Along Haraz River
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens. -
Stability Causes of Ab-Ask Landslide Dam in Haraz River
Archive of SID Journal of Geotechnical Geology Zahedan Branch, Islamic azad University Vol.12 (2016), No.1(51-63) Zahedan Branch, geo-tech.iauzah.ac.ir Islamic Azad University Stability Causes of Ab-Ask landslide dam in Haraz river Abbas Kangi Department of Geology, Shahrood Branch, Islamic Azad University, Shahrood, Iran Email: [email protected] Abstract So far so many landslide dams have developed along the steep slopes of Haraz valley, and the failure of some of them have claimed many lives and caused huge damages. Damavand eruption, the event of huge earthquakes and rapid snow-melting, are the most important causes of landslide dam development. In 1999, along with rapid snow-melting in May, Ab-Ask landslide took place in the south of Damavand volcano. This landslide berried Pashang village, destroyed 450 m of Tehran-Amol main road and blocked Haraz river. This landslide dam is 20 m above the river level and its lake is at most of 700 m length, 300m width and 15m depth. Just like rapid-rock slide, this landslide occurred in the beddings of early Jurassic shale, sandstone and coals. The surface of the rupture formed along the bedding plane. Immediately after the main landslide and river's block- age there was a rock avalanche when a huge mass of big Travertine rocks fell on the northern part of the land- slide. These boulders are haphazardly placed in the mud from the landslide and this has turned the northern landslide mass to be strongly firm. Following the landslide dam being filled, water overflew from the northern part of the landslide mass. -
World Bank Document
Keport No. b34-IKN I .a 0 ____a lidi I U ,, - Water Supply and Sewerage Sector Report Public Disclosure Authorized Voliime !!: Annexes January 29, 1975 Regional Projects Department Europe, Middle E-st, and No-rtk Africa '-'I-"-' ~ ~ ~ ~ ~ PReg-ionaOffice"b ... Not for Public Use Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized LvLflt.Un,ocument I ItTI 1of 1 rFh I tLI Ic InsterntistoFnal11o II UttIIIVILI ILL, LSBank Il IIr. forI I.J IRecnsrutonF;r; WL.AAJ131.1 LJLLILI I Candr l IL Developmnto..¶VC .I.J IIILII1 1 International Development Association This report was prepared for official use only by the Bank Group. It may not be published, quoted or cited without Bank Group authorization. The Bank Group does not accept responsibility for the accuracy or completeness of the report. CURRENCY EQUIVALENTS ("-rren^y TTri + = Pi al Rial 1 = US$0.01h8 Pi ]s 1fllnffnn0no = TSMt1) 760 US$1.00 = Rials 67.75 TTqc,l nnn ,0n = Rals 7 7,75 non0 WEIGHTS AND MEASURES mm = Milimeter = 0.039 inches km = Kilometer = 0.6214 miles m - Meter = 3.28 feet ha = Hectare = 10,000 square meters or n 2.47 acres M. or cm = Cubic meter = 264.2 US gallons McM or mcm = Million cubic meters m3/sec = Cubic meter per second kg = Kilogram = 2.20 pounds Kw/H = Kilowatt/Hour Mw = Megawatt = 1,000 kilowatts Mg/i = Milligrams per liter p.p.m. = Parts per Million BOD = Biochemical Oxygen Demand ACRONYMS TRWR = Tehran Regional Water Board MWP = Ministry of Water and Power W.DTiv. = Water Division of MWP PBO = Plan and Budget Organization MGlRA = Ministrv of Coonerative snd Rural Affairs MHUP = Ministry of Housing and Urban Planning KWPA = hhuzest2n Water and Power A.uthorit.y D & R = Development Resources Inc. -
Of Key Sites for the Siberian Crane and Other Waterbirds in Western/Central ASIA of Keysitesforthesiberian Crane Ndotherwterbirds in Western/Centralasi Atlas
A SI L A L A ATLAS OF KEY SITES FOR THE SIBERIAN CRANE AND OTHER WATERBIRDS IN WESTERN/CENTRAL ASIA TERBIRDS IN WESTERN/CENTR TERBIRDS IN A ND OTHER W ND OTHER A NE A N CR A IBERI S S OF KEY SITES FOR THE SITES FOR KEY S OF A ATL Citation: Ilyashenko, E.I., ed., 2010. Atlas of Key Sites for the Siberian Crane and Other Waterbirds in Western/Central Asia. International Crane Foundation, Baraboo, Wisconsin, USA. 116 p. Editor and compiler: Elena Ilyashenko Editorial Board: Crawford Prentice & Sara Gavney Moore Cartographers: Alexander Aleinikov, Mikhail Stishov English editor: Julie Oesper Layout: Elena Ilyashenko Atlas for the Siberian Crane and Other Waterbirds in Western/Central Asia ATLAS OF THE SIBERIAN CRANE SITES IN WESTERN/CENTRAL ASIA Elena I. Ilyashenko (editor) International Crane Foundation, Baraboo, Wisconsin, USA 2010 1 Atlas for the Siberian Crane and Other Waterbirds in Western/Central Asia Contents Foreword from the International Crane Foundation George Archibald ..................................... 3 Foreword from the Convention on Migratory Species Douglas Hykle........................................ 4 Introduction Elena Ilyashenko........................................................................................ 5 Western/Central Asian Flyway Breeding Grounds Russia....................................................................................................................... 9 Central Asian Flock 1. Kunovat Alexander Sorokin & Anastasia Shilina ............................................................. -
Visit the National Academies Press Online, the Authoritative Source for All Books from the National Academy of Sciences, The
Water Conservation, Reuse, and Recycling: Proceedings of an Iranian-American Workshop http://www.nap.edu/catalog/11241.html CONSERVATION,WATER REUSE, AND RECYCLING PROCEEDINGS OF AN IRANIAN-AMERICAN WORKSHOP Committee on US–Iranian Workshop on Water Conservation and Recycling In cooperation with the Academy of Sciences of the Islamic Republic of Iran Office for Central Europe and Eurasia Development, Security, and Cooperation Policy and Global Affairs THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu Copyright © National Academy of Sciences. All rights reserved. Water Conservation, Reuse, and Recycling: Proceedings of an Iranian-American Workshop http://www.nap.edu/catalog/11241.html Interbasin Water Transfers in Iran Ahmad Abrishamchi and Massoud Tajrishy ABSTRACT Iran is an arid and semiarid country with scarce and sensitive water resources. The increasing demand for water has caused an alarming decrease in annual per capita renewable water resources, currently estimated to be about 2,000 m3 for a population of around 65 million. With the current trend in population growth, the per capita water available is predicted to decrease to less than 1,000 m3 by the year 2025, which will put Iran in the category of countries with chronic water scarcity. As available water resources are unevenly distributed in terms of both time and space, water resources in many areas are already under pressure. Over the past two decades, much effort has been expended and great strides have been made in the development and exploitation of water resources for various uses. Primarily these efforts have been aimed at maximizing water supply to meet increasing demands. -
The Effect of Aquaculture Effluents on Water Quality Parameters of Haraz River
Iranian Journal of Fisheries Sciences 12(2) 445-453 2013 _________________________________________________________________________________________ The effect of aquaculture effluents on water quality parameters of Haraz River Saremi A.1*; Saremi K.2; Saremi A.3; Sadeghi M.4; Sedghi H.1 Received: January 2012 Accepted: November 2012 Abstract In this study, a water quality model of Haraz basin was used as an evaluative tool to estimate the spatial distribution of variables that are related to water quality and nutrient loads of the Haraz River. Previous studies performed in this river indicate that trout culture activity along the Haraz River have led to various changes in the water quality parameters. In the present work, the possible effects of two additional fish farms with a production capacity of 50 tons, located on the Haraz within 1 km distance from each other were evaluated in terms of their effects on the streams water quality. A water quality model was developed in order to investigate the spatial distribution of water quality variables. The model also used to estimate the dissolved oxygen (DO), biological oxygen demand (BOD5) and nutrients along the stream. Keywords: Mathematical modeling, BOD5, Streeter-Phelps, Haraz River Downloaded from jifro.ir at 23:35 +0330 on Wednesday September 29th 2021 __________________________ 1-Department of Water Resources Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran 2-Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran 3-Iranian Research Institute for Information Science and Technology (IRANDOC), Tehran, Iran 4-Department of management, Amirkabir University of Technology, Tehran, Iran * Corresponding author’s email: [email protected] 446 Saremi et al., The effect of aquaculture effluents on water quality… _________________________________________________________________________________ Introduction sustainable aquaculture techniques through Because of the limitation in capture waste management have been increased. -
ORIGINAL ARTICLES the Probability of Alborz Mountains Environmental
156 Research Journal of Fisheries and Hydrobiology, 6(3): 156-173, 2011 ISSN 1816-9112 ORIGINAL ARTICLES The Probability Of Alborz Mountains Environmental Pollution Due To Seismic Response Of Lar Dam Zaniar Tokmechi Department of Civil Engineering, Mahabad Branch, Islamic Azad University, Mahabad, Iran. ABSTRACT Lar Dam is a dam located in foot of Mount Damavand, Iran. It is one of the main sources of water for Tehran metropolitan region. Alborz, also written as Alburz, Elburz or Elborz, is a mountain range in northern Iran stretching from the borders of Azerbaijan and Armenia in the northwest to the southern end of the Caspian Sea, and ending in the east at the borders of Turkmenistan and Afghanistan. The tallest mountain in the Middle East, Mount Damavand, is located in the range. In this paper, the probability of environmental pollution due to heavy metals caused by LAR dam failure is studied. Finite Element and ZENGAR methods are used to analyze the probability of pollution at dam downstream. Different dam cross sections and various loading conditions are considered to study the effects of these factors on the seismic behavior of the dam. Results show that the effect of the highest cross section is not the most significant for heavy metals pollution at the dam down stream. Pollution coefficient due to stress along Y axis (Sy) is always the determinant pollution. While, in all sections Sx and Sy are the determinant parameter affecting downstream heavy metal pollution and normally are bigger than Sz. And, Sz which can never be a determinant. According to results, when the earthquake accelerations are bigger, maximum pollution coefficient due to tensile stress at dam basement is increased. -
The Economic Geology of Iran Mineral Deposits and Natural Resources Springer Geology
Springer Geology Mansour Ghorbani The Economic Geology of Iran Mineral Deposits and Natural Resources Springer Geology For further volumes: http://www.springer.com/series/10172 Mansour Ghorbani The Economic Geology of Iran Mineral Deposits and Natural Resources Mansour Ghorbani Faculty of Geoscience Shahid Beheshti University Tehran , Iran ISBN 978-94-007-5624-3 ISBN 978-94-007-5625-0 (eBook) DOI 10.1007/978-94-007-5625-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012951116 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. -
Mazandaran Province Geotourism
Arshive of SID Journal of Tourism & Hospitality Research Islamic Azad University, Garmsar Branch Vol. 3, No.1, Summer 2014, Pp. 23-47 Mazandaran province Geotourism Parviz Kardavani Professor of Natural Geography Islamic Azad University, Science and Research Branch, Tehran, Iran Abdolreza Faraji Rad* Associate prof. in Political Geography, Islamic Azad University, Science and Research Branch, Tehran, Iran Behnam Kavoosi Ph.D. student in Geography natural tendency geomorphology, Islamic Azad University, Science and Research Branch, Tehran, Iran Abstract By studying Still Life Appeal and Combined it with Tourism Industry appears Interdisciplinary geo-tourism industry. This field Split to Tourism mines, Geology, Geomorphology (desert tourism types, desert tourism, cave Tourism) and photography tourism, (from still life). Geotourism Emerged from Combined The words "geo" (earth) And "tourism" (Tourism) And Means Using tourism Of Earth Sciences, especially natural geography, Geology, Geophysics And Other natural sciences. Actually Geotourism is study science and use of outer processes to develop forms of tourism. Mazandaran province in northern Iran And with an area equal to 4/23756 square kilometers there’s about 46/1 percent of the country area. Caspian Sea In the north, Tehran and Semnan provinces in the south and the provinces of Gilan and Golestan Respectively located in west and east this province. Mazandaran According to the latest divisions With 20 city The names of Amol, Babylon, Babolsar, behshar, Tonkabon, joybar, chalus, kelardasht, Ramsar, Mazandaran, Savadkooh, Ghaemshahr, galogah, Mahmudabad, Myandroud, Neka, nur, Noshahr, Fereydunkenar And abasabad, 56 cities, 49 districts, 113 villages and 3697 Abad. 43 percent of the cities of the province are located along the coast of the Caspian Sea. -
Environmental Management Plan (Emp)
E1121 ISLAMIC REPUBLIC OF IRAN MINISTRY OF ENERGY Public Disclosure Authorized Public Disclosure Authorized NORTHERN CITIES WATER SUPPLY AND SANITATION PROJECT CONSOLIDATED ENVIRONMENTAL ASSESSMENT EXECUTIVE SUMMARY Public Disclosure Authorized (FINAL DRAFT) Public Disclosure Authorized MARCH 2005 1 ISLAMIC REPUBLIC OF IRAN NORTHERN CITIES WATER SUPPLY AND SANITATION PROJECT CONSOLIDATED ENVIRONMENTAL ASSESSMENT EXECUTIVE SUMMARY (FINAL DRAFT) TABLE OF CONTENTS INTRODUCTION ..................................................................................................................................4 PROJECT DESCRIPTION ...................................................................................................................8 POLICY, LEGAL AND REGULATORY FRAMEWORK .............................................................16 INSTITUTIONAL ARRANGEMENT FOR ENVIRONMENT MANAGEMENT .......................18 BASELINE INFORMATION..............................................................................................................19 IMPACTS OF THE PROJECT ..........................................................................................................24 ANALYSIS OF ALTERNATIVES .....................................................................................................26 ENVIRONMENTAL MANAGEMENT PLAN (EMP).....................................................................27 LAND ACQUISISTION AND RESETTLEMENT PLAN ...............................................................37 PUBLIC INVOLVEMENT..................................................................................................................39 -
Company Profile
Company Profile Grounding Systems Cathodic Protection Systems “Petweld” Exothermic Welding Equipment Lightning Protection Systems Flange Insulation kits LOB 8 Office 15 Ground Floor P.O.Box 17565, Jebel Ali, Dubai, U.A.E Tel :+(971) 4 88 11 361 Fax:+(971) 4 88 11 363 [email protected] www.petuniafze.com January, 2010 Contents: Chapter 1: President's Message 6 Chapter 2: Company Overview 10 Chapter 3: Capabilities 14 Chapter 4: Project Refrences 20 Chapter 5: Equipment Details 74 Chapter 6: Organizational Chart 80 Chapter 7: Key Personnel 84 Chapter 8: Copies of Work Order 88 Chapter 9: Quality System 102 Chapter 10: Certificates 106 Chapter 11: Customer Satisfactions 114 Chapter 12: Catalogues 122 Contents President’s Message Chapter: 1 President’s President’s Message PETUNIA Message: Dear Sir/Madam, On behalf of PETUNIA directors, Managers and Staffs, I would like to thank you for your patronage and support. PETUNIA has been developing businesses throughout the world as an enterprise that provides total solutions for Grounding Systems, Lightning and Surge Protection and Corrosion Control and Prevention. It has been established as a new company in the world of exothermic welding technology in 1991. Now after 18 years of exceeding the expectation of our customer, by aspiring to the highest level of excellence in our products and services, we are the largest organization in protection industry in the Middle East. We take great pride each day to provide the fine protection solutions. Members of PETUNIA management and administrative team are ready to give their personal attention to any of your projects. -
Review Article Review of the Sticklebacks and Pipefishes of Iran
Iran. J. Ichthyol. (September 2015), 2(3): 133-147 Received: February 26, 2015 © 2015 Iranian Society of Ichthyology Accepted: July 30, 2015 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: http://www.ijichthyol.org Review Article Review of the sticklebacks and pipefishes of Iran (Families Gasterosteidae and Syngnathidae) Brian W. COAD Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada. Email: [email protected] Abstract: The systematics, morphology, distribution, biology, economic importance and conservation of the sticklebacks and pipefishes of Iran are described, the species are illustrated, and a bibliography on these fishes is provided. There are two sticklebacks (Gasterosteus aculeatus, an exotic, and Pungitius platygaster, a native) and one native pipefish (Syngnathus caspius), the natives found in the Caspian Sea basin and the exotic in that basin and adjacent basins. The family Gasterosteidae is characterised by a compressed, fusiform body, teeth in bands in each jaw but none on the tongue or palate, a protractile mouth, 3 branchiostegal rays, no postcleithrum, no scales but a series of plates along the flank variably developed, sometimes absent, 2 or more (usually 3-16) isolated spines in front of a soft dorsal fin (usually 6-14 rays), and a pelvic fin with a strong spine and only 0-2 soft rays. The body of pipefishes of the family Syngnathidae is characteristic, being very thin and very elongated, and enclosed in bony rings as a form of armour. The body is divided into a trunk and a tail, the tail being prehensile in seahorses. The first trunk ring has the pectoral fin base and the last has the anus in it.