Calculating the Complex Behaviours of Multi-Body Asteroids

Total Page:16

File Type:pdf, Size:1020Kb

Calculating the Complex Behaviours of Multi-Body Asteroids Physical Sciences ︱ Dr Yu Jiang Calculating the complex behaviours of multi-body asteroids Far outnumbering the n the earliest days of the solar system, systems have been discovered in the solar planets of the solar system, the sun was orbited by a uniform disk system. In 2004, the first triple asteroid asteroids are widely believed Iof gas and dust. Over time, some of this system was found; named 87 Sylvia, it by astronomers to be material collapsed under its own gravity to has two moonlets: Romulus and Remus. responsible for shaping our eventually form smooth, spherical bodies As of June 2019, 341 binary asteroid – which we now call planets. However, this systems and 15 triple systems have been Credit: NASA/JPL/ planetary neighbourhood Processed by Kevin into its current state. Dr Yu doesn’t tell the whole story. Vast amounts found.” In his research, Dr Jiang studies M. Gill CC BY SA 2.0. Jiang at Tsinghua University of interplanetary gas and dust never the diverse behaviours which unfold in China has dedicated his coalesced into planets; much of what within these complex systems, with the research to studying the most was left came to form smaller, irregularly aim of discovering more about how the NASA engineers pose with the Galileo orbiter Asteroid 243 Ida as seen by the Galileo probe on August 28, 1993. Inset: Highest-resolution image with its main antenna open. of Ida’s moon Dactyl, recorded while Galileo was about 3,900 km away from the moon. intriguing of these bodies: large shaped bodies, named asteroids. Each solar system has transformed since its asteroids which are themselves under 1,000 kilometres in diameter, earliest days. orbited by one or more smaller asteroids encompass a diverse range of significant role in forming the planets of named 41 Daphne, which was discovered of Daphne, Peneius, has a diameter rocks. Using both computer shapes, sizes, and compositions, and can STUDYING DYNAMICAL the solar system as we know them today, in 1856. At first, astronomers thought smaller than 2 kilometres. The separation simulations and complex also display intriguing orbital behaviours. ENVIRONMENTS Dr Jiang argues that it is important for that Daphne sat by itself, but further between mass centres of Daphne and mathematical calculations, Since asteroids are so much smaller than astronomers to study these complex observations carried out in 2008 revealed Peneius is about 443 kilometres.” his work has now provided Until recently, astronomers have only been planets, their gravitational fields are far gravitational behaviours. “Generally, new insights into how our able to observe systems of individual weaker, which means that unlike planets, asteroids have irregular shapes which may solar system originally formed asteroids, but now they are aware that most of them cannot collapse to form vary over millions of years, meaning the The study of asteroids may help us to and came to evolve over time. smaller rocks, named ‘moonlets’, can orbit uniform spheres. If a person were to dynamical behaviours in their gravitational around larger asteroids, named ‘primaries’. walk across the surface of an asteroid, fields are quite complicated,” he says. understand the formation and evolution “Discovered by Galileo spacecraft in therefore, the gravitational force they “The study of asteroids may help us to of the solar system. 1993, Ida and its orbiting moonlet, Dactyl, would experience would vary extremely understand the formation and evolution is the first binary asteroid system ever widely – wholly unlike the uniform force of the solar system. My interest focuses on that a far smaller rock was actually in In planet-moon systems, the interaction of found in the Solar system,” explains Dr which we are used to on Earth. Because the dynamical environment of binary and orbit around it, named Peneius. Since the gravitational fields of the two bodies Jiang. “Since then, several binary asteroid asteroids have likely played a hugely triple systems.” this discovery, Dr Jiang has analysed this creates certain ‘equilibrium’ points. These intriguing system in detail. “Recently, I are so-called because, were a small As well as studying the movements have studied the dynamical environment body placed on this point, it would not of asteroids and moonlets, Dr Jiang in the vicinity of the binary asteroid system fall towards either body. Astronomers also analyses the behaviours which 41 Daphne,” he describes. “Daphne is a currently believe that Daphne is irregular arise as they collide with other bodies, big asteroid in the main belt; its major axis in shape, giving it a complex gravitational causing them to partially disintegrate. is larger than 200 kilometres. The moonlet field, which could host equilibrium points “In addition, grains may be generated from the impact of the cosmic debris to the primary or moonlet of a binary or triple asteroid system,” he continues. “These grains may move to planets or other asteroids. If the grains enter Earth’s atmosphere, people will see a beautiful meteor shower.” Currently, Dr Jiang is paying particular attention to these behaviours for two complex multi-body asteroid systems. SHAPE VARIATION IN A BINARY SYSTEM In the wide gap between Mars and Jupiter sits the asteroid belt: a vast ring of interplanetary rocks which were never able to collapse to form their own planet. Elenarts/Shutterstock.com Among these asteroids is a system Projection of zero-velocity curves of 41 Daphne in xz and yz planes. www.researchfeatures.com www.researchfeatures.com of its own. If this is the case, Daphne’s Dust grains around the triple asteroid field alone could be responsible for 216 Kleopatra. keeping Peneius in a stable orbit. “In my Behind the Research research, I considered the shape variety of Daphne, and investigated its dynamical environment as its form varied from its Dr Yu Jiang current shape to a sphere,” Dr Jiang continues. “I found that the stability of E: [email protected] T: +186 010 62795926 Daphne’s relative equilibrium points may W: https://www.researchgate.net/profile/Yu_Jiang22 change when its shape varies.” Using a combination of computer simulations and mathematical calculations, Dr Jiang was Research Objectives References able to identify how these equilibrium points would vary in position as Daphne’s Dr Jiang’s work explores the dynamical environment Jiang, Y. (2018). Dynamical environment in the vicinity of binary and triple asteroid systems. of asteroids with an application to 41 Daphne. Results I found that the stability of Daphne’s in Physics, 9, p.1511-1520. Detail Jiang, Y. (2019). Dynamical environment in the triple relative equilibrium points may change asteroid system 87 Sylvia. Astrophysics and Space Science, when its shape varies. N904, 364(4), p.60. Mengminwei Building, shape was varied. Ultimately, this allowed Sylvia is about 280 km, the two Depending on where this debris hits, Tsinghua University, him to map Peneius’ orbit around its host. moonlets, Remus and Romulus, have these grains could follow a variety Beijing, mean diameters of around 7 km and of different paths; impacting the 100084 DUST GRAIN GENERATION 18 km, respectively. The separation subsequent behaviour of the system P R China Personal Response IN A TRIPLE SYSTEM between the mass centre of Sylvia as a whole. “I investigated the motion Next, Dr Jiang looked at an even more and its two moonlets is about 707 of the grains generated in different parts Bio What fascinates you most about these binary and triple complex system, 87 Sylvia. Discovered km and 1357 km.” To investigate the of Sylvia,” Dr Jiang explains. “I have Dr Yu Jiang is an associate Professor of State Key Laboratory asteroid systems? in 1866, Sylvia was again first thought dynamics of this system, Dr Jiang now found that some of the grains may of Astronautic Dynamics, China. He is the author of more The generation and evolution of dust and debris to be on its own, but subsequent again used computer models to map impact on the surface of the primary, than 40 publications and funded by four national projects. in the binary and triple asteroid systems. observations in 2001 and 2004 revealed its gravitational environment, taking which may produce more grains; and His current research interests lie in dynamics around that two moonlets were actually in account of Sylvia’s irregular shape. some of the grains may escape the asteroids, dust dynamics, as well as motion of space debris. orbit around it. “I have also studied the In particular, he used his models to triple system and enter interplanetary dynamical environment of the triple simulate the behaviours of small grains space.” Such grains were likely to be in Funding asteroid system, 87 Sylvia,” describes of rock, which are thrown up as external orbit around the sun long before any National Natural Science Foundation of China Dr Jiang. “The mean diameter of debris collides with the system. planets, or even asteroids, had had (No. 11772356). the time to form. Therefore, studying them in more detail can tell us more about how the solar system as we know it today came into being. NEW INSIGHTS INTO FORMATION AND EVOLUTION In the future, some astronomers are strongly hoping that a spacecraft will be sent to the asteroid belt to investigate the dynamics of a double or triple system, like Daphne or Sylvia, in unprecedented levels of detail. For such a mission to succeed, Dr Jiang’s calculations will prove critical to designing the trajectories of the spacecraft, to ensure it can safely arrive at such incredibly small, yet complex targets. The insights provided by these potential missions could one day prove invaluable to researchers in a wide variety of fields, potentially answering long-standing questions Examples of irregular asteroid shape. Clockwise from top left: 87 Sylvia; 41 Daphne; 433 Eros; about how our solar system first formed, 216 Kleopatra.
Recommended publications
  • Copyrighted Material
    Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED
    [Show full text]
  • Discovery of an Extreme Mass-Ratio Satellite of (41) Daphne in a Close Orbit
    Asteroids, Comets, Meteors (2008) 8370.pdf DISCOVERY OF AN EXTREME MASS-RATIO SATELLITE OF (41) DAPHNE IN A CLOSE ORBIT. W. J. Merline1, A. R. Conrad2, J. D. Drummond3, B. Carry4, C. Dumas4, P. M. Tamblyn1, C. R. Chapman1, W. M. Owen5, D. D. Durda1, R. D. Campbell2, R. W. Goodrich2. 1Southwest Research Institute, 1050 Walnut Street, Ste 300, Boulder, CO 80302,2W.M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI, 96743, 3Starfire Optical Range, Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117,4ESO Very Large (VLT), European Southern Observatory, Alonso de Cordova 3107, Vitacura Casilla 19001, Santiago 19, Chile, 5Jet Propulsion Laboratory, 301-150, 4800 Oak Grove Dr, Pasadena, CA 91109 Introduction. We report the discovery of a small we have only been able to make preliminary estimates satellite to large C-type asteroid (41) Daphne, using of the system parameters. From the single arc of the adaptive optics on Keck II. The satellite appears to orbit, we had at first estimate a semi-major axis of have the most extreme mass ratio (106) of any binary about 443 km, but revised estimates put it at closer to known. It is also in a particularly close orbit for this 405 km. The orbital period estimate on our first report class of binary. We consider how difficult is such a was 1.6 days, but this may be revised downward. The detection for large asteroids in the Main Belt, and what most unsual aspect is that this object appears to have consequences it may have for the main-belt binary the most extreme size ratio of any known binary.
    [Show full text]
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Dynamical Evolution of the Cybele Asteroids
    MNRAS 451, 244–256 (2015) doi:10.1093/mnras/stv997 Dynamical evolution of the Cybele asteroids Downloaded from https://academic.oup.com/mnras/article-abstract/451/1/244/1381346 by Universidade Estadual Paulista J�lio de Mesquita Filho user on 22 April 2019 V. Carruba,1‹ D. Nesvorny,´ 2 S. Aljbaae1 andM.E.Huaman1 1UNESP, Univ. Estadual Paulista, Grupo de dinamicaˆ Orbital e Planetologia, 12516-410 Guaratingueta,´ SP, Brazil 2Department of Space Studies, Southwest Research Institute, Boulder, CO 80302, USA Accepted 2015 May 1. Received 2015 May 1; in original form 2015 April 1 ABSTRACT The Cybele region, located between the 2J:-1A and 5J:-3A mean-motion resonances, is ad- jacent and exterior to the asteroid main belt. An increasing density of three-body resonances makes the region between the Cybele and Hilda populations dynamically unstable, so that the Cybele zone could be considered the last outpost of an extended main belt. The presence of binary asteroids with large primaries and small secondaries suggested that asteroid families should be found in this region, but only relatively recently the first dynamical groups were identified in this area. Among these, the Sylvia group has been proposed to be one of the oldest families in the extended main belt. In this work we identify families in the Cybele region in the context of the local dynamics and non-gravitational forces such as the Yarkovsky and stochastic Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effects. We confirm the detec- tion of the new Helga group at 3.65 au, which could extend the outer boundary of the Cybele region up to the 5J:-3A mean-motion resonance.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • 1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
    Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H.
    [Show full text]
  • University of Groningen Asteroid Thermophysical Modeling Delbo
    University of Groningen Asteroid thermophysical modeling Delbo, Marco; Mueller, Michael; Emery, Joshua P.; Rozitis, Ben; Capria, Maria Teresa Published in: Asteroids IV IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Delbo, M., Mueller, M., Emery, J. P., Rozitis, B., & Capria, M. T. (2015). Asteroid thermophysical modeling. In P. Michel, F. E. DeMeo, & W. F. Botke (Eds.), Asteroids IV (pp. 107-128). tUSCON: University of Arizona Press. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 13-11-2019 Asteroid thermophysical modeling Marco Delbo Laboratoire Lagrange, UNS-CNRS, Observatoire de la Coteˆ d’Azur Michael Mueller SRON Netherlands Institute for Space Research Joshua P. Emery Dept. of Earth and Planetary Sciences - University of Tennessee Ben Rozitis Dept.
    [Show full text]
  • IRTF Spectra for 17 Asteroids from the C and X Complexes: a Discussion of Continuum Slopes and Their Relationships to C Chondrites and Phyllosilicates ⇑ Daniel R
    Icarus 212 (2011) 682–696 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus IRTF spectra for 17 asteroids from the C and X complexes: A discussion of continuum slopes and their relationships to C chondrites and phyllosilicates ⇑ Daniel R. Ostrowski a, Claud H.S. Lacy a,b, Katherine M. Gietzen a, Derek W.G. Sears a,c, a Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, United States b Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States c Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States article info abstract Article history: In order to gain further insight into their surface compositions and relationships with meteorites, we Received 23 April 2009 have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX Revised 20 January 2011 infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line Accepted 25 January 2011 databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV Available online 1 February 2011 slope, a 0.7 lm feature and a 3 lm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% Keywords: of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be charac- Asteroids, composition terized by the slopes of their continua.
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations Q ⇑ F
    Icarus 221 (2012) 1130–1161 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations q ⇑ F. Marchis a,g, , J.E. Enriquez a, J.P. Emery b, M. Mueller c, M. Baek a, J. Pollock d, M. Assafin e, R. Vieira Martins f, J. Berthier g, F. Vachier g, D.P. Cruikshank h, L.F. Lim i, D.E. Reichart j, K.M. Ivarsen j, J.B. Haislip j, A.P. LaCluyze j a Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA b Earth and Planetary Sciences, University of Tennessee, 306 Earth and Planetary Sciences Building, Knoxville, TN 37996-1410, USA c SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e Observatorio do Valongo, UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f Observatório Nacional, MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, RJ, Brazil g Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h NASA, Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA j Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, USA article info abstract Article history: We collected mid-IR spectra from 5.2 to 38 lm using the Spitzer Space Telescope Infrared Spectrograph Available online 2 October 2012 of 28 asteroids representative of all established types of binary groups.
    [Show full text]
  • Sun Earth Asteroid
    Calculation of the Diameter of Asteroids Natchanon Jit-aree e-mail:[email protected] Adviser Mrs.Jiraporn Kakaew Pua School Abstract This research calculates the diameter of asteroids. Photos were taken from PROMPT 8 in Cerro Tololo Inter American Observatory (CTIO) and data were analyzed. The result showed that 423 Diotima, 41 Daphne and 121 Hermione asteroids have diameter 207.4 km, 195.0 km and 286.4 km and that it is not the same with their real diameter that were 0.69%, 12.06% and 37.02% in order. Introduction Asteroids are litter stones in the space. They move around the sun. The asteroids that are located between Mars and Jupiter is called asteroid belt. C-type Asteroids are the asteroids that reflect little light from the sun. They are harder to see. It’s major component is carbon. They have 75% of all asteroids and they have albedo 0.03 to 0.09. We calculated the diameter by comparing flux of sun with the flux of asteroid. Methods 1. Finding the data about asteroids C-Type from the data that was based in the website below. http://en.wikipedia.org/wiki/List_of_notable_asteroids and http://ssd.jpl.nasa.gov/sbdb_query.cgi#x 2.The Researcher chose 3 of asteroids from C-Type namely , 423 Diotima that was been observed and followed from 17-19 August 2557, 41 Daphne that was been observed and followed from 24-25 August 2557 and the last is 121 Hermione that was been observed and followed from 1-4 September 2557. Photos were taken in filter clear for 3 images and use 30 second per image.
    [Show full text]