Nickel Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Nickel Compounds NTP REPORT ON CARCINOGENS BACKGROUND DOCUMENT for NICKEL COMPOUNDS FINAL MARCH 1999 Prepared for the December 2-3, 1998, Meeting ofthe Report on Carcinogens Subcommittee ofthe NTP Board of Scientific Counselors Prepared by Integrated Laboratory Systems Post Office Box 13501 Research Triangle Park, North Carolina 27709 NIEHS Contract No. NOl-ES-25346 NTP Report On Carcinogens 1998 Background Document For Nickel Compounds TABLE OF CONTENTS NTP Report on Carcinogens Listing for Nickel Compounds .................................................................................................................... 1 Listing Criteria from the Report on Carcinogens, Eighth Edition 3 1.0 IDENTIFICATION AND CHEMICAL-PHYSICAL PROPERTIES OF NICKEL COMPOUNDS......•.......................................•............... 4 Table 1-1 Chemical and Physical Properties of Nickel and Nickel Compounds.............................................................................. 5 2.0 HUMAN EXPOSURE ......•............•...........................•....•...••.•...••••.......14 2.1 Use ...••.•.......................•.................................•.•.•..•...••.....•.••.••....14 2.2 Production.............................................•......•.............................14 2.1.1 Product Classification and Processes ..............•............14 Table 2-1 Uses of Nickel and Nickel Compounds..•..•.........•..15 2.1.2 Production Volumes ..............................•..............••....16 2.3 Nickel Refining ......................................................•.......•...•..•.....17 2.3.1 Refining Processes •................•.••..........•..........•....•.•.....17 2.3.2 Types of Ores...........................•..•..........•..............•.....17 2.3.3 Refining Operations in the United States.• ...........•.•.•...18 Table 2-2 U.S. & Foreign Mining, Milling, Smelting, and Refining Operations ...................•........................19 2.4 Exposure...................................................................•.................20 2.4.1 Environmental Exposure.............................................20 2.4.2 Occupational Exposure .............•.......•...•..•..................20 Table 2-3 Summary of Current Nickel Exposures in Nickel-Producing and -Using lndustries...•..•..•..••..••...•22 Table 2-4 Groupings for NIOSH Survey Data......................23 Table 2-5 Potential Occupational Exposure Estimates for Nickel Compounds from NIOSH Surveys..............26 Table 2-6 Potential Nickel Sulfate Occupational Exposure Estimates from NIOSH Surveys ....•....•...........•............35 Table 2-7 Potential Nickel Oxide Occupational Exposure Estimates from NIOSH Surveys................................. .40 2.5 Regulations and Criteria ..............................•............................•.44 iii NTP Report On Carcinogens 1998 Background Document For Nickel Compounds ~.0 ~~ ~1rl[J][)I~~ ••••••••••••..••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••:;:; 3.1 Review of Nickel Compound Epidemiology (IARC, 1990, and ICNCM, 1990) ...................•.•..•...•......•..•••.•.•..•.•..•.••.•.•....•.55 3.2 Studies Post-IARC (1990).......- ..........•.........••.•................•..•...••....56 3.2.1 Metallic Nickel ...............•...........•..•...••...•.•..•.••••..•..••.•.•...56 3.2.2 Nickel Carbonyl ..........•..•........•..........•...•..•.•.••.••..•......•...56 3.2.3 Oxidic Nickel ..................................................................51 3.2.4 Soluble Nickel ..•............................•..•...•......................•...57 3.0 Other Occupational Exposure Studies ...................•...................•.58 Table 3-1 Studies of Human Exposure to Nickel Published Post-IARC (1990) ........................•.•..••.••......•...•.......•..•......•.....60 4.0 EXPERIMENTAL CARCINOGENESIS ..•...•........................................67 4.1 Studies Reviewed in IARC (1990) ..........•.....................................67 4.2 Animal Carcinogenicity Studies Post-IARC (1990) •......................67 4.2.1 NTP (1996) Studies of Nickel Oxide, Nickel Sulfate Hexahydrate, and Nickel Subsulfide .....•...•..•.•.........•...••.67 4.2.2 Nickel Subsulfide ....•.........•...........•......••......•........•....•...•68 4.2.3 Nickel Acetate .........•.............................•.•....•..•..........•....68 Table 4-1 Post-IARC (1990) Experimental Carcinogenicity Studies of Nickel Compounds ......................•............•....•..•...............•..70 5.0 GENOTOXICITY ..............................................•..........................•......76 5.1 Review of Animal Genotoxicity Studies (IARC, 1990) ........•....•....76 5.1.1 Metallic Nickel .......................•..•.••......•....•..•.............•.....76 5.1.2 Nickel Oxides and Hydroxides ........••..........••.•........•........76 5.1.3 Crystalline Nickel Sulfide, Crystalline Nickel Subsulfide, and Amorphous Nickel Sulfide ...........................•...........76 5.1.4 Nickel Chloride, Nickel Sulfate, Nickel Acetate, and Nickel Nitrate.................................................................76 5.1.5 Nickel Carbonate, Nickelocene, Nickel Potassium Cyanide, and Nickel Subselenide.........•..................•........ 77 5.2 Review of Human Genotoxicity Studies (IARC, 1990) ••.••.••..........77 5.2.1 Metallic Nickel ..................•...........•......••....................•...•77 5.2.2 Nickel Oxides and Hydroxides .........................................77 5.2.3 Nickel Sulfides ......................................•.•.................•.....78 5.2.4 Nickel Sulfate and Nickel Chloride ..................................78 5.2.5 Mixed Exposures .......................................•.....................78 5.3 Animal Genotoxicity Studies Published Post-IARC (1990) ....•......79 5.4 Human Genotoxicity Studies Published Post-IARC (1990) •......••••79 IV NTP Report On Carcinogens 1998 Background Document For Nickel Compounds 5.5 Cogenotoxicity ........................................................•......•....•.••...•79 Table 5-1 Genotoxicity of Nickel Studies Published Post-IARC (15)9())•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~() Table 5-2 Cogenotoxicity of Nickel Studies Published Post-IARC (1~90)......................................................................................~~ 6.0 OTHER RELEVANT DATA ......................................•...•..•••..•.•...........84 6.1 Absorption, Distribution, and Excretion in Experimental Ani111~Is ................................................•.......................••....~" 6.2 Toxicokinetics of Nickel in Humans....................•....•.•...........•.....84 6.3 Biokinetics and Evidence of Exposure in Nickel Workers .............85 7.0 MECHANISMS OF CARCINOGENESIS•..•..........•...•....•...••.•••••.••...•...85 ~.0 RE~~RENC~~ .....................................................•...••.....................•...~~ APPENDIX A - Excerpts from the IARC Monograph on the Evaluation of the Carcinogenic Risks to Humans, Volume 49 (Chromium, Nickel and Welding), Nickel and Nickel Compounds, pp. 257-445, 616-638, 1990............•..........•.••......•............................ A-1 APPENDIX B - Report on Carcinogens (RoC), 9th Edition Review Summary ......................•..................••.•.........•......•..•.......•..B-1 v NTP Report On Carcinogens 1998 Background Document For Nickel Compounds NTP Report on Carcinogens Listing for Nickel Compounds Carcinogenicity Nickel compounds are known to be human carcinogens based on findings ofincreased risk of cancers in exposed workers and evidence of malignant tumor formation by multiple routes of exposure at various sites in multiple species ofexperimental animals. The combined results of epidemiological studies, carcinogenesis studies in rodents, and mechanistic data support the concept that nickel compounds act by the generation of nickel ions at critical sites in target cells of carcinogenesis and allow consideration and evaluation ofthese compounds as a single group. In 1990, an IARC evaluation ofnickel and nickel compounds concluded that "nickel compounds are carcinogenic to humans" (IARC, 1990) based on sufficient evidence for the carcinogenicity of human exposure to nickel compounds as would be found in the nickel refining industry, and very strong evidence of carcinogenicity of a variety ofnickel compounds in rodents. In several cohort studies ofworkers exposed to various nickel compounds, the risk for death from lung cancer and nasal cancer are elevated (IARC, 1990). Although the precise nickel compound responsible for the carcinogenic effects in humans is not always clear, studies indicate that nickel sulfate and the combinations ofnickel sulfides and oxides encountered in the nickel refining industries are carcinogenic to humans. IARC (1990) made the overall evaluation of nickel compounds as a group based on indications from animal and mechanistic studies that the generation ofionic nickel in the target site is the event responsible for carcinogenic transformation. Additional study has shown that exposure to soluble nickel compounds alone or in combination with other forms ofnickel in nickel refinery workers results in a significant excess risk of lung and nasal cancers and that smoking and nickel had a multiplicative effect (Andersen et al., 1996). Nickel exposure in welders is associated with carcinoma ofthe trachea, bronchus, and lung in some cases (Simonato, 1991), although these results are complicated by co-exposure to carcinogenic
Recommended publications
  • Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I by V
    Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I By V. Vill, C. Bauhofer, G. Peters, H. Sajus, P. Weigner, LCI-Publisher and Chemistry Department of the University of Hamburg All printed index material has been used to build up the comprehensive Scidex database index developed by LCI Publisher GmbH, Hamburg For further information please visit www.lci-publisher.com From this database a CD-ROM and two online versions were derived. The first is attached to each of the printed subvolumes and the latter are offered for free use at the following addresses: Scidex Database online with graphical structure search on http://lb.chemie.uni-hamburg.de/ Or the easy to use html version on http://lb.chemie.uni-hamburg.de/static/ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Index of Organic Compounds Subvolume A Compounds with 1 to 7 Carbon Atoms Editor: V. Vill Authors: V. Vill, G. Peters, H. Sajus 1 3 ISBN 3-540-66203-0 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Index of Organic Compounds A: Editor: V. Vill At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik.
    [Show full text]
  • Nickel in Drinking-Water (2005)
    WHO/SDE/WSH/05.08/55 English only Nickel in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2005 The illustration on the cover page is extracted from Rescue Mission: Planet Earth,© Peace Child International 1994; used by permission. This document may be freely reviewed, abstracted, reproduced and translated in part or in whole but not for sale or for use in conjunction with commercial purposes. Inquiries should be addressed to: [email protected]. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Preface One of the primary goals of WHO and its member states is that “all people, whatever their stage of development and their social and economic conditions, have the right to have access to an adequate supply of safe drinking water.” A major WHO function to achieve such goals is the responsibility “to propose ..
    [Show full text]
  • United States Patent Office Patented May 7, 1963
    3,088,959 United States Patent Office Patented May 7, 1963 1. 2 or grouping of carbon atoms which is present in cyclo 3,088,959 pentadiene. This grouping is illustrated as PROCESS OF MAKENG CYCLOPENTADEENY NECKEL, NTROSYL COMPOUNDS Robert D. Feltham, Joseph F. Anzenberger, azad Jonatian T. Carrie, Pittsburgh, Pa., assignors to The Interaa tional Nickel Company, Inc., New York, N.Y., a corpo ration of Delaware No Drawing. FiRed Sept. 1, 1960, Ser. No. 53,374 The substituent groups on the cyclopentadiene moiety 6 Clains. (C. 260-439) 0. indicated as R, R2, R3, R and R5 are any one or more The present invention relates to the production of of hydrogen atoms, halogen atoms and/or organic groups nickel compounds and, more particularly, to the produc such as aliphatic groups, aromatic groups, alicyclic groups, tion of nickel nitrosyl compounds containing a group etc. The substituent groups can also bond at two posi having the cyclopentadienyl moiety. tions. Where this occurs, groups can substitute for adja Compounds such as cyclopentadienylnickel nitrosyl, 5 cent R groups, e.g., Ra and R3 and/or R4 and R5 to form methylcyclopentadienylnickel nitrosyl and other complex indene and other condensed ring structures. nitrosyl compounds containing a cyclopentadienyl-type As mentioned hereinbefore, when carrying out the proc group have been made. Such compounds have use as ess of the present invention, the reactants are reacted in gasoline additives. When such use is contemplated, it is the presence of a base. The base can advantageously be economically imperative that the compounds be produced 20 a nitrogen base or a phosphorus base or an alkoxide of a in good yield from the most readily available and inex metal having a strong hydroxide.
    [Show full text]
  • Inorganic Arsenic Compounds Other Than Arsine Health and Safety Guide
    OS INTERNATiONAL I'ROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 70 INORGANIC ARSENIC COMPOUNDS OTHER THAN ARSINE HEALTH AND SAFETY GUIDE i - I 04 R. Q) UNEP UNITED NATIONS INTERNATIONAL ENVIRONMENT I'R( )GRAMME LABOUR ORGANISATION k\s' I V WORLD HEALTH ORGANIZATION WORLD HEALTH ORGANIZATION, GENEVA 1992 IPcs Other H EA LTH AND SAFETY GUIDES available: Aerytonitrile 41. Clii rdeon 2. Kekvau 42. Vatiadiuni 3 . I Bula not 43 Di meLhyI ftirmatnide 4 2-Buta101 44 1-Dryliniot 5. 2.4- Diehlorpheiioxv- 45 . Ac rylzi mule acetic Acid (2.4-D) 46. Barium 6. NIcihylene Chhride 47. Airaziiie 7 . ie,i-Buia nol 48. Benlm'.ie 8. Ep Ichioroli) Olin 49. Cap a 64 P. ls.ihutaiiol 50. Captaii I o. feiddin oeth N lene Si. Parai.tuat II. Tetradi ion 51 Diquat 12. Te nacelle 53. Alpha- and Betal-lexachloro- 13 Clils,i (lane cyclohexanes 14 1 kpia Idor 54. Liiidaiic IS. Propylene oxide 55. 1 .2-Diciilroetiiane Ethylene Oxide 5t. Hydrazine Eiulosiillaii 57. F-orivaldehydc IS. Die h lorvos 55. MLhyI Isobu I V I kcloiic IV. Pculaehloro1heiiol 59. fl-Flexaric 20. Diiiiethoaie 61), Endrin 2 1 . A iii in and Dick) 0in 6 I . I sh IIZiLI1 22. Cyperniellirin 62. Nicki. Nickel Caution I. and some 23. Quiiiloieiic Nickel Compounds 24. Alkthrins 03. Hexachlorocyclopeuladiene 25. Rsiiiethii ins 64. Aidicaib 26. Pyr rot ii,id inc Alkaloids 65. Fe nitrolhioit 27. Magnetic Fields hib. Triclilorlon 28. Phosphine 67. Acroleiii 29. Diiiiethyl Sull'ite 68. Polychlurinated hiphenyls (PCBs) and 30. Dc lianteth nil polyc h In ruiated letlilienyls (fs) 31.
    [Show full text]
  • Nickel and Nickel Compounds Were Considered by Previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987)
    NICKEL AND NieKEL eOMPOUNDS Nickel and nickel compounds were considered by previous !AC Working Groups, in 1972, 1975, 1979, 1982 and 1987 (IARC, 1973, 1976, 1979, 1982, 1987). Since that time, new data have become available, and these are inc1uded in the pres- ent monograph and have been taken into consideration in the evaluation. 1. ehemical and Physical Data The list of nickel alloys and compounds given in Table 1 is not exhaustive, nor does it necessarily reflect the commercial importance of the various nickel-con tain- ing substances, but it is indicative of the range of nickel alloys and compounds avail- able, including some compounds that are important commercially and those that have been tested in biological systems. A number of intermediary compounds occur in refineries which cannot be characterized and are not listed. 1.1 Synonyms, trade names and molecular formulae of nickel and selected nickel-containing compounds Table 1. Synonyms (Chemical Abstracts Service names are given in bold), trade names and atomic or molecular formulae or compositions of nickel, nickel alloys and selected nickel compounds Chemical Chem. Abstr. SYDoDyms and trade Dames Formula Dame Seiv. Reg. Oxda- Numbera tion stateb Metallc nickel and nickel alloys Nickel 7440-02-0 c.I. 77775; NI; Ni 233; Ni 270; Nickel 270; Ni o (8049-31-8; Nickel element; NP 2 17375-04-1; 39303-46-3; 53527-81-4; 112084-17-0) -- 257 - NICKEL AND NICKEL COMPOUNDS 259 Table i (contd) Chemical Chem. Abstr. Synonym and trade names Formula name Seiv. Reg. Ox- Number4 dation stateb
    [Show full text]
  • A Review on the Metal Complex of Nickel (II) Salicylhydroxamic Acid and Its Aniline Adduct
    Adegoke AV, et al., J Transl Sci Res 2019, 2: 006 DOI: 10.24966/TSR-6899/100006 HSOA Journal of Translational Science and Research Review Article Introduction A Review on the Metal Complex Metal complexes are formed in biological systems, particularly of Nickel (II) Salicylhydroxamic between ligands and metal ions in dynamic equilibrium, with the free metal ion in a more or less aqueous environment [1]. All biologically Acid and its Aniline Adduct important metal ions can form complexes and the number of different chemical species which can be coordinated with these metal ions is very large. During the past few decades, a lot of scientist research 1 1 2 3 Adegoke AV *, Aliyu DH , Akefe IO and Nyan SE groups operated through specialization in the direction of drug dis- 1Department of Chemistry, Faculty of Science, University of Abuja, Nigeria covery, by studying the simplest species that use metal ions and re- searching them as whole compound; for example, they suggested the 2 Department of Physiology, Biochemistry and Pharmacology, Faculty of addition of metal ion to antibiotics to facilitate their spread through- Veterinary Medicine, University of Jos, Nigeria out the body [2]. The development of drug resistance as well as the 3Department of Chemistry, Faculty of Science, Kaduna State University, appearance of undesirable side effects of certain antibiotics has led to Nigeria the search of new antimicrobial agents with the goal to discover new chemical structures which overcome the above disadvantages. As a ligand with potential oxygen and nitrogen donors, hydroxamic acids are interesting and have gained special attention not only because of Abstract the structural chemistry of their coordination modes, but also because Metal complexes are fundamentally known to be engendered in of their importance in medical chemistry [3].
    [Show full text]
  • Supporting Information © Wiley-VCH 2006 69451 Weinheim, Germany
    Supporting Information © Wiley-VCH 2006 69451 Weinheim, Germany “Sulflower”: a new form of carbon sulfide Konstantin Yu. Chernichenko, Viktor V. Sumerin, Roman V. Shpanchenko, Elizabeth S. Balenkova, Valentine G. Nenajdenko* Carbon sulfide forms. Stable at usual conditions: [1] [2] [3] [4] 2. C3S8 C4S6 C4S6 C4S6 S S S S S S S S S S S S S S S S S S S S S S S S S S [5] [6] [5] [7] C5S7 C6S8 C6S8 C6S8 C6S10 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S [1] [8] [9, 10] C6S12 C8S8 C9S9 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S Polymeric forms: [11] [12] [13] [5] [6] 1. Black CS2 (CS)n (C3S2)n (C3S5)n C8S8 S S S S S S S S S S n S S S n Quantum chemical calculations: Density-functional calculations were performed within Perdew–Burke–Ernzerhof generalized gradient approximation[14] using scalar-relativistic[15] one-electron Hamiltonian and extended basis sets of Gaussian functions as implemented in a recent version of the original computer code.[16] We have used a preliminary version of scalar-relativistic basis sets of TZ2p, finite nucleus model was used. Fast riMP2 method[17] was used with cc-pVDZm basis set. We have calculated energy of unstrained C2S fragment from linear dependence of full energies of 2,3-b- annulated oligothiophenes C2+2nSnH4 (n=1…5) – starting from thiophene to helical pentathiophene: S S S S S S S S S S S S S S S n Full energies, Hartree PBE riMP2 1 -553.91315 -552.03413 2 -1029.26725 -1025.7063 3 -1504.62259 -1499.38155 4 -1979.97749 -1973.05662 5 -2455.33167 -2446.73137 PBE riMP2 -500 -1000 -1500 -2000 Full energy, Hartree -2500 1 2 3 4 5 n Graph linearizations give the energy of unstrained C2S unit in 2,3-b annulated oligothiophenes: E= -78.55825 - 475.35473·n (SD=3.72905E-4), PBE E= -78.35856 – 473.67448·n (SD=1.01E-3), riMP2 A good correlation between two methods has been achieved.
    [Show full text]
  • (Nis2 and Nise2) Decorated with Graphene for Efficient Supercapac
    RSC Advances View Article Online PAPER View Journal | View Issue Controllable synthesis of hollow spherical nickel chalcogenide (NiS and NiSe ) decorated with Cite this: RSC Adv.,2021,11,11786 2 2 graphene for efficient supercapacitor electrodes† Min Lu,*a Ming-yuan Sun,a Xiao-hui Guan, a Xue-mei Chen*a and Guang-Sheng Wang *b New carbon-loaded nickel chalcogenide electrode materials (NiS2/GO and NiSe2/rGO) have been synthesized through an easy-to-operate process: NiSe2 was obtained based on NiS2 hollow spheres, and was successfully synthesized with L-cysteine assistance under the hydrothermal method at 120 C. GO of different mass fraction was added together with L-cysteine. The electrochemical performance of NiS2/ GO and NiSe2/rGO has been greatly improved because the formation of a carbon-loaded layer effectively increased the specific surface area and reduced the charge transport resistance. Compared with pure NiS2 and NiSe2, NiS2/GO and NiSe2/rGO presented much better specific capacitance (1020 F À1 À1 À1 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. g and 722 F g respectively at a current density of 1 A g ) and more superior rate capability (when Received 22nd December 2020 À À À the current density was raised to 5 A g 1 the specific capacitance remained at 569 F g 1 and 302 F g 1). Accepted 9th March 2021 This work highlights the advantages of nickel compounds through a very simple experimental method, DOI: 10.1039/d0ra10659c and contributes to providing a good reference for preparation of superior supercapacitor materials with rsc.li/rsc-advances high performance.
    [Show full text]
  • Metal Chalcogenides Syntheses Using Reactions of Ionic Liquids
    Metal chalcogenides syntheses using reactions of ionic liquids Dissertation zur Erlangung des akademischen Grades Doctor rerum naturaluim (Dr. rer. nat.) vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden von M.Eng. Tao Zhang geboren am 12. April 1989 in Shandong (China) Eingereicht am 29. März 2018 Die Dissertation wurde in der Zeit von Oktober 2014 bis März 2018 an der Professur für Anorganische Chemie II angefertigt. Gutachter: Prof. Dr. Michael Ruck (TU Dresden) Prof. Dr. Claus Feldmann (KIT) Tag der Verteidigung: 30. Mai 2018 Contents 1. Background and motivation ................................................................ 1 1.1. Properties of ILs and DESs ................................................................. 3 1.2. Reactions of ionic liquids and deep eutectic solvents ............................ 5 1.2.1 Reactions of metal-containing ionic liquids ...................................... 5 1.2.2. Reactions of fluorine-containing ionic liquids ................................... 6 1.2.3. Reactions of hydroxide-based ionic liquids ...................................... 7 1.2.4. Reactions of chalcogen-containing ionic liquids ............................... 8 1.2.5. Reactions of deep eutectic solvents ............................................. 10 1.3. Motivation ...................................................................................... 12 1.4. References ..................................................................................... 13 2. Solvothermal synthesis
    [Show full text]
  • GARDENROOTS Results Booklet
    GARDENROOTS A Citizen Science Garden Project Results booklet Cochise County 1 2 TABLE OF CONTENTS Project Overview 4 Important Terms 6 Results - Water 8 • Understanding Your Results • Data figures Results - Soil 12 • Understanding Your Results • Data figures Results - Plant 16 • Understanding Your Results • Data tables Selected contaminants of concern 26 References 38 Notes 40 1 PROJECT OVERVIEW We did it! I would like to give a special thanks to all 54 of the Arizona Gardenroots participants for their efforts, motivation, and patience throughout this research project. Altogether, 93 community members were trained, and 125 soil, 174 water, and 267 plant samples were prepared and analyzed. 267 125 174 93 Seeing gardens as hubs for environmental health research and education, Gardenroots is trying to understand the state of environmental quality in rural communities. Results from this study are helping to determine whether people are exposed to metal contaminants through gardening and crop ingestion. Gardenroots is co-generating a robust environmental monitoring dataset, while informing the safe production of food sources in underserved communities. In January 2015, efforts began by conducting environmental health needs assessments with Cooperative Extension agents and rural gardeners across Arizona. Based upon community feedback, Gardenroots was then launched in three Arizona counties (Apache, Cochise, Greenlee). Training sessions were held in summer 2015 (June – August) to instruct citizen- scientists in the collection of garden vegetables, as well as irrigation water, soil, and dust samples. Now, December 2016, Gardenroots is hosting community gathering and data sharing events in each county. For more information about the study, timeline, and safe gardening practices, please visit the new Gardenroots website: http://www.gardenroots.arizona.edu/.
    [Show full text]
  • The Catalytic Reactions of CO and H2O Over New Amorphous Ternary
    Notes Bull. Korean Chem, Soc. 1996, Vol. 17, No. 6 541 Chem. 1988, 60, 1659. Experimental 17. Karlsson, K. E.; Novotny, M. Anal. Chem. 1988, 60, 1662. 18. Bauer, H. Chromatographia 1989, 28, 289. Preparation and sample manipulations were performed un­ 19. Banks, J. F.; Novotny, M. J. Microcolumn Sep, 1990, 2, der an argon-filled glovebox containing less than 1 ppm of 84. oxygen. The ternary Zintl material K3SbTe3 was prepared 20. Berry, V.; Van Rossum, P.; Pretorius, V. J. Liq. Chroma- as described previously.56 M3(SbTe3)2 (M = Ni, Cr, Mn) com­ togr. 1990, 13, 391. pounds were prepared by the reaction of an aqueous solution 21. Cheong, W. J.; Cha, K. W.; Choi, J. D. J. Korean Chem. of K3SbTe3 and MC12. A stoichiometric quantity of K3SbTe3 Soc. (Korean) 1995, 39, 471. solution (50 mL, 0.03 M) was added slowly while stirring 22. An, H. J.; Cheong, W. J. J. Korean Chem. Soc.(Korean) the metal chloride solution (20 mL, 0.05 M). A precipitate 1995, 39, 863. was immediately formed, which was then separated by solu­ 23. Cheong, W. J.; Chun, S. H.; Lee, G. Y. J. Liq. Chrom. tion filtration, washed with deionized water and acetone, and & Rel. TechnoL 1996, 19, 277. dried overnight under vacuum. To investigate the electrical properties of the compounds, the electrical conductivity was measured on pressed pellets over the temperature range 30-300 K using a van der Pauw four-probe method.7 The current was supplied by a Keithley model 224 programmable current source and voltage drop across the sample was mea­ The Catalytic Reactions of CO and H2O over sured using a Keithley model 181 digital nanovoltmeter.
    [Show full text]
  • Tables of Molecular Vibrational Frequencies: Part 6
    Tables of Molecular Vibrational Frequencies: Part 6 Cite as: Journal of Physical and Chemical Reference Data 2, 121 (1973); https://doi.org/10.1063/1.3253114 Published Online: 29 October 2009 T. Shimanouchi ARTICLES YOU MAY BE INTERESTED IN Tables of Molecular Vibrational Frequencies Part 5 Journal of Physical and Chemical Reference Data 1, 189 (1972); https:// doi.org/10.1063/1.3253098 Tables of molecular vibrational frequencies. Consolidated volume II Journal of Physical and Chemical Reference Data 6, 993 (1977); https:// doi.org/10.1063/1.555560 Tables of molecular vibrational frequencies Journal of Physical and Chemical Reference Data 7, 1323 (1978); https:// doi.org/10.1063/1.555587 Journal of Physical and Chemical Reference Data 2, 121 (1973); https://doi.org/10.1063/1.3253114 2, 121 © 1973 The U. S. Secretary of Commerce on behalf of the United States. Tables of Molecular Vibrational Frequencies Part 6 T.Shimanouchi Department o/Chemis.try, University o/Tokyo, Tokyo, Japan The compilations of fundamental vibrational frequencies of molecules previously published in the NSRDS-NBS publication series and in this journal are here extended to 55 additional molecules. Selected values of the fundamental vibrational frequencies are given for each molecule, together with observed infrared and Raman spectral data and citations to the original literature. The selection· of vibrational fundamentals has been based on careful studies of the spectral data and comprehensive normal-coordinate analyses. An estimate of the accuracy of the selected values is included. The tables provide a convenient source of information for those who require vibrational energy levels and related properties in molecular spectroscopy, thermodynamics, analytical chemistry, and other fields of physics and chemistry.
    [Show full text]